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Abstract

Background: Schizochytrium limacinum SR21 is a potential industrial strain for docosahexaenoic acid (DHA)
production that contains more than 30-40 % DHA among its total fatty acids.

Methods: To resolve the DHA biosynthesis mechanism and improve DHA production at a systematic level, a
genomescale metabolic model (GSMM), named iCY1170_DHA, which contains 1769 reactions, 1659 metabolites,
and 1170 genes, was reconstructed.

Results: Based on genome annotation results and literature reports,

a new DHA synthesis pathway based on a polyketide synthase (PKS) system was detected in S. limacinum. Similarly
to conventional fatty acid synthesis, the biosynthesis of DHA via PKS requires abundant acetyl-CoA and NADPH. The
in silico addition of malate and citrate led to increases of 24.5 % and 37.1 % in DHA production, respectively.
Moreover, based on the results predicted by the model, six amino acids were shown to improve DHA production
by experiment. Finally, 30 genes were identified as potential targets for DHA over-production using a Minimization
of Metabolic Adjustment algorithm.

Conclusions: The reconstructed GSMM, iCY1170_DHA, could be used to elucidate the mechanism by which DHA is
synthesized in S. limacinum and predict the requirements of abundant acetyl-CoA and NADPH for DHA production

as well as the enhanced yields achieved via supplementation with six amino acids, malate, and citrate.

Keywords: Schizochytrium limacinum SR21, Docosahexaenoic acid, Genome-scale metabolic model, Polyketide
synthase system, Minimization of metabolic adjustment algorithm

Background

Docosahexaenoic acid (DHA), which is an n-3 poly-
unsaturated fatty acid (PUFA), has been shown to
have a positive effect on diseases such as hyperten-
sion, arthritis, atherosclerosis, depression, adult-onset
diabetes mellitus, myocardial infarction, thrombosis,
and some cancers [1]. DHA is necessary for the de-
velopment of the brain and retina of infants, and it is
important in maintaining brain function in adults [2].
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Oceanic fish and fish oil products are typical dietary
sources of DHA [3]. However, because of emerging
concerns over the sustainability of marine resources
and the levels of environmental contaminants present
in fish, major efforts have been made to identify or
create alternative sources of DHA [4].

Schizochytrium limacinum SR21 (Aurantiochytrium
limacinum ATCC MYA-1381) is a marine thraustochy-
trid that can synthesize lipids with a high content of
DHA. In SR21, total fatty acids reportedly constitute
more than 50 % of the dry cell weight (DCW) [5], and
about 30—40 % of the fatty acids of this strain are DHA
[6]. In addition, a number of studies have confirmed the
safety of DHA-rich oil extracted from Schizochytrium
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sp. in recent years [7, 8]. For these reasons, DHA from
microorganisms has been widely incorporated into in-
fant formulas and health products for elderly persons
[9]. In addition, industrial utilization of this organism as
a commercial source of DHA is currently receiving
much attention [10, 11].

The dry cell weight, lipid content, and DHA percent-
age of the total fatty acids are three important parame-
ters for evaluating fermentations. Many efforts have
been directed towards improving the DHA yield. (1) To
optimize the culture medium, it was demonstrated that
using glucose and glycerol as mixed carbon sources, the
DHA productivity was 15.24 % higher than that obtained
using glucose as single carbon source [12]. (2) To im-
prove the fermentation process, a NH,-pH-auxostat sys-
tem was developed that appears to be a promising
technique for the first stage of production of Schizochy-
trium sp. biomass as a means of achieving the fastest
possible growth rate [13]. A two-stage oxygen supply
control strategy was applied to the DHA fermenta-
tion. With this protocol, the production of biomass
and DHA improved to 37.9 g/L and 6.56 g/L, which
increased 18.1 % and 9.88 %, respectively [10]. (3) To
enhance metabolic regulation, a strategy was proposed
that reinforces acetyl-CoA and NADPH supply. By
adding 4 g/L malic acid, the DHA content among the
total fatty acids increased from 35 % to 60 %. The
total lipid content also showed an apparent increase
of 35 % and reached 19 g/L when 40 mL ethanol/L
were added [14]. Although many strategies have been
applied to improve DHA production, some problems
still exist during the fermentation process. For ex-
ample, the growth of SR21 is unstable and cell viabil-
ity is low. The mechanism of DHA synthesis is still
unclear, and cell metabolism is difficult to regulate by
genetic manipulation.

