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Abstract

Identifying the signals of artificial selection can contribute to further shaping economically

important traits. Here, a chicken 600k SNP-array was employed to detect the signals of arti-

ficial selection using 331 individuals from 9 breeds, including Jingfen (JF), Jinghong (JH),

Araucanas (AR), White Leghorn (WL), Pekin-Bantam (PB), Shamo (SH), Gallus-Gallus-

Spadiceus (GA), Rheinlander (RH) and Vorwerkhuhn (VO). Per the population genetic

structure, 9 breeds were combined into 5 breed-pools, and a ‘two-step’ strategy was used to

reveal the signals of artificial selection. GA, which has little artificial selection, was defined

as the reference population, and a total of 204, 155, 305 and 323 potential artificial selection

signals were identified in AR_VO, PB, RH_WL and JH_JF, respectively. We also found sig-

nals derived from standing and de-novo genetic variations have contributed to adaptive evo-

lution during artificial selection. Further enrichment analysis suggests that the genomic

regions of artificial selection signals harbour genes, including THSR, PTHLH and PMCH,

responsible for economic traits, such as fertility, growth and immunization. Overall, this

study found a series of genes that contribute to the improvement of chicken breeds and

revealed the genetic mechanisms of adaptive evolution, which can be used as fundamental

information in future chicken functional genomics study.

Introduction

Chickens, like all other domestic animals, have a long history of artificial selection that dates

back for centuries [1, 2]. Although the genetic information responsible for many notable

changes in simple Mendelian traits have been successfully mapped, genetic signals for most

economic traits that are modified during artificial selection are still unclear [3]. If successful,

the detection of artificial selection signals, which is a central focus in the study of population

genetics, can contribute to mapping the causal mechanisms related to economic traits in the

genome and provide a clear understanding of how diversity evolved in various chicken breeds.

During domestication and subsequent commercial breeding, a variety of detectable selec-

tion signals were maintained in the genome [1, 4, 5]. Among them, signals shaped by artificial
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selection are consistently associated with some important economic traits during the process

of breed formation. Given that genomic regions have a long-term divergent (bi-directional)

selection, the extreme genetic differentiation in the respective regions will be generated and

the corresponding allele frequency spectra will depart from what is expected under neutral

conditions [6]. This is analogous to the diversity among domesticated, local and wild popula-

tions. In the twentieth century, domestic chickens have been refined to improve specialized

economic traits for applications in modern breeding technologies based on quantitative genet-

ics [1, 7]. Then, more and more commercial chicken lines, including both layer and broiler

lines, have been bred with similar selection directions, which may share similar artificial selec-

tion evidence in specific genomic regions [2]. This genetic homogeneity was particularly

promising in lines bred for similar purposes and selection pressure. Hence, they are excellent

models for characterizing the genomic response to artificial selection of multiple populations.

With the recent implementation of high-throughput genotyping techniques for many pop-

ulations, identifying selection signals at the genome level has become possible. In addition,

there have also been many studies on statistical tests used for detecting selection signals based

on different models [8–10]. The general model in which de-novo mutations arise and were

selected to fixation within a short time frame is well known as hard sweep [7, 11–13]. In fact, a

large number of identified signals with major effects can be categorized into this type of selec-

tion signal [7]. In addition to hard sweep, another selection signal model that signals for stand-

ing variation or reoccurring novel mutations at a locus has gradually gathered interest. These

selection signals, known as soft sweeps, contrast with hard sweeps [7, 11–13]. So far, publica-

tions on soft sweep appear to be rare, but soft sweeps are likely to be prevalent in domestic ani-

mals, because they have almost no time to develop de novo mutations that mid-small effects

that occur during the short process of artificial selection. In general, commercial traits due to

human-driven selection are quantitative and have a polygenic basis, and they also respond rap-

idly under strong selection pressure [7]. Therefore, there is a good reason to believe that both

soft sweep and hard sweep modes play an important role in the commercial breeding of eco-

nomic traits.

In this study, we identified artificial selection signals using genome wide data from multiple

chicken populations. In addition, we also tried to distinguish the potential artificial selection

signals that are based on hard sweep from those resulting from soft sweep, and we found that

the number of soft sweeps is greater than that of hard sweeps in the pool of artificial selection

signals.

Materials and methods

Animals, genotyping data and quality control

All research involving animals was conducted under protocols (No. 5 proclaim of the Standing

Committee of Hubei People’s Congress) approved by the Standing Committee of Hubei Peo-

ple’s Congress and the ethics committee of Huazhong Agricultural University in P. R. China.

