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Abstract: TiO2 nanostructures and more specifically nanotubes have gained significant attention in
biomedical applications, due to their controlled nanoscale topography in the sub-100 nm range, high
surface area, chemical resistance, and biocompatibility. Here we review the crucial aspects related to
morphology and properties of TiO2 nanotubes obtained by electrochemical anodization of titanium
for the biomedical field. Following the discussion of TiO2 nanotopographical characterization, the
advantages of anodic TiO2 nanotubes will be introduced, such as their high surface area controlled
by the morphological parameters (diameter and length), which provides better adsorption/linkage
of bioactive molecules. We further discuss the key interactions with bone-related cells including
osteoblast and stem cells in in vitro cell culture conditions, thus evaluating the cell response on
various nanotubular structures. In addition, the synergistic effects of electrical stimulation on cells for
enhancing bone formation combining with the nanoscale environmental cues from nanotopography
will be further discussed. The present review also overviews the current state of drug delivery
applications using TiO2 nanotubes for increased osseointegration and discusses the advantages,
drawbacks, and prospects of drug delivery applications via these anodic TiO2 nanotubes.

Keywords: anodic TiO2; TiO2 nanotubes; osteoinduction; electric field; drug delivery

1. Introduction

Titanium (Ti) and titanium-based alloys are one of the most widely used metallic
materials in biomedical applications, e.g., in implants, as they possess by far the most
perfect mix of properties, including high biocompatibility and corrosion resistance, good
tensile strength, as well as flexibility [1,2]. The high biocompatibility of Ti arises from its
inertness and chemical resistance due to the low electrical conductivity that contributes to
the electrochemical oxidation of Ti, forming a thin passive oxide barrier layer. The latter, in
turn, leads to the high resistance of Ti to corrosion [1,3], as well as being responsible for its
high surface energy characteristics [4].

The choice of metallic biomaterials between pure Ti or other Ti alloys depends on the
targeted application, e.g., Ti or Ti6Al7Nb, Ti6Al4V, Ti13Cu4.5Ni, Ti25Pd5Cr, or the more
recent TiNi, TiNiAg, TiZr for dental implants [1,2] and Ti6Al4V or more recently Ti6Al7Nb
or Ti5Al 2.5Fe for orthopedic applications [2] are preferred. The recent paradigm shift in
the biomedical field from the microscale to nanoscale topography [5,6] was also applied to
nanostructures on Ti and its alloys [7–10].

Simultaneously with the shift to miniaturization of surface topography, the spotlight
of the biomaterial field moved also to more complex systems based on interdisciplinary
works, such as materials design, surface functionalization, nanomanufacturing of devices,
and tissue engineering [11]. Among these, the modification of the surface properties
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of biomaterials (surface nanoscale topography, physical properties, and surface chem-
istry) [9,12,13] is a critical factor affecting the biocompatibility and efficiency of drug deliv-
ery and other biomedical applications [10,11,13–19]. Especially for biomaterials targeting
dental/orthopedic bone regeneration, a good osteoinduction and optimal osseointegration
with necessary mechanical properties are key aspects to consider. Recent studies showed
that the surface properties of implantable biomaterials play a vital role in both (i) establish-
ing a stable fixation of the implant and the osseointegration by preventing fibrous tissue
engagement, and (ii) are accountable for local immune responses during wound healing
and regeneration processes [11,16,17,20,21].

The relevant surface modification methods include so far: (a) mechanical methods
(grinding, machining, etc.) [13,22], (b) acidic treatments (e.g., sulfuric or hydrochloric
acid for cleaning, inducing some roughness and a more efficient deposition of additional
bioactive layers) [13,23,24], (c) hydrogen peroxide [25,26], (d) hydroxyapatite coatings on
Ti either by micro-arc oxidation, sol-gel methods or plasma spraying [27–30], (e) silver
(Ag) coatings on Ti by plasma sputtering of other Ag containing diamond-like carbon
coatings on Ti [31–33], (f) electrochemical anodization allowing a nanostructured layer
(nanopores, nanotubes or mesosponge) to grow directly on the metallic biomaterial (Ti or
Ti alloys) [9,34]. These mechanical, physical, or chemical methods enable morphological
surface modification and can be combined with the addition of a coating layer on the Ti or
Ti alloys surface.

Among the available surface modification techniques, electrochemical anodization
is one of the most widely used approaches for Ti, already used for nanostructuring of the
surface for a wide range of applications (photocatalytic, photoelectrochemical, batteries,
biomedical, etc.). This is due to its controlled nanoscale morphology, high aspect ratio
self-organized nanostructures, facile use, and good integrity of layers grown directly on
the substrate [34]. Figure 1 demonstrates the growth in research and applications based on
anodic titanium dioxide (TiO2) layers encountered in the last 20 years.
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Nanostructures grown under various electrochemical anodization conditions can
be further modified by adjusting the crystallinity (amorphous, annealed to anatase, or
anatase/rutile) or modified with active molecules for targeted applications [35–39].
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Surface modification of Ti or Ti alloys provides several aspects critically affecting the
successful osseointegration and bone regeneration, e.g., the response of the neighboring
cells to the implant (migration, adhesion, proliferation, and mineralization of cells), a
foreign body reaction/osteoclastic activity, and antibacterial activity. Various methods to
modify micro and/or nano-structural topography have been developed to influence cell
adhesion and proliferation, [40] and osteogenic activities [41,42].

The key benefits of anodic nanotubular structures are the nanotopographical advan-
tages that are useful in osseointegration, as well as drug delivery applications due to
the high surface area of nanostructures [7,9,34]. Recently, surface modifications based on
electrochemical anodization followed by further decoration by active molecules or drugs
were widely introduced for improving and tailoring osseointegration accompanied with a
minimal immune response [20,35,43].

For the present review, we will confine our discussion only to nanotubular structures
obtained via electrochemical anodization of Ti or its alloys and their uses for drug delivery
applications tailoring osteoinduction, though several remarkable nanostructure technolo-
gies for biomedical application besides anodization have been developed. The present
review aims to be a clear overview of the state-of-the-art of anodic nanotubes (NTs) and
their properties targeting bioapplications. At first, we will discuss the nanoscale morphol-
ogy of anodic TiO2 nanotubes and the control over their formation. Next, the properties of
nanotubes will be discussed, in particular in terms of biomedical applications, including
the influence of micro- and nanoscale topography, surface roughness, and wetting behavior.
We further introduce cell responses to such nanotubular substrates including growth and
differentiation of bone-related cell types (mesenchymal stem cells, osteoblasts, and osteo-
clasts) on anodic nanotubes and electric-field induced osteogenic differentiation on TiO2
nanotubes. In the last section, we present recent trends of TiO2 nanotubes modification
in drug delivery targeting osteoinduction via several application strategies to maximize
the loading of anodic TiO2 nanotubes and to prolong the release rate or induce beneficial
biological effects.

