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A B S T R A C T   

Objectives: To investigate the prevalence of Mycobacterium abscessus complex (MABC), drug 
resistance characteristics, and the relationship between clarithromycin (CLA) susceptibility and 
MABC genotype in Chongqing, China. 
Methods: A total of 434 NTM patient isolates were collected between October 2018 and October 
2019. Isolates confirmed to be non-tuberculous mycobacteria (NTM) were tested for minimal 
inhibitory concentrations of antimicrobial agents. In addition, rrl and erm(41) gene sequences 
were used to analyze the acquired macrolide resistance and inducible macrolide resistance. 
Results: Overall, 17 different NTM species were detected, of which M. abscessus (22.6 %, 91/403) 
was most prevalent. Amikacin, CLA, azithromycin and cefoxitin exhibited potent activities against 
MABC organisms, but no significant differences were observed in drug resistance rates between 
M. abscessus and M. massiliense (P > 0.05). On day 3 of culture, the acquired resistance rate 
against CLA was 7.4 % (9/121). Of 41 MABC isolates with inducible CLA resistant, 95.1 % (39/ 
41) isolates belonged to the erm(41) T28 sequevar, while the remaining 4.9 % (2/41) possessed 
the M. massiliense genotype. All erm(41) C28 sequevar isolates were sensitive to CLA on day3 and 
day 14 of culture. Meanwhile, of the 5 erm(41) T28 isolates with acquired resistance, all possessed 
rrl 2058/2059 mutations, including 3 isolates with A2058C mutation and 2 isolates with A2059G 
mutation. While 2 of the 4 M. massiliense isolates with acquired resistance possessed the A2059G 
mutation, and one isolate possessed the A2058G mutation. 
Conclusion: Erm(41) and rrl gene could serve as useful markers for predicting macrolide suscep
tibility of MABC complex isolates.   
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1. Introduction 

The incidence of non-tuberculous mycobacteria (NTM) infections has increased worldwide concurrently with increases in numbers 
of at-risk populations, such as immunocompromised hosts, the elderly, and patients with cystic fibrosis [1,2]. In China, the prevalence 
of NTM infections has been rising relative to infections caused by Mycobacterium tuberculosis, such that NTM species currently account 
for approximately one-quarter of mycobacterial patient isolates according to national population-based data [3,4]. Although similar 
clinical pulmonary manifestations accompany different types of mycobacterial infections, treatment regimens differ greatly. There
fore, accurate identification of NTM species is extremely important prior to treatment administration [5,6]. 

Of infections caused by NTM species, those infected by Mycobacterium abscessus complex (MABC) are especially difficult to treat, 
due to the fact that these organisms are resistant to most first-line antibiotics and have natural resistance to anti-tuberculosis agents [7, 
8]. Currently, macrolides serve as key drugs used to treat MABC infections [9], although macrolide susceptibility varies with 
M. abscessus subspecies (M. abscessus, M. massiliense, M. bolletii), due to two confirmed distinct molecular mechanisms underlying 
observed clarithromycin (CLA) resistance, acquired and inducible resistance. Acquired macrolide resistance results from point mu
tations at positions 2058/2059 of the 23S rRNA (rrl) gene, while inducible resistance results from expression of an erythromycin ri
bosomal methylase encoded by an intact erm(41) gene, as found in M. bolletii and M. abscessus subspecies of MABC [10]. However, T/C 
polymorphisms at position 28 in the M. abscessus erm(41) gene result in either inducible resistance (T28) or intrinsic susceptibility to 
CLA (C28). Notably, M. massiliense isolates usually possess a truncated, nonfunctional erm(41) gene resulting from a 274-bp deletion 
that is responsible for the macrolide susceptible phenotype [11–13]. 

This study was undertaken to investigate MABC prevalence, drug resistance phenotypes, and the relationship between CLA sus
ceptibility and MABC genotypes in Chongqing, the only municipal city in Southwest China with a high incidence of tuberculosis (TB). 