In addition, all experiments were performed in accordance with approved relevant guidelines

and regulations. Genotypes obtained with the Affymetrix chicken 600 K Axiom-SNP-array

were from a total of 331 individual chickens from nine different breeds, which included 110

Jingfen (JF), 82 Jinghong (JH), 12 Araucanas (AR), 16 White Leghorn (WL), 40 Pekin-Bantam

(PB), 19 Shamo (SH), 16 Gallus-Gallus-Spadiceus (GA), 20 Rhinelander (RH) and 16 Vorwer-

khuhn (VO). The breeds used have a wide geographical distribution and almost every major

chicken category was represented, including layer, local breed, and chickens from wild popula-

tion (Table 1). As typical representatives of the commercial line in this study, Jingfen and
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Jinghong chickens were bred in China to further improve egg-laying traits and have similar

foundation stocks.

Quality control of the SNP data was determined by the following criteria: (i) individual call

rate> 0.95; (ii) SNP call rate> 0.99; (iii) SNPs in Hardy–Weinberg equilibrium in each breed

(p>10e–6); (iv) SNP minor allele frequency> 0.01; (v) only autosomal SNPs with known posi-

tions were used. After assessing the quality control, we imputed the missing genotypes and

inferred haplotypes using BEAGLE [14]. The final dataset contained 286,564 common SNPs

that were genotyped in 331 individuals from 9 chicken populations.

Population structure analysis

We employed the program ADMIXTURE v1.23 [15], which uses a block relaxation algorithm,

to investigate the population structure with default parameters. The number of populations

considered was from 2 to 12. To infer the phylogenetic tree, PLINK v1.07 [16] was used to gen-

erate the IBS distance for all pairs of individuals and then a neighbour-joining tree was con-

structed with FigTree v1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/) based on the distance

matrix. Finally, principal component analysis (PCA) was performed using the flashpcaR pack-

age[17] based on the whole genome genotype data that remained after quality control was

assessed. After filtering SNPs to have a Pearson product-moment correlation of allele fre-

quency (r2) less than 0.8 in 50 SNP windows, we ran ADMIXTURE and flashpcaR on all

231,545 remaining SNPs again.

Linkage disequilibrium analysis

We calculated the correlation coefficient (r2) for every pair of SNPs to measure the LD level in

each population using PLINK v1.07 [16]. The parameters were set as follows:—r2—ld-win-

dow-kb 1000—ld-window 99999—ld-window-r2 0. To visualize the LD decay in this analysis,

the r2 values for 1000-bp distance bins were averaged and the corresponding figure was drawn

by R script.

Identifying signals under artificial selection

In accordance with the population genetic structure, five breed pools (or breed) of genotype

data were used to detect potential selection signals in this analysis: Jinghong and Jingfen

Table 1. Samples, origin, specialization and some characteristics of nine chicken populations used in this study.

Breed (abbreviation) No. of

SNPs1
Sample

Size

Origin of

samples

Specialization Dwarf/

Normal

The other Breed Characteristics

Vorwerkhuhn (VO) 392,280 16 Germany Local breed Normal Distinctive black and gold plumage;

Araucanas (AR) 392,280 12 Germany Local breed Normal Blue eggs;

White Leghorn (WL) 392,280 16 Germany Layer line Normal White shell; High production;

Pekin-Bantam (PB) 392,280 40 Germany Local breed Dwarf Bantamized Cochin breed;

Rhinelander (RH) 392,280 20 Germany Local breed Normal Medium size breed; mainly an exhibition breed today but

originally used for egg-laying.

Shamo (SH) 392,280 19 Germany Fancy breed Normal Game bird, heavy and upright posture;

Gallus Gallus Spadiceus

(GA)

392,280 16 Thailand Wild

population

Normal A subspecies of red junglefowl.

Jinghong (JH) 366,571 82 China Layer line Normal Brown shell; High production;

Jingfen (JF) 364,449 110 China Layer line Normal Brown shell; High production;

1 A total of 286,564 high-quality SNPs are shared in 9 populations after quality control.

https://doi.org/10.1371/journal.pone.0196215.t001
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(JH_JF), Pekin-Bantam (PB), Rheinlander and White Leghorn (RH_WL), Araucanas and Vor-

werkhuhn (AR_VO), Gallus-Gallus-Spadiceus (GA). To identify the signals under artificial

selection, GA was defined as the common reference population because it was associated with

limited amounts of artificial selection for commercial traits.