2. Anodic TiO2 Nanotubes
2.1. Nanomorphology and Critical Aspects of Anodic TiO2 Nanotubes
2.1.1. Electrochemical Anodization

The shift of the materials from micro- to nanoscale topography has resulted in a large
number of published works dealing with the nanostructuring of biomedical metals or
alloys. In particular, nanostructuring of Ti and Ti alloys via electrochemical anodization
was extensively explored. The principle of anodization and the resulting self-organization
is quite simple, i.e., under optimal conditions, a steady state is achieved between oxide
formation and chemical dissolution, while this balance can be influenced by several factors
including anodizing potential, temperature, electrolyte composition, to name but a few [34].

Briefly, electrochemical anodization of Ti and its alloys is performed in an electrochem-
ical cell, with the metal/alloy of interest is used as an anode and a metal counter electrode
such as Pt used as a cathode, as shown in Figure 2a. If a high enough voltage is applied
and without the presence of fluoride ions in the electrolyte, the metal (M, usually valve
metals such as Ti, Ta, Zr, Nb, etc., and their alloys) is oxidized (Equation (1)) and can than
undergo the formation of a metal oxide (MOx/2, Equation (2)), or is solvated followed
by its dissolution in the electrolyte (Mx+

solv, Equation (3)) [34,44]. At the same time, at the
cathode hydrogen gas is produced (Equation (4)) [34].

M→ Mx+ + xe− (1)

Mx+ +
x
2

H2O→ MOx/2 + xH+ + xe− (2)

Mx+ + solvent→ Mx+
solv

)
(3)

xH+ + xe− → x
2

H2 (4)
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It should be noted that thermodynamic aspects such as oxide stability and solubility,
as well as the corresponding reaction rates determine the equilibrium between oxide
formation and dissolution (namely between Equations (2) and (3). However, in systems
where the oxide is not soluble and no additional side reactions take place, the oxide
formation dominates, leading to very high efficiencies in the formation of the oxide [34,44].
Nevertheless, an equilibrium between the film formation and dissolution can be obtained,
if there is some solubility of the oxide, which will result in a steady-state situation. In
this respect, crucial is that, in the presence of fluoride ions, Ti4+ ions can be solvatized by
forming fluoro-complexes (either by chemical dissolution of the oxide—Equation (5)—or
by direct complexation of the metal cations at the oxide/electrolyte interface—Equation
(6)) [34,44].

MO2 + 6F− H+

→ [MF6]
2− + 2H2O (M = Ti) (5)

M4+ + 6F− → [MF6]
2− (M = Ti) (6)

When there is a competition between oxide formation and solvatization, where the
latter is aided by the presence of fluoride ions in the case of titanium dioxide, the obtained
steady-state condition results in the growth of a porous oxide; moreover, if there are
optimum formation and dissolution rates, pores or nanotubes are formed [34,44]. The
concentration of fluoride ions is key, as if too high, no oxide formation is observed (the
controlling step of the reaction is the diffusion of the [TiF6]

2− complex to the surface, as the
complex formation is very fast), or if to low, a stable compact oxide layer is formed [34,44].
Porous or tubular layers are obtained in an intermediate fluoride ion concentration range,
where the oxide formation/Ti4+ solvatization competition can be easily observed. For
example, in the nanotube formation process, three stages are usually present: (i) the initial
state, when a compact oxide formation; (ii) the second stage, nanoscale pores are irregularly
formed and penetrate the compact oxide layer formed in (i); (iii) the third stage, when
regular nanotubes formation occurs. A simplified schematic of the tube growth is also
shown in Figure 2b, following the above-mentioned stages, where initially a compact
oxide layer is formed, followed by irregular nanopores development which grow into self-
organizing nanotubular structures finally reaching a steady-state formation rate. Typical
of the anodic nanopores or nanotube layer is also the formation of the fluoride-rich layer
throughout the whole nanotube length (as indicated also in Figure 2b), due to the fast
migration of fluoride ions through the growing oxide layer.
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For additional details related to more specific mechanistic aspects and more experi-
mental investigations regarding the formation of such specific tubular shapes, the reader is
referred to the following references [34,44,45].

The nanostructure morphology depends on the anodization conditions and the elec-
trolytes, while nanostructures such as nanopores (with no individual separation in between
the pores) and nanotubes (distinct separation of the cell boundaries into individual tubes)
were obtained [34,44]. Anodic nanochannels or mesoporous structures can also be obtained
when anodization is performed in hot glycerol phosphate electrolytes [16,46,47]. In the
following section, we will discuss morphological aspects of anodic nanotubes and how to
control the tube morphology as a function of the anodization parameters.

2.1.2. Morphology Aspects of Anodic TiO2 Nanotubes

The different porous and tubular morphologies that can be obtained by electrochemical
anodization of Ti are summarized in Figure 3. These include nanotubes obtained in glycerol:
water (H2O) and ammonium fluoride (NH4F) electrolytes with a higher water content
(30–50 vol.%), which show a uniform morphology (Figure 3a). The length, however, is
limited to around 2 µm (see for example ref. [17,48,49]). In particular, when organic-
based electrolytes with a lower amount of water (e.g., in between 1–20%) were used,
nanostructures with much high aspect ratios were obtained (up to tens of µm for the
lower water content electrolytes) [50,51] and can reach even faster growth rates by the
use of additives (such as lactic acid) [52,53] or a more uniform morphology by surface
pre-treatments (electropolishing [54], deposition of a photoresist [51]).
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anodization: (a) nanotubes grown in Glycerol:H2O (60:40 vol.%) + NH4F (reprinted with permission from ref. [20]. Copyright
2014 Elsevier), (b) open-top 100 nm diameter nanotubes grown in ethylene glycole (EG) with a low amount of water (4 M) +
HF (reprinted with permission from ref. [55] Copyright 2016 Elsevier), (c) nanopores grown in EG with the low amount of
water (6 M) + HF, (reprinted with permission from ref. [55] Copyright 2016 Elsevier), (d) nanotubes grown in EG, a lower
amount of water (2%) + NH4F in a 2 step anodization approach showing a typical initiation layer, (e) nanotubes in o-H3PO4

+ NH4F (reprinted with permission from ref. [56]. Copyright 2020 American Chemical Society), and (f) spaced nanotubes
grown in diethylene glycol (DEG), low amount of water (1 wt.%) + HF (reprinted with permission from ref. [57]. Copyright
2016 Elsevier).

An open-top morphology can be obtained under specific conditions, i.e., when hy-
drofluoric acid (HF) is used as the fluoride source [55] (see Figure 3b), or if an optimal
mild ultrasonication is performed—either in water [9], ethanol/isopropanol [58], or in
water with a very low amount of HF [59]). However, tubes are commonly covered by an
initiation layer, either more compact or nanograss (when using NH4F as fluoride source, or
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a double anodization approach) [60]—see also Figure 3d showing a typical initiation layer
for a double anodization approach. It was previously shown that for nanotube formation
in low water content electrolytes (up to 0.5 vol.% water), the nanotubes are formed from
an ordered porous oxide by following a pore-wall-splitting mechanism [61], i.e., by the
selective dissolution of the fluoride-rich layer that exists at the hexagonal cell boundary of
the nanoporous oxide layer. This can be significantly influenced by the water content in the
electrolyte as well as the fluoride amount [61,62]. See also a typical example of nanopores
in Figure 3c (EG + 6 M H2O + 0.2 M HF, 1 h at 10 V) [63].