A genome-scale metabolic model (GSMM) represents
the microbial metabolic genotype—phenotype relationships
of an organism [15]. Such models have been widely used
in many contexts, such as contextualizing high-throughput
data, understanding complex biological phenomena, guid-
ing metabolic engineering, directing hypothesis-driven
discovery, interrogating multi-species relationships, and
discovering network properties [16—19]. The release of the
whole genome sequence of S. limacinum SR21 and corre-
sponding literature reports have made the reconstruction
of a GSMM possible.

In this study, a GSMM of S. limacinum SR21 was
reconstructed. Using this model, we first made a com-
parison with two oleaginous fungi, Mortierella alpina
and Yarrowia lipolytica, that are used for industrial pro-
duction of arachidonic acid (ARA) and eicosapentaenoic
acid (EPA), respectively. Then the pathway of DHA
biosynthesis in SR21 was resolved based on genome
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annotation results and literature mining. Based on the
GSMM, biochemical and genetic strategies were applied
to improve DHA production.

Results and discussion

Genome-scale reconstruction and general features of
model iCY1170_DHA

The reconstructed GSMM of Schizochytrium limacinum
SR21, which contains 1769 reactions and 1659 metabo-
lites, was named iCY1170_DHA (Additional file 1). Model
iCY1170_DHA consists of 1386 intracellular metabolic re-
actions and 195 transport reactions. 7.9 % of the total
open reading frames (ORFs), corresponding to 1170 genes
of 14,859 ORFs, were incorporated into the model. In
iCY1170_DHA, all 1769 reactions (including transport
and exchange reactions) were classified into 10 different
subsystems, according to the KEGG Pathway Database
(http://www.genome.jp/kegg/pathway.html): carbohydrate
metabolism, amino acid metabolism (20 common acid
acids), other amino acids (D-type amino acids) metabol-
ism, nucleotide metabolism, energy metabolism, lipid me-
tabolism, metabolism of cofactors and vitamins, transport
reactions, exchange reactions, and other metabolisms
(Fig. 1a). Among them, lipid metabolism ranks as the lar-
gest subsystem in iCY1170_DHA (20.4 %), followed by
amino acid metabolism (18.0 %), which agrees with model
iCY1106 for Mortierella alpina (Fig. 1b). The sum of the
three largest subsystems, lipid metabolism, amino acid
metabolism, and carbohydrate metabolism, accounts for
over half of the total number of reactions (51.4 %). The
difference between the two models was that, in model
iCY1170_DHA, the third largest subsystem is carbohy-
drate metabolism, while in model iCY1106, transport
reactions rank third, which means that M. alpina has
more transport mechanisms than S. limacinum.

The essentialities of individual genes of S. limacinum
were analyzed under minimal glucose (MG) and yeast
extract (YE) medium conditions using iCY1170_DHA
by deleting each gene in turn. The genes were catego-
rized into three classes: essential genes, partially essential
genes and non-essential genes. The gene essentiality
study revealed that a total of 56 genes were essential in
both YE and MG medium. An additional 35 genes were
essential only in MG medium (Additional file 2). When
comparing the distribution of essential genes in different
culture media, for amino acid metabolism most genes
were only essential in MG medium (increased from
2.6 % to 15.5 %, Fig. 2a). Since YE medium is supple-
mented with all of the amino acids, some of the amino
acids were directly consumed from the medium without
utilizing their biosynthetic pathways (Fig. 2b). For ex-
ample, Aurlil_48454 (argininosuccinate synthase, EC:
6.3.4.5) and Aurlil_69076 (argininosuccinate lyase, EC:
4.3.2.1), which convert aspartate into arginine, were
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essential only when grown in MG medium. Interestingly,
the ‘other metabolism’ subsystem contained the same
proportion of essential genes (11.9 % of total reactions
in the other metabolism subsystem) in both media. That
means that, in this subsystem, the pathway of squalene
biosynthesis does not have many alternative routes and
is quite rigid in S. limacinum.