Multiple elementary selection signal statistics were employed to search for the evidence of

artificial selection in two steps (hereafter termed the ‘two-step’ strategy). The first step is posi-

tive selection detection, which was performed using the composite likelihood ratio (CLR) [18]

and the integrated haplotype score (iHS) [19] test. Among them, the CLR method calculates

the likelihood ratio of selection signals by comparing the spatial distribution of allele frequen-

cies in an observed window to the frequency spectrum of the whole genome. In this analysis,

SweepFinder [18] software was employed to calculate the CLR with a grid size of 10 kb. To

explore ongoing selection signals, the iHS method was performed, which searches for haplo-

type structures that have ancestral and derived alleles. Single marker scores for unstandardized

iHS were calculated using the rehh R package [20] and then the |iHS| scores averaged across a

non-overlapping 10 kb window across the genome. In the second step, we identified the

underlying artificial selection signals from the above detected positive selection signals by cal-

culating the FST statistic for pairwise sites between the observed populations and the common

reference population. The unbiased FST estimate proposed by Weir and Cockerham was used

to measure the population differentiation, with values ranging from 0 (no differentiation) to 1

(complete differentiation) [21]. To produce comparable CLR and iHS test results, the 10 kb

grid size was also used for determining FST statistics. Finally, the selection signals were detected

by using the |iHS|, CLR and FST scores in the genome level. The outliers for all methods were

defined as signals with statistics surpassing the significance threshold (P<0.05) determined

using 1,000 permutation tests. Accordingly, the chromosomal regions within a 200 kb window

surrounding the outliers were defined as potential selection regions (PSR). This window size

in this analysis was determined by the linkage disequilibrium decay in real data (S1 Fig). In

addition, we further calculated the ‘observed heterozygosity’ (Het), which should be decreased

in regions that are affected by a selection signal. As a by-product, the major (minor) allele fre-

quency was also calculated by PLINK v1.07 [16]. Note that the artificial selection signals in this

study were defined in the genomic region in which both positive selection signals and the FST

statistical value were greater than the cut-off value at the genome level.

Haplotype analysis

To characterize the core haplotype of underlying selection signals, haplotype blocks in the

detected artificial selection regions were inferred using Haploview v4.2 [22] software based on

the solid spin algorithm. The parameters were set as follows: -blockoutput SPI -blockSpineDP

0.8. Core haplotypes were defined as haplotype blocks that have a remarkable signal, and a

high frequency in an observed population suggests that the presence of a core haplotype in the

potential selection region may be abnormal in neutral scenarios. In general, in sweep analysis,

the remarkable signals should be significant and the frequency should be greater than 0.8,

according to previous reports [4].

Functional annotation and gene ontology (GO) term enrichment analysis

In this analysis, bioinformatics analyses were performed to explore the potential biological

functions of genes located in putative artificial selection regions. This analysis involved all the

selected genes in the 200 kb window surrounding the significant signals, which was deter-

mined by the linkage disequilibrium decay in chicken populations. Detailed biological func-

tions were matched for all highlighted candidate genes using the NCBI database (https://www.
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ncbi.nlm.nih.gov/gene). The gene annotation files for chickens that were downloaded from

the database from ensemble (http://www.ensembl.org/info/data/ftp/index.html) were used to

identify the exact position of markers in selected regions and highlight those that fell into

selected regions using the textual mining R script. Gene-based annotations of Single nucleotide

polymorphisms (SNPs) located in selected regions were performed using ANNOVAR [23].

Using ENSEMBL genes, we investigated where the SNPs are located in the regions of gene

components. In addition, genes located in putatively selected regions were identified using the

BioMart program (http://www.biomart.org/, Kasprzyk, 2011), and then an enrichment analy-

sis, which included the terms cellular component, molecular function, and biological process,

was performed for the identified genes using DAVID 6.7 (http://david.abcc.ncifcrf.gov/).

Results and discussion

Phylogenetic and population structure

After quality control assessment, a total of 286,564 high-quality SNPs were used to explore the

genetic population structure and relatedness among 9 chicken breeds (Table 1). The neigh-

bour-joining tree, based on IBD distance, showed that the Chinese commercial lines (JH_JF)

were aggregated as a genetic group with a few mixed clades. In addition, the other 7 popula-

tions can be divided into 2 geographic groups as Asian breeds (PB, GA and SH) and Western

breeds (AR, VO, WL and RH) (Fig 1A). These findings indicated that two Chinese commercial

lines may be derived from the same ancestral population and that the geographic locations

contribute to the genetic clusters.