2. Materials and methods 

2.1. Bacterial strains 

A total of 434 NTM patient isolates identified by P-nitrobenzoic acid medium (PNB) were collected in this study between October 
2018 and October 2019 from Chongqing Municipality, China. They were further confirmed to be NTM species using multilocus 
sequence analysis based on 16S rRNA, hsp65, rpoB, and 16S–23S rRNA internal transcribed spacer (ITS) sequences. After excluding 20 
Cutibacterium acnes, 4 Gordonia bronchialis, 1 Mycobacterium tuberculosis, 1 Nocardia cyriacigeorgica, 1 Nocardia asteroids and 4 failed to 
be sequenced, 403 NTM isolates were included for further analysis [4]. Patient demographic information associated with the isolates 
was obtained from patient questionnaires. 

2.2. MIC assays 

Minimal inhibitory concentrations (MICs) of antimicrobial agents were determined using a broth microdilution method according 
to Clinical and Laboratory Standards Institute (CLSI) guidelines. Bacterial suspensions were prepared from subcultures grown in 
Löwenstein-Jensen medium diluted in saline solution to a density equivalent to that of a 0.5-McFarland standard. Next, bacteria were 
cultured in cation-adjusted Mueller Hinton (CAMHB) broth (pH 7.3–7.4) to a final inoculum density of approximately 5 × 105 CFU/ 
mL. Therefore, 100 μL of bacterial suspension was added to wells of 96-well microtiter plates containing successive two-fold dilutions 
of the various antimicrobial agents. After plates were incubated at 37 ◦C for 3 days, susceptibility to antimicrobial agents was assessed 
by visual inspection using an inverted mirror, based on breakpoints as indicated in Table 1. Two different breakpoints were used to 
interpret CLA resistance of isolates after culture: for acquired CLA resistance, the breakpoint was defined as MIC ≥8 mg/L after 3-day 
culture; for induced resistance, the breakpoint was defined as MIC ≤4 mg/L after 3-day culture and MIC ≥8 mg/L after 14-day culture. 

2.3. DNA amplification and sequencing 

Crude DNA preparations were obtained from all isolates by heating suspensions of mycobacteria in Tris-EDTA buffer at 100 ◦C for 

Table 1 
The antimycobacterial agents and breakpoints.  

Antibiotics MIC range (μg/ml) 

Sensitive Intermediate Resistant 

Clarithromycin CLA ≤2 4 ≥8 
Azithromycin AZM ≤16 – ≥32 
Amikacin AMK ≤16 32 ≥64 
Cefoxitin FOX ≤16 32–64 ≥128 
Imipenem IMP ≤4 8–16 ≥32 
Linezolid LZD ≤8 16 ≥32 
Moxifloxacin MFX ≤1 2 ≥4 
Gatifloxacin GFX ≤1 2 ≥4 
Levofloxacin LFX ≤1 2 ≥4  
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15–20 min followed by removal of bacterial debris via centrifugation at 10,000 rpm for 10 min. DNA regions corresponding to rrl and 
erm(41) gene were amplified with primer Forward 5-CCTGCACGAATGCGGTAACG-3 and Reverse R 5-CACCAGAGGTTCGTCCGTC-3, 
and the erm(41) gene segments were amplified with primers Forward 5-ACGTTGGATCCGAGCGCCGTCACAAGATGCACA-3 and 
Reverse 5-GCGAGAAGCTTGACTTCCCCGCACCGATTCCAC-3 [10]. PCR amplification products were sent to Tsingke Co. (Beijing, 
China) for DNA sequencing. DNA sequences were aligned with homologous sequences of MABC standard strains using BioEdit 
Sequence Alignment Editor 7.1.3 (http://www.mbio.ncsu.edu/bioedit/bioedit.html). 

2.4. Statistical analysis 

Chi-square tests were performed to compare proportions of resistant isolates between M. abscessus and M. massiliense, MABC 
subspecies using SPSS 16.0 (SPSS Inc., Chicago, IL). Differences were considered significant for P- values ＜ 0.05. 

3. Results 

3.1. Proportion of different NTM species 

Of 403 NTM isolates, the most prevalent NTM species were M. abscessus (22.6 %, 91/403), followed by M. intracellulare (21.1 %, 
85/403), M. fortuitum (13.6 %, 55/403), M. massiliense (9.7 %, 39/403), M. avium (7.7 %, 31/403), M. gordonae (7.2 %, 29/403), and 
M. kansasii (6.5 %, 26/403), which together accounted for 88.3 % of NTM isolates studied in this work (Fig. 1). 