Similarly to model iCY1106, model iCY1170_DHA
had more reactions, metabolites, and genes than model
iYL619_PCP [20] for Yarrowia lipolytica (Table 1).
However, the ORF coverage of iCY1170_DHA was a lit-
tle lower than the other two models. When ignoring
compartment information, not including transport and
exchange reactions, models iCY1170_DHA, iCY1106,
and iYL619_PCP contain 1195, 1124, and 748 reactions,
respectively. And 457 reactions were present in all
these three models (Additional file 3, Fig. 3). Models
iCY1170_DHA and iCY1106 both shared 803 reactions,
which account for 67.2 % and 71.4 % of total reactions,
respectively. This means these two models are similar
in biochemical reactions to some degree. However, 343
reactions (28.7 % of total reactions) were unique in model
iCY1170_DHA, and 61.3 % of these unique reactions were
distributed across lipid metabolism, amino acid metabol-
ism, and carbohydrate metabolism. For example, it was re-
ported that S. limacinum could grow with arabinose as
the carbon source [21, 22], whereas Y. lipolytica and M.
alpina could not use arabinose [20]. Reactions that can
convert arabinose into glucose (involving 12 reactions) are
thus unique in model iCY1107_DHA (Additional file 1).
In addition, there were two pathways for synthesizing ly-
sine, starting from aspartate or 2-oxoglutarate according
to the genome annotation results, whereas in models
iYL619_PCP and iCY1106 only the second pathway for

Table 1 Features of the in silico genome-scale metabolic model
of S. limacinum, M. alpina and Y. lipolytica

iCY1170_DHA iCY1106 iYL619_PCP

Features

Genome feature

Genome size (Mb) 60.93 38.38 20.50
Open reading frames (ORFs) 14,859 11,631 6453
In silico metabolic model

Reactions included in the 1769 1854 1142
model

Biochemical reactions 1386 1391 781
Transport reactions 195 247 236
Exchange reactions 188 216 125
Metabolites 1659 1732 843
ORFs assigned in metabolic 1170 1106 619
model

ORF coverage® (%) 79 95 926

*The number of ORFs in the iCY1170_DHA model divided by the total number
of ORFs in the genome

Page 4 of 11

iCY1170_DHA
343

fi

iYL619_PCP

Fig. 3 Comparison among three existing models of different
oleaginous fungi, S. limacinum, M. alpina, and Y. lipolytica

lysine biosynthesis is present. Reactions involving the first
pathway must also be unique in model iCY1170_DHA.

Verification and simulation of model iCY1170_DHA

Data from batch cultures of S. limacinum grown in
glucose and glycerol media were used to validate
iCY1170_DHA. Both of the in silico media contain the
basic elements, such as C, N, H, O, P, S (Table 2).
When using glucose or glycerol as carbon source, their
maximum uptake rates were 1.4 mmol/gDW/h and
1.6 mmol/gDW/h, respectively (Additional file 1) [23].
To simulate cellular growth in the different media, the
biomass equation was maximized in the flux analysis
simulations. Notably, simulation results were consistent
with observed growth rates (Table 3). Without the con-
straints of production, for the glucose medium, the in
silico simulation predicted cell growth of 0.0812/h, which

Table 2 The in silico glucose minimal media composition of the
model iCY1170_DHA

Reaction description Equation LB UB™
Exchange of D-glucose D-glucosele] < => -14 1000
Exchange of Water H,0le] < => —1000 1000
Exchange of Oxygen O,le] < => —1000 1000
Exchange of Ammonia NHs[e] < => -10 1000
Exchange of Orthophosphate Pile] < => —-1000 1000
Exchange of Sulfate SOule] < => —1000 1000
Exchange of H™ Hle] < => —1000 1000