In principal components analysis, two Chinese commercial lines formed a tight cluster,

which further confirmed the findings from phylogenetic analysis. Western breeds and Asian

breeds could be further subdivided into AR_VO (AR and VO) and RH_WL (RH and WL),

and PB and GA_SH (GA and SH), respectively (Fig 1B). Among them, three layer groups,

including JH_JF, PB and RH_WL, formed a congruent equilateral triangle around a centre

wide group (GA_SH) in this analysis. Similar results were obtained when the markers that had

a high degree of linkage disequilibrium after filtering the SNPs were used (S2 Fig). It may sug-

gest that diversity is caused by a special geographic environment, commercial purpose or other

unknown elements, which formed layers from the wide population with similar distances (Fig

1B).

In addition, the ADMIXTURE program was employed to investigate population structure

and introgression, with the number of given populations (K) varying from 2 to 12 using all

286,564 SNPs and the 231,545 SNPs that remained after filtering for a high degree of linkage

disequilibrium (Fig 1C, S3 and S4 Figs). As K increased, individuals were classified into the

expected subpopulations based on the geographic position or the introgression event. How-

ever, no matter how the number of given populations changed, the two commercial lines were

indistinguishable, which is consistent with the analysis above. It indicated that Jinghong and

Jingfen are two commercial chicken lines from the same ancestral population, rather than two

chicken breeds with an independent breeding history. Instead, the other populations can be

clearly divided, especially when K is large enough, which suggests that those seven breeds have

a long, independent breeding history compared with the two Chinese commercial lines. Note

that the population structure analysis using PCA and the neighbour-joining tree method pre-

sented a similar result when K = 5 (or 4). This phenomenon indicated that some populations

in this study may share a similar genetic basis. Therefore, Jinghong and Jingfen, Rheinlander

and White Leghorn, Araucanas and Vorwerkhuhn were merged as JH_JF, RH_WL and

AR_VO, respectively. Gallus-Gallus-Spadiceus (GA) was treated as the common reference

population for identifying the artificial selection signals. It is possible that this combination
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strategy causes some positive selection signals for each breed to be lost. However, the drift can

also mimic selection signals, especially if the effective population size is/has been small. There-

fore, in this study, the pool population strategy based on the above analysis can reduce the

impact of random drift with a little cost.

Genome-wide artificial selection signals

To detect positive selection, unstandardized iHS scores were calculated per site and the abso-

lute values were averaged across non-overlapping sliding 10 kb windows across the whole

genome. Correspondingly, the selection signals fell in 575, 626, 214, 365 and 194 potential

selection regions in GA, AR_VO, PB, RH_WL and JH_JF, respectively. Similarly, a total of 26,

81, 79, 186 and 311 potential selection regions were also identified by the CLR test. In general,

iHS is known to be good for detecting ongoing selection signals and CLR is most sensitive for

detecting fixed selection signals. Therefore, the potential selection regions detected by iHS and

Fig 1. Analysis of the phylogenetic relationship and population structure of 9 chicken breeds. (A) Neighbor-joining tree constructed using SNP data. (B) Principal

component analysis. (C) Population structure analysis of the 331 chicken individuals, showing the distribution of the K = 5 genetic clusters. See material and method for

the abbreviations of the breeds.

https://doi.org/10.1371/journal.pone.0196215.g001
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CLR tests for each population were further merged when their interval distance was within a

200 kb window (hereafter termed iHS-CLR). Finally, a total of 595, 675, 254, 510 and 492

potential selection regions, spanning lengths of 170.93 Mb, 191.72 Mb, 85.90 Mb, 144.12 Mb

and 179.26 Mb, were identified in GA, AR_VO, PB, RH_WL and JH_JF, respectively (Fig 2A).