3.2. Demographic and clinical features of pulmonary Mycobacterium abscessus complex diseases 

Excluding 9 isolates with no drug susceptibility testing results available, 121 MABC isolates were included for further analysis. 
Demographic and clinical characteristics of pulmonary M. abscessus complex patients are summarized in Table 2. The average age was 
43.5 years and 85 (70.2 %, 85/121) of these patients were male. Furthermore, 74 (61.2 %, 74/121) of these patients reported histories 
of active TB disease, and 77 patients (63.6 %, 77/121) exhibited cough. Surprisingly, only 29.8 % (36/121) of smears of MABC isolates 
smears were positive for acid-fast bacilli. Pulmonary radiographic findings indicated that 31 MABC-infected patients (25.6 %) har
boured fibrocavitary lesions and 50 (41.3 %, 50/121) patients were afflicted with nodular bronchiectasis. 

3.3. In vitro drug susceptibility profiles of M. abscessus complex 

As shown in Table 3, of all antimicrobial agents tested herein, amikacin (AMK) was most effective against MABC organisms, with all 
isolates found to be sensitive to AMK. Clarithromycin (CLA), azithromycin (AZM), and cefoxitin (FOX) also exhibited potent activities 

Fig. 1. Distribution of nontuberculous mycobacteria species isolated from pulmonary NTM patients in Southwest China.  
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against MABC organisms, since percentages of resistant strains for each MABC subspecies were only 6.1 %, 11 %, 4.9 % for 
M. abscessus, and 10.3 %, 7.7 %, 12.8 % for M. massiliense, respectively; statistical analysis revealed that differences in resistant rates 
for a given drug between the two MABC subspecies were not significant (P > 0.05). 

Table 2 
Demographic and clinical characteristics of Mycobacteria abscessus complex infections in this study.  

Characteristics No. of subjects (%) χ2 P 

Gender 
Male 85 (70.2) 39.686 <0.01 
Female 36 (29.8) 
Average age (years) 43.5   
Treatment history 
Previously treated case 89 (73.6) 53.702 <0.01 
New case 32 (26.4) 
Comorbidities 
TB history 74 (61.2) 233.885 <0.01 
COPD 7 (5.8) 
Bronchiectasis 25 (20.7) 
Malignant diseases 3 (2.5) 
Diabetes mellitus 10 (8.3) 
HIV 3 (2.5) 
Clinical presentations 
Cough 77 (63.6) 240.963 <0.01 
Haemoptysis 2 (1.7) 
Fever 2 (1.7) 
Chest distress 3 (2.5) 
Laboratory investigations 
AFB smear (+) 36 (29.8) 100.474 <0.01 
Culture (+) 112 (92.6) 
Radiographic inspection 
Fibrocavitary lesions 31 (25.6) 9.438 0.024 
Nodular bronchiectasis 50 (41.3) 
Combination 31 (25.6) 
Others 40 (33.1)  

Table 3 
Comparison of in vitro drug susceptibility profiles between M. abscessus and M. massiliense isolates.  

Antibiotics Species MIC (μg/ml) No. of resistant isolates (%) P-value 

Range MIC50 MIC90 Susceptible Intermediate Resistant 

CLA M. abscessus 0.0625–128 0.25 4 73 (89.0) 4 (4.9) 5 (6.1) 0.415 
M. massiliense 0.0625–128 0.0625 0.25 34 (87.2) 1 (2.6) 4 (10.3) 

AZM M. abscessus 0.0625–128 2 32 73 (89.0) – 9 (11.0) 0.572 
M. massiliense 0.0625–128 0.25 16 36 (92.3) – 3 (7.7) 

AMK M. abscessus 0.0625–128 4 8 81 (98.8) 1 (1.2) 0 (0.0) – 
M. massiliense 0.0625–128 4 8 37 (94.9) 2 (5.1) 0 (0.0) 

FOX M. abscessus 0.0625–128 32 64 8 (9.8) 70 (85.4) 4 (4.9) 0.120 
M. massiliense 0.0625–128 64 128 4 (10.3) 30 (76.9) 5 (12.8) 

IPM M. abscessus 0.0625–128 64 128 4 (4.9) 2 (2.4) 76 (92.7) 0.651 
M. massiliense 0.0625–128 64 256 1 (2.6) 1 (2.6) 37 (94.9) 