1, LB, lower bound, whose unit is mmol/gDW/h. "2, UB, upper bound, whose
unit is also mmol/gDW/h
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Table 3 Comparison of in silico and in vivo growth rates of S.
limacinum

Media condition Growth rate (/h)

(mmol/gDW/h) In vivo In silico
glucose (v=14) 0.0887 0.0812
glucose (v =14, DHA production = 0.03) 0.0883 0.0738
glycerol (v=1.6) 0.0620 0.0613

In vivo: experimental results, In silico: simulation results. In vivo growth rate
was calculated from the growth curve of S. limacinum. In silico growth rate was
the solution of S (m x n) matrix, when the biomass function was used as
objective function

was very close to the experimentally observed specific
growth rate of 0.0887/h (8.5 %) [24]. And for the glycerol
medium, the simulated result was only 1.1 % lower than
the experimental result [25]. However, when the DHA
synthesis rate was constrained at 0.03 mmol/gDW/h [24],
the in silico result was 16.42 % lower than experimental
result [24]. This means the synthesis of DHA may require
other nutrients, apart from amino acids. And the replace-
ment of yeast extract by inorganic nitrogen could lead to
these nutritional deficiencies.

Apart from the growth rate simulation, the ability of
iCY1170_DHA to utilize different carbon and nitrogen
sources has been verified. According to literature re-
ports, S. limacinum can grow using 15 kinds of carbon
sources and 3 kinds of inorganic nitrogen sources, such
as NHj, NO3, and urea. However, the simulation results
show that the model could not grow using 5 carbon
sources, including xylose, arabinose, lactose, starch, and
trehalose (Table 4). It also could not grow on a medium
using NOj3 as the nitrogen source. After a series of gap
filling and model debugging steps, ten reactions were
added to the model. For example, lactose galactohydro-
lase (EC: 3.2.1.23), which can convert lactose into glu-
cose, was not found during genome annotation. After
filling this gap, the model could grow with lactose as the
carbon source. All of these simulation results, including
the growth rate simulations and usage of different car-
bon and nitrogen sources, indicated that the model
iCY1170_DHA is reliable and can be used for further
prediction and analysis.

Resolving the DHA synthesis pathway based on model
iCY1170_DHA

There are two pathways that can synthesize DHA, the
conventional fatty acid synthesis (FAS) route and the poly-
ketide synthase (PKS) system [26]. In the FAS route, fatty
acids are biosynthesized in the form of either C16:0 or
C18:0 saturated fatty acids. These fatty acids are then
modified through a sequence of desaturations and elonga-
tions so that extended ranges of unsaturated fatty acids
and PUFAs are produced [27]. In this route, DHA is
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Table 4 Comparison between experimental results and
simulated results about the usage of different carbon and
nitrogen sources

Carbon source In vivo In silico® In silico® Reference
Glucose + + + [6, 21, 22]
Fructose + + + [6, 21, 22]
Mannose + + + [21, 22]
Galactose + + + [21, 22]
Xylose + - + [21,22]
Arabinose + - + 21, 22]
Ribose + + + 21, 22]
Lactose + - + [6, 21, 22]
Sucrose + + + [21, 22]
Maltose + + + [6, 21, 22]
Starch + - + [6, 21, 22]
Glycerol + + [6, 21, 22]
Melibiose + + [21]
Raffinose + + + [21]
Trehalose + - + [21]
Nitrogen Source

NHZ + + + [6]

NO3 + - + [6]

Urea + + + [6, 21]