Very ordered, regular, and highly-uniform TiO2 nanotubes (initially referred to as
nanostumps) can be obtained in concentrated H3PO4/NH4F electrolytes at high tempera-
tures (100 ◦C) [64,65], while the intertube distance decreases by increasing the temperature
in the 75–140 ◦C range [56]—such a nanotubular structure is shown in Figure 3e. More
interestingly, a nanotubular morphology with a two-scale organization and a distinct space
in between each nanotube from the top to the bottom of the tube length can be obtained in
certain organic electrolytes, such as diethylene glycol (DEG) [57,66], triethylene glycol [67],
or dimethyl sulfoxide [66,68]. As shown in Figure 3f, such nanostructures (e.g., grown in
DEG-based electrolytes) are highly uniform and provide additional functionality due to
the spaced morphology.

The key factors to control the morphology of the nanostructures are well-established
in the literature and can briefly be summarized as follows: the inner diameter is di-
rectly influenced by the applied voltage and the tube length by the anodization time, and
both are strongly influenced by the electrolyte composition (water content and fluoride
amount) [34,44,69]. A very good overview of the influence of water content on the nanos-
tructure morphology (i.e., nanopore, nanotube, or sponge, grown in EG-based electrolytes)
is shown by Albu et al. [69]—see Figure 4 for the regions of existence and representative
SEM (Scanning Electron Microscopy) images of the nanopore and sponge morphologies.
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Namely, if the applied voltage becomes too high, tube breakdown occurs and this for
both a lower (<13 wt.%) or higher content of water, but in the case of the latter it leads to
the formation of a sponge-like morphology. The water content influences the potential
range into which nanopores can be grown [69]. For instance, anodization in an EG-based
electrolyte with HF at 10 V, in an electrolyte with a 2–6 M H2O content will result in a
nanopore morphology, similar to the nanopore morphology in Figure 3c. However, for
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the higher H2O content of 6 M, the pore-wall-splitting transition is shifted to much lower
anodization times, e.g., of 1 h from 2.5 h, compared to lower water content electrolytes [63].

Nowadays, to take full advantage of the high aspect ratio of anodic nanostructures,
anodic nanotubular structures obtained predominantly in organic-based electrolytes are
used. As a result, the “V-shape” of the nanotubes, more pronounced for nanotubes grown
in organic electrolytes such as ethylene glycol (EG), has to be considered for applications
where the available surface area is crucial. This shape means that the inner diameter is
larger at the top and smaller at the bottom (as shown in Figure 5a–c), due to the chemical
etching occurring at the top of the nanotubes. The V-shape is easier to view for larger
diameter nanotubes with a high aspect ratio, but it is also present for nanotubes with
diameters of 15 nm and a length of 0.37 µm. Similarly, a characteristic of the nanotubes
grown in most organic-based fluoride-containing electrolytes is the double-wall structure,
with an outer shell (OS) and a rich carbon inner shell (IS) [34]—as shown in Figure 5d.
The latter is more easily observed after the annealing of the nanotubular layers. For many
applications, the IS can be removed by decoring (i.e., a chemical etching treatment that leads
to the removal of the C-rich inner layer) [70], or by using specifically designed anodization
conditions where only a single-wall nanotube structure is obtained (e.g., mixed EG and
dimethylsulfoxide electrolytes DMSO [71] or in DMSO electrolytes [68]).
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More importantly, from the various Ti alloys used as dental or orthopedic alloys, such
as Ti6Al4V, Ti6Al7Nb, Ti13Cu4.5Ni, Ti25Pd5Cr, Ti20Cr0.2Si, Ti13Nb13Zr, Ti12Mo6Zr, TiMo
alloys, Ti22Nb2Cr, TiZr alloy, etc. [72,73], only some can be anodized successfully to a
uniform nanostructure by electrochemical anodization. For instance, anodic nanostruc-
tures in the form of nanotubes can be grown on Ti6Al4V [74,75], Ti6Al7Nb [74,76], TiZr
alloys with Zr amount in the 5–50 wt.% [77,78], Ti24Zr10Nb2Sn [79], Ti13Zr13Nb [80,81],
Ti28Zr8Nb [82], TiMo alloys (6–7 wt.% Mo [83,84], 15 wt.% [84]), TiNb alloys [85,86]. Addi-
tionally, specifically designed alloys can also be anodized, such as TiNbZr/Hf (Ti25NbxZr
and Ti25NbxHf with x = 0.7 and 15 wt.% alloying element [87], Ti29NbxZr with x = 3, 15 wt.%
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Zr [88,89], Ti35NbxZr with x = 3–10 wt.% Zr [90]), Ti35Nb5Ta7Zr [91], Ti24Nb4Zr8Sn [92],
TixNb2Ag2Pt with x = 10, 30 and 50 wt.% [93], TiTa alloys [94], and other ternary alloys as
Ti30TaxZr (with x = 3, 15 wt.% Zr) [89] or NiTi shape memory alloy [95,96]. Depending on
the amount and type of alloying element, the anodization conditions or the tube growth
range can differ to some extent in comparison to Ti anodized in the same electrolyte and
under similar conditions. For more details, the reader is referred to the above-mentioned
references and the dedicated reviews for anodization of biomedical alloys [97–100].

2.2. Key Properties and Their Improvement for Biomedical Applications

Up to this point, the different morphology of TiO2 nanotube layers obtained on Ti
and Ti alloys by electrochemical anodization have been introduced, in the next section, an
overview of the crystallinity, surface roughness, corrosion protection, and wettability will
be discussed. Properties such as topography, nanoscale roughness, chemical composition,
wettability, and surface charge distribution, are key in influencing and controlling the
interaction of the biomaterial’s surface with osteogenic cells and early bone response
enabling the implant integration, decreasing the inflammatory response, as well as the
bacterial adhesion or the foreign body response [1,10,22,101,102].

2.2.1. Crystallinity of Anodic TiO2 Nanotubes

As-anodized TiO2 nanotubes are amorphous; hence, to improve their properties and
functionality, crystallinity is induced by thermal annealing treatments performed generally
in air, at temperatures in the range of 250–750 ◦C, which convert the layers to an anatase
or anatase/rutile crystalline structure [34,103–105]. However, the anatase phase starts
to appear from temperatures as low as 250 ◦C and rutile from temperatures of around
450–500 ◦C (to note that the rutile growth starts from the Ti metallic interface) [34,105]. It
was demonstrated that annealing TiO2 nanotube membranes, which were removed from
the Ti substrate, resulted in an anatase crystalline phase only, at temperatures of up to
950 ◦C [53].