LZD M. abscessus 0.0625–128 16 32 12 (14.6) 31 (37.8) 39 (47.6) 0.500 
M. massiliense 0.0625–128 16 32 6 (15.4) 17 (45.6) 16 (41.0) 

MFX M. abscessus 0.0625–128 8 16 5 (6.1) 6 (7.3) 71 (86.6) 0.406 
M. massiliense 0.0625–128 8 32 2 (5.1) 3 (7.7) 34 (87.2) 

GFX M. abscessus 0.0625–128 4 8 5 (6.1) 7 (8.5) 70 (85.4) 0.788 
M. massiliense 0.0625–128 8 16 3 (7.7) 2 (5.1) 34 (87.2) 

LFX M. abscessus 0.0625–128 32 64 2 (2.4) 2 (2.4) 78 (95.1) 0.161 
M. massiliense 0.0625–128 16 64 0 (0.0) 0 (0.0) 39 (100.0) 

TIG M. abscessus 0.0625–128 0.5 0.5 – – – – 
M. massiliense 0.0625–128 0.5 1 – – – 

BDQ M. abscessus 0.016–32 0.0625 32 – – – – 
M. massiliense 0.016–32 0.0625 32 – – – 

CFZ M. abscessus 0.016–32 0.0625 4 – – – – 
M. massiliense 0.016–32 0.0625 0.25 – – – 

DLM M. abscessus 0.016–32 ＞32 ＞32 – – – – 
M. massiliense 0.016–32 ＞32 ＞32 – – – 

PA-824 M. abscessus 0.016–32 ＞32 ＞32 – – – – 
M. massiliense 0.016–32 ＞32 ＞32 – – –  
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Table 4 
Incubation time on the MIC values and resistant rate of CLA antibiotic for M. abscessus subtype, erm(41) sequevar.  

Subtypes Number of isolates (n) Incubation time (days) CLA MIC (μg/ml)  Number of resistantIsolates (%) 

≤0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64 ≥128 

abscessus T28 60 3 8 4 8 12 16 3 4 1 1 1 0 2 5 (8.3) 
14 1 1 3 1 3 2 5 3 1 4 4 32 44 (73.3) 

abscessus C28 22 3 13 6 2 1 0 0 0 0 0 0 0 0 0 (0.0) 
14 6 8 5 2 0 0 1 0 0 0 0 0 0 (0.0) 

massiliense 39 3 25 4 1 0 4 0 1 1 1 0 0 2 4 (10.3) 
14 22 3 3 2 2 1 0 2 0 0 0 4 6 (15.4) 

All subtypes 121 3 46 14 11 12 20 4 5 2 2 1 0 4 9 (7.4) 
14 29 12 11 5 5 3 6 5 1 4 4 36 50 (41.3)  
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3.4. Clarithromycin resistant mechanism 

Of 121 MABC isolates, 82 belonged to the subspecies M. abscessus, of which 60 belonged to the erm(41) T28 sequevar and 22 
belonged to the erm(41) C28 sequevar, while the remaining 39 isolates belonged to subspecies M. massiliense (based on a truncated erm 
(41) gene). 

CLA MIC values stratified according to MABC subspecies, erm(41) sequevar, and time of incubation are shown in Table 4. On day 3 
of culture, 9 M. abscessus isolates were resistant to CLA, for an acquired resistance rate of 7.4 % (9/121), as compared to 50 M. abscessus 
complex isolates with CLA resistance that were detected on culture day 14. Of 41 MABC isolates with inducible CLA resistance, 95.1 % 
(39/41) belonged to the erm(41) T28 sequevar and 4.9 % (2/41) were identified as M. massiliense; all organisms belonging to the erm 
(41) C28 sequevar exhibited sensitivity to CLA on both day 3 and day 14 of culture. 

Of 9 MABC isolates exhibiting acquired CLA resistance, 5 belonged to the erm(41) T28 sequevar and the remaining 4 belonged to 
M. massiliense. Of the 5 erm(41) T28 sequevar isolates, all possessed rrl 2058/2059 mutations, including 3 isolates with A2058C 
mutation, 2 isolates with A2059G mutation. While 2 of 4 M. massiliense isolates harboured the A2059G mutation and one isolate 
possessed the A2058G mutation (Table 5). 