2Before filling gaps; PAfter filling gaps. To make the GSMM consistent with
experimental data, some missing reactions were added to model

synthesized by delta-4 desaturase, which can transform
C22:5 to C22:6 (DHA). In the PKS pathway, acyl carrier
protein (ACP), generated by CoA, is used as a covalent at-
tachment point for chain synthesis, which proceeds with
reiterative cycles. During the full fatty acid synthesis
process, a series of enzymes including 3-ketoacyl synthase
(KS), 3-ketoacyl-ACP reductase (KR), enoyl reducatase
(ER), and dehydrase/isomerase (DH) are necessary (Fig. 4).
However, the whole genome annotation results showed
that S. limacinum does not contain delta-4 desaturase, in
agreement with literature reports. On the other hand, some
OREFs in S. limacinum were predicted to be potential PKS
proteins (Additional file 4). This means S. limacinum could
not synthesize DHA by the FAS route, but rather employs
the PKS system for PUFA biosynthesis [26, 28, 29].

When compared with M. alpina, which synthesizes ara-
chidonic acid via the FAS route, the DHA synthesis in S.
limacinum does not need much more oxygen in the PKS
route. DoubleRobustnessAnalysis results showed that,
when the growth rate was fixed, a low oxygen uptake rate
(below 5 mmol/gDW/h) was beneficial for DHA accumu-
lation (Fig. 5) while, at the cell-number-increasing stage,
to acquire large quantities of cells for lipid accumulation,
an abundant oxygen supply was necessary. This means
that, during the DHA fermentation process, a two-stage
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oxygen supply strategy could improve DHA production
efficiency [10, 30, 31].

Similarly to the FAS pathway, two steps in the PKS
cycle, catalyzed by KR and ER, also require NADPH
[29]. Flux balance analysis shows that, in YE medium, a
total of 57 reactions involving NADPH have fluxes
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Fig. 5 DoubleRobustnessAnalysis of the relationship among oxygen
uptake rate, growth rate and DHA production
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(Additional file 5). And of these reactions, three are
major sources of NADPH. One is catalyzed by malic
enzyme (ME, EC: 1.1.1.40). The other two are in the
pentose phosphate pathway and are catalyzed by glucose-
6-phosphate dehydrogenase (G6PD, EC: 1.1.1.49) and
phosphogluconate dehydrogenase (PGD, EC: 1.1.1.44),
respectively. Their corresponding fluxes of NADPH were
141 mmol/gDW/h, 1.49 mmol/gDW/h, and 1.49 mmol/
gDW/h. In addition to NADPH, acetyl-CoA, which is the
precursor for fatty acid de novo biosynthesis, also plays an
important role. The flux of acetyl-CoA used for fatty acid
synthesis was 1.88 mmol/gDW/h.

Biochemical engineering strategies for improving DHA
production by in silico simulation

Malate plays an important role in the TCA cycle. Catalyzed
by ME, malate can be converted into pyruvate, accompan-
ied by NADPH. Based on the YE medium, when the max-
imum uptake rate of malate was set at 1 mmol/gDW/h,
DHA production increased 24.5 %. This was in agreement
with Ren’s report that, after adding 4 g/L malate, the DHA
content of the total fatty acids increased from 35 % to 60 %
[14]. It was also proved that the addition of malate lead to
an increase in DHA production of 40.02 % [32]. Flux bal-
ance analysis (FBA) results showed that, by adding malate,
the flux of NADPH supplied by the reaction catalyzed by
ME increased from 1.4 mmol/gDW/h to 1.8 mmol/gDW/
h, an increase of 28.6 %. Additionally, flux distribution
showed that the pentose phosphate pathway was enhanced
by 23.5 %, which means that, by adding malate, more
NADPH was supplied for DHA biosynthesis. In addition to
NADPH, citrate lyase (ACL, EC: 2.3.3.8), which can catalyze
the cleavage of citrate, is the source of acetyl-CoA for fatty
acid biosynthesis [33]. Adding citrate in silico led to a
37.1 % increase in DHA production. The corresponding
acetyl-CoA flux provided by this pathway was also in-
creased by 23.2 %. This also agreed with Wang’s report that
a 47.17 % improvement in DHA production was gained by
adding citrate [32].