The annealing time has a key influence on the crystallinity as longer annealing time at
lower temperatures also results in crystallization to anatase [103]. There is a large number
of works evaluating the crystallinity of TiO2 nanotubes, achieved by annealing in air. In
addition, further evaluation of the morphological changes occurring in the nanotubu-
lar structure due to the appearance of rutile (due to sintering) or due to morphological
aspects of the double-wall structure of the nanotubes are discussed—see comprehensive re-
views [34,106] and experimental works [53,103–105,107–109]. It should be noted, that in the
case of mesosponge or mesoporous nanostructures obtained by anodization in hot-glycerol
electrolytes the obtained nanostructures are already partially crystalline [47,110].

As in the case of biomedical applications targeting osseointegration, the nanostructures
have to be grown directly on the surface of the implant, a clear example of the X-ray
diffraction (XRD) patterns of 1 µm long TiO2 nanotubes with 80 nm diameter annealed at
temperatures up to 750 ◦C is shown in Figure 6. No significant differences were reported
in the tube morphology for annealing up to 450 ◦C [111], but for higher temperatures
of 550–750 ◦C, an increase in the rutile thermal oxide layer starting at the oxide/metal
interface was observed (see also the cross-sectional SEM images in Figure 6b,c showing the
thermal rutile layer). More so, for thermal treatments at temperatures higher than 650 ◦C,
the crystallization process was accompanied by sintering (collapse) of the nanotubular
layer [111].
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It is worth mentioning that after thermal crystallization of the TiO2 nanotubes into
anatase or anatase/rutile mixtures, a significant loss of water, fluoride, or carbon com-
pounds frequently present in the nanostructures occurs (carbon comes from the inner shell
of the classic double-wall nanotubes grown usually in organic electrolytes such as ethylene
glycol), which also influences their wetting characteristics [34,66,71].

2.2.2. Surface Roughness of Anodic TiO2 Nanotubes

A general trait of biomaterials is that biologically active implant materials possess in-
creased surface roughness, which is one of the vital characteristics improving cell response
to the implantable materials. A correlation between the surface roughness and osteoblast
cell attachment was demonstrated [22,42], together with an effect on other aspects of a
successful implant osteointegration (e.g., a selective protein adhesion, chondrocyte mat-
uration) [112]. Nevertheless, though in vivo studies have shown that surfaces with a
microstructure enable an improved contact between surface and bone and after implan-
tation, increased mechanical retention [113,114], overall, more information is required,
particularly for the recent developments in nanostructured surfaces [115].

The roughness of the biomaterial also influences additional properties such as higher
local electrostatic charge density on the surface, [101] and in a combination with hy-
drophilicity can result in improvements in the early stages of bone healing or osteoporo-
sis [116–118].

Figure 7a,b shows typical AFM (Atomic Force Microscopy) 2D topography and cor-
responding SEM images of NTs obtained by anodization of Ti in HF-containing aqueous
electrolyte at an applied potential of 20 V for 20 min [119]. Similar NTs and AFM results
were also obtained in 1 M sodium dihydrogen phosphate (NaH2PO4) + 0.3 wt.% HF, 20 V,
2 h [120], or as listed in Figure 7c,d for NTs grown on TiZr alloy by an optimized double
anodization approach in a glycerol-based electrolyte with 15 vol.% H2O and 0.2 M NH4F
(75 V, 1 h in the 2nd step) [121]. An overview of the average roughness (Ra) values, which
is arithmetic means of the deviation in height from the profile mean value, encountered
in literature for NTs grown on Ti or Ti alloys, are compiled in Figure 7e. While Ti has
reported Ra values in the range of 10.7–22.7 nm, NTs have roughness values in the range of
17–112 nm depending on morphology, i.e., diameter size, where usually higher applied
voltages lead to a certain point to higher diameters [78,119–126], or, to a certain extent,
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to the annealing treatments (a slight increase in roughness is observed, with increasing
the annealing temperature and the appearance of the rutile crystalline phase) [127]. In
addition, also the inner diameter value is included in this overview where available (either
not mentioned in the respective article or values were in a wide range of values due to
the initiation layer covering the nanotubes). Peng et al. [128] has reported much higher
Ra values for both Ti and TiO2 NTs (i.e., 1.02 ± 0.06 µm for Ti, and 0.95 ± 0.02 µm for
NTs). Based on the data presented above, there can be no conclusion concerning a possible
correlation between tube diameter and average roughness; however, there is some variance
in the values due to tube morphology, obtaining conditions, and top morphology of the
NTs (open top, initiation layer, ultrasonication performed to remove the nanograss, etc.).
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2.2.3. Wetting Characteristics of Anodic TiO2 Nanotubes

As mentioned previously, the early bone response is influenced greatly by surface proper-
ties (e.g., topography, roughness, chemical composition, and surface energy) [1,10,22,101,102],
which in turn influences the wettability of solid surfaces. Wetting is the ability of a liquid to
maintain contact with a solid surface, resulting from their intermolecular interactions, while
the degree of wetting is determined by a force balance between adhesive and cohesive
forces called the contact angle (CA) [129]. As the tendency of a drop to spread out over a
flat solid surface increases, the CA decreases. A CA less than 90◦, i.e., hydrophilic surfaces,
usually indicates that wetting of the surface is favorable, and the fluid will spread over a
large area of the surface. In contrast, CAs greater than 90◦, i.e., hydrophobic surfaces, indi-
cating that the wetting of the surface is unfavorable, and the fluid will minimize its contact
with the surface by forming a liquid droplet. There are also two extreme wettability ranges,
in which the CA either exceeds 150◦, namely superhydrophobic state (SHS), or goes below
10◦, namely superhydrophilic state. Such extreme cases can be only achieved on rough
surfaces [130]. Besides the general studies on hydrophilic/hydrophobic surfaces, there
are both fundamental and practical interests to extend the investigation of the interaction
between proteins or cells and surfaces to the extreme wettability ranges.

Since biomaterials used in medical devices are intended to come into intimate contact
with living cells and biological fluids, their surface wettability should be prospectively
designed [131]. Firstly, the coating of the implant materials with proteins from blood and
interstitial fluids will occur [10,132,133]. Therefore, the regulation of wettability and protein



Nanomaterials 2021, 11, 2359 11 of 39

adsorption on implanted surfaces is a key aspect in the field of regenerative biomedicine
and tissue engineering.