To further identify the artificial selection signals, FST statistics were used to evaluate the dif-

ferentiation between domestic and wild populations. When GA was treated as a common ref-

erence population, a total of 720, 1151, 1205 and 1057 selection regions containing the signals

at the 5% significant level were found in AR_VO, PB, RH_WL and JH_JF, respectively. The

overlapping selection regions detected by iHS-CLR and FST were defined as the artificial

Fig 2. Visualization of the trend of sweep regions in all observed populations. (A) The potential positive selection regions identified by the iHS-CLR test. (B) The

potential artificial selection regions identified by the ‘two-step method’, GA was defined as reference population in this analysis.

https://doi.org/10.1371/journal.pone.0196215.g002
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selection signals for further analysis. Collectively, 204, 155, 305 and 323 potential artificial

selection signals spanning lengths of 66.90 Mb, 61.16 Mb, 93.28 Mb and 134.65 Mb were sepa-

rately identified in AR_VO, PB, RH_WL and JH_JF compared with the wild population (Figs

2B and 3, S5 and S7 Figs). Remarkably, the average size of sweep regions underlying artificial

selection is longer than all underlying positive selection (Fig 2). Although only about 54%

(data ranged from 30.22% to 65.65%) of positive selection signals were shaped by artificial

selection, the length of genomic fragments under artificial selection accounted for about 61.5%

(ranged from 34.89% to 75.11%) of all positive selection regions. The results indicated that arti-

ficial selection is more powerful than natural selection in shaping the genome, resulting in

rapid improvement of goal-directed economic traits in domestic populations[24].

To investigate the effects of selection on different gene components, we annotated where

the selected SNPs are located in the genome. Out of 286,563 SNPs with an average density of

3.2 SNPs/kb on the genome, 37,737, 14,514, 15,425 and 21,671 SNPs fall into the artificial

selection regions in JH_JF, PB, AR_VO and RH_WL, respectively. Taken JH_JF as an example,

31,520 were located in intergenic regions, 5,305 were in intronic regions and 350 were in

exonic regions. Similar proportions of the SNPs that were located in different gene compo-

nents were also observed in the genomic regions without artificial selection (S1 Table). Simul-

taneously, it seems that there is no difference among the effects of selection on regulatory

region, coding sequence and the other gene components. We explain this phenomenon by the

hitchhiking effect of selection that would shape the pattern of diversity around the selected

locus and thus leaded to the difficulty of the causal selected locus mapping. However, the

Fig 3. Summary of the genomic regions underlying artificial selection in JH_JF. (A) The lines illustrate the positions and lengths of genomic regions underlying

artificial selection. (B, C, D) Manhattan plots based on CLR, iHS and FST tests, the y axis values are statistics scores, and the x axis shows positions along each

chromosome.

https://doi.org/10.1371/journal.pone.0196215.g003
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detailed annotation of SNPs in selected region is still helpful in facilitating chicken functional

genomics study in the future (S2 Table).

Goal-directed economic traits in chicken were improved by human-driven selection in recent

decades[1, 4]. Correspondingly, the genomic signals, such as long range haplotype homozygosity

and skewed allele frequency spectra, would be generated under the great selection pressure[25].

From a statistical perspective, it’s difficult to distinguish the artificial selection signals from the

positive selection signals only using a single method. By combining multiple methods, it is possi-

ble to identify artificial selection signals by utilizing both the wild and domestic populations. Our

previous simulation study indicated that iHS and CLR statistics performed best and can be com-

plementary in detecting positive selection signals [26]. The divergent signals that derived from

wild population and further shaped by artificial selection can be detected by FST statistics.

Accordingly, we used multiple methods to detect artificial selection signals to benefit from

advantageous complementarities across methods in hope of improving the reliability of selection

signals. In addition, the previous simulation studies also suggested that combining several meth-

ods can greatly increase the power to pinpoint the selected region [26, 27].

Hard sweep and soft sweep

As described by Hermisson and Pennings [11], the signals underlying adaptive responses gen-

erally fall into two categories: hard sweep signals arise from newly arisen beneficial mutations

and soft sweep signals arise from standing genetic variations. Chickens are an important ani-

mal economically, and most of their economic traits show quantitative heredity. In addition,

the high polygenic basis for the important identified economic traits have been proven in

recent genome-wide association studies [28, 29]. Therefore, we argue that selection of benefi-

cial alleles already present in the population is the main reason for a rapid adaptation of eco-

nomic traits in chickens.