DCW, lipid content, and DHA percentage of total fatty
acids are three important parameters for evaluating the
fermentation process. And amino acids can be utilized
by microorganisms both as a carbon source and a nitro-
gen source for cell growth. In YE medium, we first cal-
culated the uptake rate of 20 amino acids by FBA. For
nine amino acids (Ala, Gly, Asn, Asp, Cys, Glu, Gln, Ser,
and Thr), the uptake rate could reach the set maximum
values (Fig. 6a). For the others, the uptake rates were
lower than 0.01 mmol/gDW/h. This means these nine
amino acids could promote the growth of S. limacinum
SR21, so the effect of each amino acid on DHA produc-
tion was simulated by adding them individually to the
MG medium. The maximum uptake rate of each amino
acid was fixed at 1 mmol/gDW/h, and only the nine
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amino acids could promote both growth and DHA pro-
duction. DHA production was increased by 32.7 %,
16.3 %, 32.7 %, 32.7 %, 50.3 %, 50.3 %, 52.3 %, 27.5 %,
and 45.8 %, respectively (Fig. 6b).

Furthermore, these simulation results were verified by ex-
periment. The experimental results showed that addition of
eight of the nine amino acids (except cysteine) could pro-
mote cell growth (Fig. 7). The addition of asparagine could
improve the dry cell weight from 26.0 g/L to 37.4 g/L, an
increase of 43.8 %, whereas adding cysteine to the culture
medium inhibited the growth of SR21. The reason may be
that only cysteine contains sulfur, and excess sulfur may in-
hibit cell growth. The robustness analysis results also
showed that the optimized sulfate uptake rate for growth
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Fig. 7 Effects on dry cell weight, total lipids, and DHA production of
adding nine different amino acids to S. limacinum cultures

was 0.2 mmol/gDW/h (Additional file 6A). Besides, the ex-
perimental results also proved that the addition of Ala, Gly,
Asn, Glu, Ser, and Thr (66.7 % of the selected amino acids)
could improve DHA production (Fig. 7). Compared to the
control group, the addition of Asn led to a 50.6 % increase
(9.56 g/L) in DHA production, bringing the DHA content
up to 35.0 % of total lipids (Additional file 6B).

Combined with the FBA results, after adding Asn, SR21
could uptake Asn directly from the in silico medium, in-
stead of using the pathway to generate Asn starting from
Asp. Via adenylosuccinate synthase (EC: 6.3.4.4) and ade-
nylosuccinate lyase (EC: 4.3.2.2), extra Asp was converted
into fumarate, enhancing the TCA cycle. As a result,
fluxes of two reactions involving acetyl-CoA were also en-
hanced significantly. For example, the flux of acetyl-CoA
supplied by pyruvate dehydrogenase complex (PDC, EC:
1.24.1, 2.3.1.12, 1.8.1.4) was increased 28.1 %, and acetyl-
CoA flux used for the first step of fatty acid biosynthesis
via acetyl-CoA carboxylase (ACC, EC: 6.4.1.2) was also in-
creased 20.9 %. In addition to enhancing acetyl-CoA gen-
eration, the addition of Asn also increased NADPH flux
for producing DHA. After adding Asn, two fluxes in the
pentose phosphate pathway catalyzed by G6PD and PGD
both increased 122.6 %. This means adding these amino
acids could improve DHA production through enhancing
the supply of both acetyl-CoA and NADPH.

Genetic engineering strategies for improving DHA
production by in silico overexpression

MOMA was used to re-calculate the fluxes for the over-
expression algorithm. This simulation was carried out
based on YE medium. The lower bound of the DHA
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exchange reaction was set as 0.01 mmol/gDW/h. Then
each reaction that had non-zero flux value in the FBA
simulation was overexpressed computationally. After fin-
ishing the cycle for over-expression, according to equa-
tion 1, 32 reactions catalysed by 30 genes were identified
as potential targets (Fig. 8, Additional file 7).