Immediately after implantation, water molecules bind to the surface forming a water
mono- or bilayer. Here, their arrangement depends on the implant surface properties at
the atomic level accompanied by hydrated ions, such as Cl−, Na+, and Ca2+, followed
by blood and tissue-specific proteins that adsorb/desorb on the surface [134]. It is com-
mon knowledge nowadays that the adsorption of proteins, as well as cell adhesion on
implantable surfaces, depend strongly on its structure and topography. In this sense, the
electrochemical anodization of implantable Ti substrates induces the following surface
modification: (i) it forms a layer of TiO2 material, which is intrinsically hydrophilic, and
(ii) introduces micro and/or nano roughness to strengthen the hydrophilicity of the im-
plantable surface [9,111,135,136]—a typical example of contact angles for Ti, as-grown
NTs and NTs annealed at different temperature is shown in Figure 8a [111]. Here, the
fine-tuning of surface wettability can be achieved by either development of particular
surface roughness or surface modification with low-energy materials. This is because one
step is normally required to alter the hydrophilic surface to a hydrophobic one, i.e., by the
deposition of low surface energy material (as exemplified in Figure 8b,c, whereby the de-
position of polydimethylsiloxane, PDMS, using a ultraviolet (UV) light grafting technique
turns hydrophilic TiO2 NTs into hydrophobic [136]). The latter was obtained by various
surface modification techniques as discussed in recent reviews or the literature [136–138].
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2.2.4. Corrosion Resistance of Anodic TiO2 Nanotubes

Concerning the biocompatibility of implant biomaterials, in vivo corrosion resistance
has a crucial contribution to the implant’s lifetime, and for metallic biomaterials (excluding
the biodegradable ones) this is “the more corrosion resistant, the more biocompatible” [139].
This, as physiological solutions, are viewed as extremely corrosive towards metallic bioma-
terials and if corrosion occurs it can lead to diminishing biocompatibility, i.e., a release of
metallic ions or particles as a result of corrosion can lead to inflammation and, finally, to
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tissue loss. Though usually, compared to compact biomaterials, porous materials are more
prone to corrosion [140], in the case of nanostructures, both the morphology and the metal
oxide itself (pure Ti or alloys) contribute to the corrosion performance [93].

Investigations into the corrosion performance of amorphous/annealed NT structures,
either grown on Ti [111,141–149] or its alloys (Ti6Al7Nb [76,150,151], TiZr [152]) indicated
that for all NT layers the electrochemical parameters show very stable characteristics—
as shown in Figure 9 for various NT structures. E.g., in the well-established Fusayama
artificial saliva solution (consider also that the NTs had a corrosion current density, jcor of
0.12 µA cm−2, while bare Ti had 7.12 µA cm−2) [141], another artificial saliva (showing
the influence of tube morphology) [142], and Hank’s solution (evaluating the influence of
the annealing treatment) [111]. For annealed NTs, lower corrosion current density (at least
one order of magnitude) was recorded compared to the amorphous NTs [111,147], and this
could also be linked to the appearance of rutile at the NT/metal interface). For instance, in
Hank’s solution Ti is reported with a corrosion current density of 1.29 µA cm−2 [153] to
2.3 µA cm−2 [154] (and 0.116 µA cm−2 for smooth Ti [144]), while for the annealed NTs
this is in the range of 2.51 to 0.07 µA cm−2 decreasing with annealing temperature up to
750 ◦C (see also the Tafel plots in Figure 9c) [111], or 0.014 µA cm−2 for anatase NTs [144].
Overall, a similar trend is maintained for the corrosion current values in the literature for
the various saliva or solutions used, namely with annealing the corrosion protection of the
nanotube layers increases. To note that (i) linear polarization measurements/Tafel plots
are usually measured when steady-state conditions are achieved at the interface between
metal/solution (e.g., the change of the corrosion potential is less than 5 mV in 10 min) [155],
and (ii) at least one of the branches has to exhibit linearity on a semi-logarithmic scale over
at least one decade of current density to allow the extrapolation of the Tafel slope [156–158]
(see also the Tafel plots in Figure 9c showing linearity only in the cathodic region).
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in air at temperatures of 350, 450, 550, 650, and 750 ◦C (reprinted with permission from ref. [111]. Copyright 2016 Elsevier).

For NT structures, the tube diameter and the thickness of the barrier layer are also crucial,
significantly affecting their electrochemical corrosion performance [142,145,148,159]. The
linear polarization curves in Figure 9b demonstrate that the passivation currents of the
different morphology NTs, i.e., increasing diameter and tube length with increasing the
applied voltage, were mostly lower than for the bare Ti. It is worth mentioning that the
morphology type, pore diameter, and thickness of the barrier layer are controlled by the
anodization conditions [34]. Concerning morphology, NTs grown on NiTi alloys lead to
lower corrosion resistance and more Ni release compared to the bare NiTi alloys, due to
the increased surface area [95]. Whereas a 5.3 µm thick nanoporous layers (93 nm pore
diameter) led to an improvement of the corrosion resistance [160]. In general, for NTs
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grown on alloys, the alloying elements and their amounts contribute substantially to the
electrochemical stability of NTs [89,152]. For example, as in the case of Ti30NbxZr or
Ti30TaxZr, where the corrosion resistance was improved with the increase in the Zr content
from 3 to 15 wt.% [89].

Similar performance, i.e., resulting in an improvement of the corrosion resistance in
artificial saliva by the formation of NT structures (amorphous), on either ultrafine-grained
or coarse-grained Ti13Nb13Zr alloys was observed [161]. Saji et al. [91] reported that
in the case of nanostructures on Ti35Nb5Ta7Zr alloy, namely nanopores or nanotubes
with diameters of 30–50 nm or 30–80 nm, respectively, and annealed to anatase in argon
atmosphere (550 ◦C), nanopores showed a corrosion current density of 0.76 µA cm−2, lower
than the 3.12 µA cm−2 obtained for NTs (in aerated Ringer’s solution). This difference
is due to the distinctly separated barrier oxide/tube bottom interface. Furthermore, also
for a nanochannel morphology, a decrease in the corrosion current density was observed
compared to compact oxide (e.g., for nanochannels on TiZr alloy that show partially
crystalline structure due to the anodization in hot-glycerol phosphate electrolytes) [16].

3. Tailoring Osteoinduction with Anodic TiO2 Nanotubes
3.1. Advantages of Anodic TiO2 Nanotubes for Osteoinduction
3.1.1. Nanotopographical Cues of Anodic TiO2 Nanotubes

Most known mammalian cells exhibit the instinct to adhere onto a surface to carry
out normal metabolism, proliferation, and differentiation [10,162,163]. Cells anchor onto a
surface and sense the extra-environment through ion channels and receptors presenting
at their membranes, then integrate the chemical and physical signals from the extra-
environment and give the response that some transmembrane receptors form clusters
known as integrins, and associate intracellularly with groups of proteins which link them
to the cytoskeleton. Subsequently, focal adhesions take place through the binding between
the cluster integrin receptor and the ligand of the extracellular matrix (ECM) [133,163,164].
The cells will undergo apoptosis if are not able to synthesize and deposit their own ECM
molecules in a short time [164,165].

Nowadays, much more attention has been paid to nanoscale microenvironments sur-
rounding cells, due to the highly sensitive cell responses including cell adhesions and cell
decisions for cell growth and differentiation to nanotophographic cues. Various techniques
on different biomaterial systems including TiO2 nanostructures have been introduced to
achieve surface structures in the sub-100 nm region for the investigation of cell-stimulating
effects and biomimetic activation [166]. For example, geometrically defined, adhesive and
stable surface protrusions were made based on polymer demixing [167], ordered gold
cluster arrays [168,169], nanophase ceramics, biomedical alloys [42,170], or self-organized
nanoporous aluminum surfaces. Among the biocompatible implant materials suitable
for bone repair, titanium has been widely accepted as the most favorable for osteogenic
differentiation in vitro and bone regeneration in vivo. One of the most clinically relevant
advantages of anodic nanostructures for osteoinduction and osteogenesis is well-defined,
self-organized, nanoscale topography coatings on TiO2 implant materials, which support
the growth and osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro and
in vivo bone formation [7,171]. Moreover, TiO2 substrates with well-defined nanoscale
topography allowed highly reproducible cell behavior responding to the topographic cues
from the oxide surface.