4. Discussion 

Pulmonary NTM disease has emerged in recent years as an increasingly serious public health concern worldwide [14,15]. Among 
pulmonary infections associated with rapidly growing mycobacterial species, 80 % are caused by MABC organisms [13,16,17]. Indeed, 
in this study MABC was the predominant NTM species isolated from pulmonary NTM patients in Chongqing, as consistent with results 
obtained by Pang et al. and Zhang et al. [6,18], while contradicting results obtained in northern China showing Mycobacterium 
intracellulare as the predominant NTM species in that region [1,18,19]. This observed geographical diversity of NTM isolates may 
reflect climate variations across China. Notably, in this study 70.2 % of patients yielding NTM isolates were men, as consistent with 
other reports from Chongqing [6], an observation that may reflect differences between males and females with regard to immune 
responses against mycobacteria [15]. Moreover, we found that patients with TB histories were at greater risk of contracting pulmonary 
MABC-induced disease, a finding that may be attributed to severe pulmonary structural damage resulting from effects of previous 
active TB disease [20]. Cough, the most common symptom experienced by patients with MABC associated pulmonary disease, was 
clinically indistinguishable from cough associated with TB. This similarity has often led to misdiagnosis of pulmonary M. abscessus 
infections as TB, thus underscoring the importance of accurate diagnosis. 

Analysis of the resistance spectrum of MABC isolates studied here revealed that AMK, CLA, AZM and FOX agents with greatest 
antimicrobial activities were associated with isolate susceptibility rates of ＞85 %, as reported in another study conducted in Shanghai 
[21]. Notably, in this study all MABC isolates were susceptible to AMK, in accordance with several published studies reporting overall 
AMK susceptibility rates of >90 % [21,22]. By contrast, fluoroquinolone antibiotics, such as GFX, LFX, and MFX, were shown here to 
possess unsatisfactory antimicrobial activities against MABC isolates, as consistent with reports of fluoroquinolones resistance rates 
across China of >85 % that may stem from overuse of these drugs [22,23]. Moreover, newer antimicrobial drugs (DLM and PA-824) 
studied in this work also exhibited unsatisfactory antimicrobial activities against MABC isolates, as reflected by high observed drug 
resistance rates approaching 100.0 %. However, our results should be confirmed through additional studies based on other MABC 
isolates obtained across China. According to a previous research in Shanghai, the resistance rates to clarithromycin and doxycycline in 
isolates of M. abscessus were significantly higher than those in isolates of M. massiliense (P < 0.05), whereas here no significant dif
ferences were observed in drug resistance rates between MABC subspecies M. abscessus and M. massiliense, with contradictory possibly 
due to differences in isolates or patient treatment histories across studies [21]. 

Macrolide-based antibiotics are regarded as the cornerstone of treatment for MABC infections. In our study, the acquired CLA 
resistance rate (on day 3) for isolates of MABC subspecies M. abscessus was 6.1 %, a rate similar to that reported in another study 
conducted in China (8.1 %). However, this rate was higher than that reported in the USA (2.51 %), although it was lower than rates 
reported in France (9.09 %) and South Korea (15.84 %) [11,24,25]. However, the rate of CLA resistant isolates of M. abscessus (100 %) 
and M. massiliense (75 %) harboring rrl 2058/2059 mutations is significantly higher than those observed by other groups from China 
[11,21]. The contradictory results possibly attribute to geographic diversity and differences in clinical use of antibiotics. Furthermore, 
a high rate of inducible resistance was observed for erm(41) T28 sequevar isolates, as consistent with reported results of other studies, 
often resulting in treatment failure [25–27]. Notably, in this work one M. massiliense isolate showed inducible resistance to CLA in the 
absence of detectable rrl 2058/2059 point mutations that mechanistically may have been due to mutations leading to altered 50S 
ribosomal subunit structure [7]. Meanwhile, all M. massiliense isolates belonging to the erm(41) C28 sequevar were sensitive to CLA. 
Taken together, these results indicate that erm(41) may be useful for predicting drug susceptibility profiles of MABC subspecies. 

5. Conclusion 

In conclusion, our results suggest that MABC organisms are the predominant cause of NTM lung infections in Chongqing. Anti
biotics AMK, CLA, AZM, and FOX exerted potent inhibitory activity against MABC organisms. Importantly, erm(41) and rrl genes are 
promising markers for use in predicting MABC macrolide susceptibility. 
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