To evaluate the contributions from standing genetic variations to artificial selection in

chickens, we assumed the beneficial alleles for the important economic traits are still neutral

or nearly neutral in Gallus-Gallus-Spadiceus. It may be closer to the ancestral population, but

they have been prevalent in domestic populations because of artificial selection. Therefore,

artificial selection regions with a haplotype allele frequency greater than 0.8 in domestic popu-

lations were reliable, and the corresponding signals based on emerging alleles (frequency is 0

in GA) and existing alleles (frequency is greater than 0.125, at least 4 gametes with the benefi-

cial allele, in GA) were treated as a hard sweep and a soft sweep, respectively, in this study. In

total, 10, 33, 43 and 113 potential hard sweeps of artificial selection (PAHSR) and 47, 60, 63

and 122 potential soft sweeps of artificial selection (PASSR) were identified in AR_VO, PB,

RH_WL and JH_JF, respectively. It is generally known that artificial selection in chickens has

yielded rapid changes in commercial traits that only have a history of approximately 100 years

[1]. This means that commercial traits are likely to experience rapid improvement as a result

of selection from standing genetic variation, especially when the trait is controlled by many

mid-small effect loci [7]. However, there are also some mutations that have major effects that

have been fixed or nearly fixed in domestic animals, such as mutations for double muscling in

some beef cattle [30] and an IGF2 mutation in pigs [31]. Therefore, the results may suggest

that both standing and de-novo genetic variations have taken an active role in the process of

artificial selection, probably at different time scales and with different selection coefficients.

Here, we tried to disentangle hard sweep and soft sweep using wild populations with no strong

artificial selection as a reference. However, there are several subspecies of red jungle fowl that

have contributed to domestic chickens [32]. Therefore, the detected sweeps based on standing

and de-novo genetic variations here are just one small part of them.
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A particularly interesting candidate selection region

We highlighted the genomic region in JH_JF with the strongest artificial selection signal (Fig

4A), which is located between positions 70–77 Mb on GGA1 and includes a total of 131 genes.

As shown in Fig 4B, a series of remarkable positive selection signals in this region were identi-

fied by CLR analyses. The differentiation of loci between JH_JF and GA were detected by the

FST test, which is suggestive of artificial selection during improvement of this commercial line.

Notably, we also observed lower heterozygosity in this candidate selection region compared

with background levels in GA from JH_JF. Correspondingly, the extreme differences in allele

Fig 4. Highlight of a candidate selection region on GGA 1 in JH_JF. (A) Distribution of log10 (PCLR or P|iHS|) and log10 (PFST) values calculated in sliding windows.

The dots of color (corresponding to signals surpassing the 5% significance threshold of the empirical log10 (PCLR or P|iHS|) and signals surpassing the 5% significance

threshold of the empirical log10 (PFST) distribution) are genomic regions underlying artificial selection in JH_JF. The dots in green represent the significant signals

located in this candidate selection region. (B) The bottom Manhattan plot shows all selection signals identified by CLR (the dots in green) and FST (the dots in blue) in

the 70–77 Mb region of GGA1, respectively. The positions of 131 gene models in this region are displayed by the black segments. The middle plot shows the pattern of

heterozygosity of four domestic populations in this region. The top plot shows the major allele frequencies in JH_JF and their corresponding frequencies in three other

domestic populations in this region. The lines in black, orange, green, red and blue separately represents JH_JF, GA, PB, RH_WL and AR_VO. (C) Classification of 15

genes with multiple makers and 31 genes with single marker. H and S indicate hard sweep and soft sweep, respectively. (D) 13 genes and their core haplotype

frequencies (or major allele) in JH_JF (Obs.) and GA (Ref.), See Supplementary S4 Table for the exact nucleotide positions.

https://doi.org/10.1371/journal.pone.0196215.g004
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frequency between JH_JF and GA further show a strong indication of artificial selection in this

region. The gradient variation of allele frequency in five populations indicated that divergent

selection has further enriched the inter-population genetic diversity of chickens in this region.

Out of 131 genes embedded in this candidate region, only 46 were overlapped with SNP mark-

ers in exon regions in this analysis. Among them, 31 genes were covered by a single SNP

marker and the other 15 genes were covered by multiple SNP markers. In accordance with the

above criteria, a total of 7 and 24 genes are believed to bind to hard sweep and soft sweep

regions, respectively (Fig 4C). Finally, we further analysed the biological functions of the 46

genes located in this region using the available database. For JH_JF, at least 13 genes harboured

in this region were related to egg quality [33–36], immune response [37], bone development

[33], neuron functions [38, 39] and fertility [40] (Fig 4D). Notably, most of them correspond

with the beneficial alleles in the reference population, with the exception of three genes that

were selected from the novel present alleles when haplotype analysis was performed using the

markers in the exon region. In conclusion, these results demonstrated that this genomic region

was not only under strong artificial selection, but it also harboured soft and hard sweep,

simultaneously.