Fundamental findings reported more than a decade ago, demonstrated that the di-
ameter of anodic TiO2 NTs vitally influences the cell (mesenchymal stem cells—MSCs,
osteoblasts, osteoclasts, etc. [34]) activities leading to increased cell adhesion and growth
as compared to compact oxide or bare Ti [7,43,172]. These findings led to further research
focused on diameter-controlled nanostructures for implants/tissue engineering and drug
delivery design.

For the influence of NT diameter on the different cell type adhesion, proliferation,
and differentiation, please see (i) the works of Brammer et al. [173] and Chamberlain
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et al. [21] and (ii) the works of Park et al. [7,8,35,43] and Khaw et al. [174]. Brammer
et al. and Chamberlain et al. showed that small diameter NTs (30 nm) promoted the
highest degree of osteoblast activity and diameters of 70 nm results in the diminished
inflammatory response, respectively [21,173]. Park et al. [7,8,35,43] proposed that 15 nm
NTs in diameter is an optimal tube diameter for increased cell adhesion and proliferation for
MSCs and endothelial cells. Further, Bauer et al. [175] confirmed the same trend for ZrO2
NTs, indicating that the NT size effect dominates over the crystal and fluoride content [8].
In addition, Khaw et al. [174] showed that there is a discrepancy concerning the affinity of
hMSCs and human osteoblasts (HOB) for TiO2 NT of various pore diameters in the sense
that hMSCs prefer NT with a 20 nm diameter in terms of osteogenic differentiation while
50 nm nanotubular surfaces potentiate osteoblastic maturation of HOBs.

At the cell-substrate contact area, nanotopography mainly affects the cell responses
and following behaviors including cell decisions, for example, whether cell divides or starts
to be differentiated. Particularly in the nanoscale cell-substrate contact area, the size of the
lateral spacing can determine cell fate depending on whether the lateral gap size allows
the integrin clustering on the NTs or not. Integrins have been known as one of the most
important microenvironmental signal receptors in the mammalian cell system, and integrin
clustering can be developed when integrins are activated by environmental signals out of
extracellular matrix/substrates. The study of Park et al. [7] showed that the gap size of
around 10–20 nm in NT diameter perfectly fits the integrin clusters leading to focal adhesion
complexes and downstream signaling to the nucleus. Likewise, recent studies [176,177]
have brought to focus the contribution to the decipherment of the molecular mechanisms
of how integrin-mediated cell interaction with TiO2 NTs may direct cell fate, i.e., cell
adhesion and proliferation, cytoskeleton reorganization, motility, cell shape, and osteogenic
differentiation.

These results led to the establishment of the osteogenic differentiation mechanism.
First, smaller tube diameters of 10–20 nm provide the optimal length scale for integrin
clustering and the formation of focal contacts on the nanotube surface which further result
in higher cell proliferation, migration, and differentiation to osteogenic lineages of the MSCs
compared to bare Ti implants or compact TiO2 layers. Considering the estimated occupancy
size of the head of the integrin heterodimer, the 15–20 diameter of the nanotubes result in
the clustering of integrins in the closest possible packing which leads to an optimal integrin
activation [7,43]. In contrast, larger tube diameters (e.g., >50 nm) impaired cell spreading,
adhesion and even prevented integrin clustering and focal adhesion complex formation—
this led to a strikingly reduced cell behavior (proliferation, migration, differentiation) and
in the end induced the adhesion-dependent form of apoptosis [7]. Secondly, on the small
diameter nanotubes, phosphorylation of the focal adhesion kinase (FAK) and extracellular
regulated kinase (ERK), target of the FAK signaling pathway was highest compared to on
the much larger 100 nm diameter nanotubes [7].

Reports in literature confirm that different nanotopography cues (micro-scale surface
modifications, nanopits, nanosheets, nanotubes, etc.) influences osteogenic differentiation via
various downstream molecular pathways following integrin signaling, reorganization of the
actin cytoskeleton, and nuclear translocation/transcription [10,178,179]. These include sev-
eral canonical pathways such as FAK [7], ERK [7,179], phosphoinositide 3-kinase/protein
kinase B (PI3K/AKT) [179], Rho-associated kinase (Rho-ROCK) [179,180], autophagy-
mediated signaling between Yes-associated protein (YAP) and β-catenin [181], mammalian
target of rapamycin complex with Rictor (mTORC2) [182], and Wnt/β-catenin [183] sig-
naling pathways. Recently, Lv et al. [184] revealed the epigenetic mechanism of nanotube-
guided osteogenic differentiation of MSCs and that changes in cell adhesion and cytoskele-
ton reorganization are linked with epigenetic alterations. The mechanism would be even
more complex as the above-mentioned pathways can crosstalk and have a crucial role in
the cell adhesion, migration, proliferation, and differentiation directed by the biomaterial
surface.
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Not only topography itself but also a minute mechanical strain on nanotube layers seems
to affect the stem cells, resulting in their osteogenic differentiation [176,180,185–187]. This
mechanical strain has been reported to promote osteogenic differentiation of MSCs on
TiO2 nanotubes via the FAK [185], ERK1/ERK2 [186], Rho-ROCK [180], Yes-associated
protein/Tafazzin (YAP/TAZ) [187] FAK-ERK1/ERK2-RunX2 [176] pathways. The ex-
act mechanism through which nanotopography modulates mechanotransduction for os-
teogenic differentiation of MSCs still remains to be further confirmed through additional
investigations.

Recently, we compared the generally-grown (close-packed) NTs with spaced NTs,
where both NTs have similar diameters of ≈ 80 nm, but spaced NTs have a 80 nm tube-
to-tube individual spacing. The spaced NT morphology did not show any detrimental
effect on osteoblast functions in vitro, rather having a beneficial influence on the osteogenic
differentiation of pre-osteoblasts [188], indicating that gap distances irrespective of inner
or outer nanotube rims may affect cells that come into contact with these nanoscale gaps,
further delivering contact signals to the nucleus to decide cell differentiation.

Many previous works demonstrated that various diameter TiO2 NT structures can
also induce the anti-inflammatory response of hosts (Chamberlain et al. [21], Smith
et al. [189], Neacsu et al. [20], Yao et al. [190], Bai et al. [191]). The surface modification
induced by the nanotube structures combined with annealing can change the hemocom-
patibility of TiO2 NTs, by alleviating platelet activation (Mazare et al. [111,150], Junkar
et al. [15], Huang et al. [192], Gong et al. [193], Bai et al. [191,194]). Several in vivo stud-
ies have shown that TiO2 nanotubular layers could induce successful peri-implant bone
formation/osseointegration in various animal models using different diameter NTs: von
Wilmowsky et al. (30 nm diameter nanotubes) [195], Wang et al. (30, 70, and 100 nm
diameter NTs) in minipigs [174], Alves-Rezende et al. (≈ 74 nm diameter NTs) [196],
Baker et al. (TiO2 NTs—in vitro and in vivo intramedullary fixation) in rats [197], or the
review of Wang et al. [198] for the effect of TiO2 NTs grown on the implants’ surface on
osseointegration in animal models.