These potential targets could be classified into two
groups, one of which is directly involved in DHA synthesis
while the other is involved in cell growth (Additional file 7).
During the biosynthesis of DHA, acetyl-CoA synthetase
(ACS, EC: 6.2.1.1) could promote acetyl-CoA generation
[34]. Overexpressing ACS led to an increase in DHA pro-
duction from 0.01 mmol/gDW/h to 0.0143 mmol/gDW/h
(an increase of 43.0 %). ME was assumed to be the major
supplier of NADPH for fatty acid biosynthesis [35, 36].
When ME was overexpressed in silicoo DHA production
rose to 0.0307 mmol/gDW/h. As a dehydrase/isomerase
(DH) involved in the last step of DHA synthesis in the PKS
system, 0.0863 mmol/gDW/h DHA was accumulated by
overexpressing this gene. Genes involved in cell growth
were distributed across many metabolic subsystems, such
as carbohydrate metabolism, amino acid metabolism and
nucleotide metabolism. For example, phosphomannomu-
tase (PMM, EC: 5.4.2.8) and guanosine diphosphomannose
phosphorylase (GMPP, EC: 2.7.7.22) are two genes involved
in the synthesis of L-galactose, which is a precursor of the
biomass function. The growth rate decreased by 5.7 %, and
DHA production increased 22.0 % by overexpressing these
two genes. After overexpressing PRPP synthetase (PRPS,
EC: 2.7.6.1), fluxes used for the synthesis of AMP increased
from 0 to 0.0264 mmol/gDW/h, which led to a 52.0 % im-
provement in DHA production and an 11.5 % decrease in
growth rate.

Conclusions
A GSMM of S. limacinum SR21 for DHA production,
named iCY1170_DHA, which contained 1769 reactions,
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1659 metabolites, and 1170 genes, was successfully re-
constructed. Based on glucose and glycerol constraint
conditions, the simulated results for growth rate were
only 8.5 % and 1.1 % lower than experimental results, re-
spectively. Use of 15 carbon sources and 3 nitrogen
sources by SR21 also agreed well with literature reports.
Moreover, after the addition of malate and citrate, DHA
production increased 24.5 % and 37.1 %, respectively.
Furthermore, 9 of 20 amino acids (Ala, Gly, Asn, Asp,
Cys, Glu, Gln, Ser, and Thr) were predicted to increase
DHA production. According to experimental results, of
these 9 amino acids, 6 have been proved to improve
DHA production. The addition of Asn could lead a
50.55 % increase in DHA production. Based on MOMA,
30 overexpressed genes, such as those encoding acetyl-
CoA synthetase and malic enzyme, were identified as
having a positive effect on DHA production.

Methods

Reconstruction of the genome-scale metabolic model

The metabolic model of S. limacinum was initially recon-
structed based on genome annotation information and the
metabolic pathway database. First, the genome sequence
of S. limacinum SR21, which contains 181 scaffolds, was
downloaded from the JGI database (http://genome.jgi-
psf.org/Aurlil/Aurlil.home.html). Three existing models
for Mortierella alpina ATCC 32,222 [37], cyanobacterium
Cyanothece sp. ATCC 51,142 [38], and Arabidopsis thali-
ana [39)] were used as reference models, based on protein
homology (identity >40 %, e-value < 1E-30) [40]. KEGG
Ontology (KO) and Gene Ontology (GO) identifiers were
used to additionally infer reactions that could not be
found in the reference strains. To refine the draft model,
CELLO [41] and WoLFPSORT [42] were used to deter-
mine subcellular compartmentalization. The MetaCyc
[43] and BioPath [44] databases were used to judge reac-
tion direction and reversibility. Transport information was
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obtained by cross-referencing BLATSp searches and the
Transporter Classification Database (TCDB) [45].