Underlying selected genes and Go terms for artificial selection

Based on the signals identified by the ‘two-step’ strategy, a total of 663, 668, 975 and 1394

genes were harboured in all artificial selection regions in AR_VO, PB, RH_WL and JH_JF,

respectively. To further investigate the changes in biological process during artificial selection,

those orthologous genes with human were used to perform an enrichment analysis using

DAVID 6.7 (S3 Table). Most of terms did not give any intuitive information on artificial selec-

tion, such as some genes specific to PB and AR_VO were separate over-represented in the ‘ion

transport’ (49 genes) and ‘low-density lipoprotein particle remodeling’(4 genes). However,

Genes identified in JH_JF were enriched for the reproductive process, which mainly included

‘hsa04914: Progesterone-mediated oocyte maturation’ (14 genes), ‘hsa04114: Oocyte meiosis’

(14 genes) and ‘urogenital system development’ (15 genes), growth, which mainly included

‘regulation of growth’ (35 genes), and ‘growth’ (19 genes). These findings may reflect that arti-

ficial selection for JH_JF, a layer population, did improve the fertility and growth in recent

decades. Similarly, genes found in RH_WL were mainly enriched for ‘embryonic development

ending in birth or egg hatching’ (27 genes) and ‘in utero embryonic development’ (16 genes),

which may contribute to fertility production. In addition, Gene Ontology (GO) analysis in

four populations also revealed a series of biological process, including ‘behavioral fear

response’ (3 genes in AR_VO), ‘behavior’ (42 genes in JH_JF), and ‘neuron development’ (32

genes in RH+WL), that are consistent with signal-related genes in this study. The findings may

suggest that the signal-related genes and their corresponding biological processes may play an

important role in changes of behaviour, habits, and commercial traits, such as modest temper-

ament and the ability to grow fast.

Although there were no overall significant GO terms after Bonferroni correction, we found

that genes related with a number of terms previously implicated in domestication-related

changes are present within or close to these sweep regions. Among them, some candidate

genes were observed that are related to immunity [37], neural system development [38],

growth [41], feed intake [42] and fertility [40] (Table 2). We note that the established selective

sweep around the TSHR gene in domestic chickens was also identified in our four populations.

In general, this gene was considered as proof of principle demonstrating that the identification

of selection signals should be reliable [1, 4]. Another interesting selection signal is located on

GGA3 (105.92–106.09 Mb) and harbours the NCOA1 gene, which is associated with total egg
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production [43]. For most layer history, egg production has consistently been treated as an

objective trait of breeding. Correspondingly, the quality of the eggshell would also be consid-

ered and designed in the breeding programme. In this study, three putative genes (PTHLH,

OVST and SCNN1A) overlapping with the strongest selection signals are related to eggshell

characteristics. Among them, the PTHLH gene, located in the 72.51–72.52 Mb region of

GGA1, plays an important role in calcium regulation[33]. As an estrogenic-stimulated gene

involved in the process of oviduct development, the OVST gene is also associated with the for-

mation of eggshells by regulating eggshell matrix protein secretion [35]. These results indicated

that high levels of egg productivity would promote the evolution of calcium transportation sys-

tem in layers. Note that the SCNN1A gene is precisely responsible for calcium transportation

[34]. In contrast to egg production, another apparent characteristic of layer chickens is low

weight. Here, a series of artificial selection signals at the FGF6, TGFB2 and IGF2 loci across dif-

ferent populations were detected. In accordance to previous reports [41, 44, 45], all of them are

important candidate genes for growth traits. Remarkably, we also found three significant

sweep regions that separately overlapped with the PMCH gene, which contributes to appetite

[1], as well as the KLHL42 and LPCAT3 genes, which are related to feed intake [42, 46]. These

findings indicated that the artificial selection of economic traits could have a cascading effect

on phenotypes with genetic correlation, such as egg production, eggshell, growth, and feed

intake. In addition, we also found a few genes with significant signals that are functionally

plausible for neurodevelopment and immune response, which is consistent with previous stud-

ies of genes associated with chicken domestication [4].

Table 2. Some candidate genes overlap with the potential regions of artificial selection in four domestic chicken populations.