Another advantage of anodic nanostructures for osteoinduction lies in the potential
of a synergistic combination of nanotopographic cues with drug delivery via NT surface
or inner space decoration, as a cargo. By modifying the NTs with active molecules or
growth factors (such as bone morphogenetic protein-2—BMP2, epidermal growth factor—
EGF, osteogenic growth peptide—OGP), improved cell adhesion or differentiation can
be obtained. For example, using a BMP2 decoration, Balasundaram et al. [199] showed
an increased osteoblast adhesion on TiO2 NTs, and Park et al. [35] reported accelerated
differentiation of MSCs towards osteogenic or chondrogenic lineage on BMP2-coated NT
layers. Lai et al. [200] further confirmed MSCs differentiation to osteoblasts on BMP2-
decorated TiO2 NTs (via polydopamine). Moreover, several growth factors/cytokines
can be coupled with different functional layers on TiO2 NTs surface [201]. For example,
BMP6-loaded TiO2 NTs can be coated with platelet-derived growth factor containing silk
fibroin in a composite for increased osseointegration [202]. Several other modifications
include EGF on NT structures for increased adhesion of MSCs, OGP functionalization
of the NTs for an improved cell spreading and differentiation of osteoblasts [203], and
calcitonin gene-related peptide (CGRP) on TiO2 NTs for osteoporotic bone implants [125].
While the previous studies mostly focused on decorating growth factors or drugs on the
top of NT surfaces, recent studies tend to expand drug delivery applications through the
inner nanotube wall/space, as well as decorating the top surface of NTs. We will discuss
this recent trend in NT drug delivery more in detail in one of the next sections.

3.1.2. Electric Field Stimulation of Anodic TiO2 Nanotubes

In bone tissue engineering, a classic biological triad represents three critical com-
ponents leading to successful bone regeneration using biomaterial implantation: (1)
biomaterial/scaffolds-derived micro-, nanoenvironmental cues, (2) electrochemical, elec-
trical, physical regulatory signals including bioreactive molecules, and (3) cells including
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cell-cell contact and functional matrix signaling. Among these three major components,
we already discussed in a former section the TiO2 nanotube-derived nanoenvironmental
cues affecting cell behaviors. We also shortly mentioned bioreactive molecules on TiO2
nanotubes, that stimulate osteogenic differentiation and osteoinduction. Considering the
scope and limitation of the present review, discussion about cell components (related to
point 3) including the interplay of different bone and precursor cells interacting via cell-cell
contacts, is beyond the topic of the review. In this section, electrical stimulation among
regulatory signals in the triad, especially on TiO2 nanotubes for osteoinduction will be
introduced and reviewed.

In the field of bone tissue engineering using biocompatible implants, cellular behavior
and cell fate of stem cells have been known to be determined not only by microenviron-
mental signals, such as substrate topography, soluble growth factors and cytokines, and
cell–cell and cell–extracellular matrix interactions, but also by electrochemical signals [164].
Electric fields have been applied in tissue engineering for many different purposes. The
main applications of electric fields are in the characterization of artificial tissues and their
component cells, and the formation of artificial tissue-like materials, either by assisting in
the formation of the artificial extracellular matrix (e.g., the formation of scaffolds by electro-
spinning), or the micromanipulation of the cells themselves using electric fields [204]. Of
further potential interest in tissue engineering are also the biological effects of the electric
fields. In fact, the clinical application of an electric field (EF)/an electromagnetic field
for bone regeneration has a long history. A meta-analysis of the data in the last 60 years
shows clinical EF trials to have an overall favorable influence on bone healing [205,206].
However, such clinical trials have also considerable variations depending on the treatment
regimen and study design, thus hampering a direct comparison and a critical evaluation
of results [205]. Further, despite a long history of clinical trials, the mechanism linking
electric stimuli and its sensing on the cell surface is still elusive. Therefore, during re-
cent decades, the mechanism of EF (e.g., how cells sense and react to EFs) affecting cell
adhesion, migration, proliferation, and differentiation has been extensively investigated
in various primary cell/cell lines [206–211] including epithelial, mesenchymal, and neu-
ral cells [212–215]. Exposure of the cells to an electric current, if a certain current value
threshold is exceeded, leads to cell death, while currents lower than 11 As/m2 have shown
no decrease in cell viability [216]. Asides from the overwhelming impact of the electric
current value, there are additional aspects that can negatively influence the viability of the
cells, such as local acidic pH [217], metal ions release from the electrodes or cell contact
directly on the electrodes [216]. Commonly, in a physiologically tolerable EF strength
(<5 V cm−1), many of the different cell types can immediately react to EF stimuli, which
include EF directional axis-dependent cell migration (galvanotaxis), neuronal activation
and regular muscle cell alignments. These EF-corresponding specific cell responses have
been suggested for use in wound healing, neurons stimulation, and tissue engineering on
various scaffolds [206,218].

In the bone tissue engineering field, evidence has accumulated that clearly points out
that electric (direct or alternating current) or electromagnetic fields can induce osteogenic
differentiation of mesenchymal stem cells or osteoblasts [210,213,215]. Recent studies
have shown that various scaffolds can be used in concert with electric or electromagnetic
fields for bone cell stimulation, such as (i) collagen scaffolds (with piezoelectric properties)
for human osteoblasts under magnetic and additional alternating electric field [219], (ii)
non-piezoelectric three-dimensional matrix for osteoblasts under electromagnetic stimula-
tion [220], (iii) polycaprolactone based scaffolds under alternating current electric fields for
osteoblast-like MG63 cells [221], or (iv) conductive polypyrrole/polycaprolactone scaffolds
under electrical stimulation [222].