Biomass composition

Knowledge of the cellular biomass composition is an im-
portant prerequisite for the in silico flux analysis, espe-
cially during the exponential growth phase, where the
primary cellular objective is to maximize growth. The
cellular composition of S. limacinum SR21 consists of
lipids, proteins, carbohydrates, ash, and nucleic acids
[46]. The lipid composition was obtained from previous
publications on S. limacinum [47]. Amino acid and
metal ion compositions were determined according to
Pyle’s report [46]. The overall DNA and RNA composi-
tions were assumed to be the same as cyanobacterium
Cyanothece sp. ATCC 51,142 [38] since no data were
available on S. limacinum. The individual weights of nu-
cleotides in the DNA and RNA were calculated based on
the genome sequence of S. limacinum, in which the G + C
content accounts for 45.17 %. The cell wall composition
of S. limacinum was assumed to be the same as S. aggre-
gatum [48]. Detailed information about biomass compos-
ition can found in Additional file 8.

Constraints-based flux analysis

In order to perform in silico simulations, and to pre-
dict the metabolic characteristics of S. limacinum,
constraints-based flux analysis, including flux balance
analysis (FBA) [49], was carried out under the as-
sumption of a pseudo-steady state. For growth simu-
lation, the biomass equation was set as the objective
function. A complex medium, named yeast extract (YE)
medium, which contains the basic elements and 20 amino
acids, was used for simulation. The glucose uptake rate
was 1.4 mmol/gDW/h according to experimental results
[24], and all amino acid maximum uptake rates were set
as 0.1 mmol/gDW/h [23]. When glycerol was used as the
carbon source, its uptake rate was set as 1.6 mmol/gDW/
h [25]. In addition to the YE medium, a minimal glucose
(MG) medium that did not contain any amino acids was
used for different carbon or nitrogen simulations.

The overexpression algorithm involves five steps
[23]. (1) We imposed a DHA production flux of
0.01 mmol/gDW/h, which was higher than the wild-
type model production (0.00021 mmol/gDW/h). (2)
Flux for each reaction was calculated based on the YE
medium. (3) A two-fold flux amplification was im-
posed for biochemical reactions with non-zero flux
(to simulate the effect of gene overexpression). (4)
Minimization of metabolic adjustment (MOMA) [50] was
used to solve the overexpression problem. (5) An overex-
pressed target that delivers higher DHA production (over
0.01 mmol/gDW/h) and an fpy value > 1 were identified
(Eq. 1), where fpy is the product of the specific biomass
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overexpression rate and the specific DHA overexpression
rate. Steps 3 and 4 were iterated for every reaction within
the model.

fP]-[ = (fbiomass ) (fDHA )
(Vbiomass ,over expression) <VDHA sover expression>
VDHA, yide

Vbiomalss ,wide
(1)

In this study, implementation of constraint-based ana-
lysis was performed using Cobra Toolbox 2.05 [51] with
MATLAB 2012b and Gurobi 5.6.0 optimizer [52].

Strain, medium, and culture conditions

Schizochytrium limacinum SR21 was gifted by Prof
Xiaobin Yu. The fermentation medium contained 120 g/L
glucose, 10 g/L peptone, 5 g/L yeast extract, and 20 g/L
crystal sea salt [32]. Cells were grown in 500-mL Erlen-
meyer flasks each containing 50 mL of medium and incu-
bated at 25 °C in an orbital shaker set at 200 rpm.

Cell density, dry cell weight, and fatty acid analysis

Cell density was calculated from the optical density mea-
sured at 660 nm. DCW was determined by transferring
a 5-mL cell suspension to a pre-weighed centrifuge tube
and then centrifuging at 5000 r/min for 5 min. The cell
pellet was then washed twice with distilled water, and
dried at 70 °C to constant weight. Fatty acid analysis was
accomplished by first harvesting freshly produced cells
and freeze drying overnight. The subsequent methods
for fatty acid methyl ester (FAME) preparation and gas
chromatographic (GC) analysis are the same as reported
by Wang [32].
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MOMA: Minimization of Metabolic Adjustment algorithm; ACS: Acetyl-CoA
synthetase; PMM: Phosphomannomutase; GMPP: Guanosine
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