Chr. Pos. (Mb)1 P-value. (method)2 Gene Gene function

1 55.42–55.43 Fst0.039,iHS0.025;Fst0.005,CLR0.002; Fst0.008; Fst0.035; PMCH appetite, food intake[1]

1 70.84–70.94 Fst0.027,iHS0.027;Fst0.005;Fst0.005; Fst <0.001,Clr<0.001; WNT7B the developing central nervous system

[38]

1 71.72–71.74 Fst0.025,iHS0.017;Fst0.002;Fst0.005,iHS0.035;Fst<0.001, Clr<0.001; BCL2L14 immune[47]

1 72.42–72.44 Fst0.025,iHS0.039;Fst<0.001;Fst0.005,iHS0.035;Fst<0.001, Clr<0.001; KLHL42 feed intake[42]

1 72.51–72.53 Fst0.025,iHS0.039;Fst<0.001;Fst0.005,iHS0.035;Fst<0.001, Clr<0.001; PTHLH bone development, eggshell[33]

1 73.16–73.17 Fst0.026,iHS0.018;Fst<0.001;Fst0.001;Fst<0.001,Clr<0.001; FGF6 growth[41]

1 76.34–76.44 Fst0.025,iHS0.004;Fst0.001,iHS0.006; Fst0.031,iHS0.004,CLR0.01; Fst<0.001,Clr<0.001; OVST eggshell[35]

1 76.90–76.92 Fst0.025,iHS0.003;Fst0.007,iHS0.008;Fst0.031,iHS0.004,CLR0.01;Fst0.013,CLR<0.001; SCNN1A cation transportation, eggshell[34]

1 77.35–77.38 Fst0.025,iHS0.003;iHS0.008;Fst0.015,iHS0.004;Fst<0.001,CLR<0.001; LPCAT3 feed intake[46]

2 14.04–14.88 Fst0.042,iHS0.036;Fst0.036,CLR0.004;Fst0.007,iHS0.005,CLR0.014; Fst0.037,iHS 0.041,

CLR0.014;

ITGB1 skeletal myogenesis[48]

3 19.37–19.43 Fst0.038,iHS0.048; Fst0.031; Fst0.004;Fst 0.006, Clr 0.006; TGFB2 growth traits[44]

3 105.92–

106.1

Fst 0.019,iHS0.013; Fst 0.022; Fst 0.001; Fst 0.049; NCOA1 total egg production[43]

5 13.77–13.78 Fst0.009,iHS0.026;Fst0.031;Fst0.001,CLR0.017;Fst0.004,iHS0.008; IGF2 growth and carcass traits[45]

5 40.81–40.86 Fst0.005,iHS0.004,CLR0.016;Fst<0.001;Fst<0.001,CLR0.007; Fst <0.001, CLR 0.004; TSHR the reproductive machinery[1, 4]

5 49.02–49.03 Fst0.006,iHS0.031;Fst0.005;Fst0.036,iHS0.047;Fst<0.001,CLR<0.001; DLK1 muscle hypertrophy[4]

6 14.82–14.84 Fst0.032,iHS0.003;Fst0.001;Fst0.036,iHS0.023,CLR0.008;Fst0.013,iHS0.021,CLR0.008; COMTD1 Pigmentation[49]

7 22.54–22.55 Fst0.038,iHS0.018;Fst0.022,CLR0.004;Fst0.004,iHS0.014;Fst0.033; PRKAG3 Meat quality[3]

11 16.18–16.63 Fst0.037,iHS0.012;Fst0.005;Fst0.021;Fst<0.001,CLR0.007; CDH13 Disease-resistant[50]

18 4.47–4.51 Fst0.006;Fst0.007;Fst0.004,CLR0.007;Fst0.004,CLR0.015; PRPSAP1 Abdominal fatness deposition[51]

1 This column presents the position of candidate genes which overlap with or close to the potential regions of artificial selection.
2 This column presents the genome-wide P-values of three statistics, corresponding to AR_VO, PB, RH_WL and JH_JF with semicolons.

https://doi.org/10.1371/journal.pone.0196215.t002
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Conclusions

In this study, we identified the artificial selection signals based on nine chicken breeds

using multiple statistical methods and further discussed the possible classifications of those

signals. The successful application of the ‘two-step’ method suggested that artificial selec-

tion signals can be detected by combining multiple statistical methods and populations (or

breeds). In some special cases, the pool population strategy based on the genetic relation-

ship of multiple populations can reduce the impact from random drift in sweep analysis

with the small cost of losing some signals for unique populations. According to the results,

we found that both standing and de-novo genetic variations have contributed to adaptive

evolution during the process of artificial selection. As a promising approach to studying

population genomics, sweep analysis revealed a series of genes that contribute to the

improvement of chicken breeds, which can be used as fundamental information in future

chicken functional genomics study.
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