Similarly, TiO2 substrates can also be used to stimulate bone cell differentiation under
an applied EF. Already in 2016, we have reported an efficient EF-induced osteogenic dif-
ferentiation of MSCs grown on 15 nm diameter TiO2 NT layers, without any osteogenic
chemical supplements stimulating the differentiation [223]. MSCs discern the EFs and re-
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spond to both x-y planar and z-axis EFs (Figure 10a) at smaller EF strength than 0.4 V cm−1,
i.e., at a comparable current level of endogenous provoking current in the body. Interest-
ingly, under EF stimulation MSCs grow fast as multilayer on TiO2 nanotube layers while
without EF they remained in a monolayer (as shown in Figure 10b).
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Figure 10. Effect of electric fields (EFs) on mesenchymal stem cells (MSCs) cultured on TiO2 nan-
otubes: (a) illustration of MSC under x-y planar (left), z-axis (right)-directed EF device, respectively
(reprinted with permission from ref. [223]. Copyright 2016 Mary Ann Liebert, Inc.). (b) Osteogenic dif-
ferentiation of green fluorescent protein (GFP) labeled MSCs under z-axis-directed EF (200 mV cm−1)
for 8 days. Bar: 200 mm (reprinted with permission from ref. [223]. Copyright 2016 Mary Ann Liebert,
Inc.). (c) Gene expressions of osteocalcin and osterix following 3 days of x-y or z-axis directed EF
application by quantitative Polymerase Chain Reaction, qPCR (N = 3) (reprinted with permission
from ref. [223]. Copyright 2016 Mary Ann Liebert, Inc.). Reduced NTs show higher efficiency for
EF stimulation of MSCs: (d) SEM images of reduced 100 nm diameter nanotubes, inset: high mag-
nification image of the tube wall structure) (reprinted with permission from ref. [224]. Copyright
2019 Elsevier), (e) resistance values for as formed and reduced nanotubes obtained from solid-state
conductivity measurements (data taken from ref. [224]), (f) schematic showing the EF-triggered
calcium influx reprinted with (permission from ref. [224]. Copyright 2019 Elsevier), (g) the voltage-
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dependence of the intracellular calcium elevation in as formed and reduced TiO2 at the end of a
10 min-EF stimulation, data were obtained from 100 randomly chosen cells/experiment and three
independent experiments were performed for each group (reprinted with permission from ref. [224].
Copyright 2019 Elsevier).

The study further revealed that enhanced intracellular calcium signaling and the
spreading of the intracellular Ca2+ to the adjacent cells under EF are the main mechanisms
of EF-induced osteogenic differentiation. It is worth mentioning that in bone differentiation
a z-axis EF using an MSC-plated TiO2 substrate as an anodic electrode can induce a
comparable stimulating effect with x-y planar EF when MSCs were separated from EF
electrodes as shown in Figure 10c (a comparison of bone differentiation-specific marker
expressions). The finding indicates that MSCs can be plated or moved to adhere directly
on the EF-generating TiO2 electrode, which might be useful for EF-engaged bone tissue
engineering.

Other works also supported the stimulation of bone cells on TiO2 or TiO2 composite
layers by EF, showing that electric field stimulation of osteoblast on anodic nanotubes leads
to an increase in their specific biomarkers [225], and more recently Sahm et al. [226] also
reported the influence of alternating electric fields on human osteoblasts growing on and
in the surrounding of Ti6Al4V electrodes.

Further, a shortened EF-engaging time and an effective but minimal EF strength are
critical issues in EF-applied clinical bone tissue engineering. We have reported signifi-
cantly shortened EF exposure time by improving the conductivity of the TiO2 NTs [224].
“Black” TiO2 NTs, subjected to an optimal reduction treatment in argon hydrogen (Ar/H2)
environment can lead to a significant increase in tube conductivity and decrease of the
electron transport time, as a result of forming Ti3+ and oxygen vacancies in the NTs (see
the morphology of reduced tubes in Figure 10d and conductivity values in Figure 10e).
Hence, much shorter EF-exposure time (from previous days to 10 min) and a decrease
in the applied EF strength (from 400 mV cm−1 to 100 mV cm−1) sufficiently enabled the
EF provocation of an early response of the stem cells (a schematic drawing of increasing
intracellular calcium influx under Z-axis EF in Figure 10f and a superior intracellular
calcium activation on reduced TiO2 NTs compared to as formed NTs in Figure 10g).

Overall, in the past decade, great achievements were accomplished through many
valuable studies that verified the EF mechanism (how cells recognize the EF stimuli and
which signaling pathway dictates EF-induced bone differentiation). The new understand-
ing of the mechanism may allow the accomplishment of potential clinical EF application in
bone tissue engineering in the near future, following the careful optimization of EF parame-
ters. Electric/electromagnetic field application for bone regeneration using bio-implantable
materials could be a useful option when combined with the other novel technologies
including TiO2 surface modifications and drug delivery systems which will be discussed
in the following section.

3.2. Drug Delivery Applications Based on Anodic TiO2 Nanotubes

We have previously discussed the advantages of anodic TiO2 nanotubes on osteoin-
duction and osteogenesis and their validity for a wide range of Ti alloy substrates. The
nanotubes’ high surface area and their distinct topography can provide their full advantage
in drug/active agents delivery applications [14,227,228]. Extensive studies are investi-
gating the release profiles of drugs, including antibiotics, peptides, metal ions (Ag, zinc -
Zn, copper - Cu), or various biopolymer coatings. Overall, the studies investigating the
mechanism and release rate from anodic TiO2 nanotube layers confirm the higher loading
capabilities of the NTs (that are, as expected, linked with their high aspect ratio). Previous
studies have also revealed that vacuum impregnation techniques usually lead to a higher
elution time, compared to soaking techniques [229]. A variety of drug/active compound
release approaches based on anodic TiO2 NT structures are summarized in Figure 11.
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3.2.1. Release Rate from Anodic TiO2 Nanotubes

In the first step, we will discuss key aspects concerning the release rate of drug/active
components. Generally, the drug release rate is determined by the design of the deliv-
ering platform (varied from the incorporation of metal ions/nanoparticles on the sur-
face to a direct incorporation into the TiO2 NT space) and biochemical characteristics of
drugs: see, for example, Ag [230,231], strontium - Sr2+ [149], magnesium (Mg) and silicon
(Si) [93], vancomycin [230], ibuprofen [127] gentamicin [127,232], doxorubicin [229,233],
anti-inflammatory drugs (indomethacin [234], sodium naproxen [235]) co-delivery of drugs
(gentamicin and ibuprofen) [236], or various active molecules (e.g., quercetin [237]). Usually,
one of the main challenges in the design of drug delivery systems based on either TiO2 NTs
or other nanostructured materials is a controlled and sustained release of drug in contrast
to a burst release that can rapidly lead to the accumulation of the active drug/active agent
to the toxic levels at the targeted site [18]. Table 1 represents an overview of drug/active
agents with specific loading and release strategies using anodic nanostructures.



Nanomaterials 2021, 11, 2359 20 of 39

Table 1. Overview of drug/active compounds loading and releasing from anodic nanotubes on Ti or Ti alloys (D—diameter,
L—length).

Drug/
Compound

Nanostructures
Drug/Agent Deposition Release Rate Reference

Type D, L

Sr2+ TiO2 NTs
(mainly anatase)

D: 110 nm
L: 2.1 µm Sr2+—dip coating

A viable alternative in
orthopedics to provide

improved corrosion resistance
and enhanced

biocompatibility

[149]

Ag or
Vancomycin

(VAN)

TiO2 NTs
(anatase, rutile)

Aqueous: (a) D 70
nm, L 0.87 µm (b)
D 100 nm, L 1.45

µm.
Organic: L 6.5 µm

vacuum impregnation
technique for both VAN or
Ag, from 10% VAN or 10%

silver nitrate (AgNO3)
solutions, respectively

VAN release was significantly
retarded from NTs in organic

electrolytes (compared to
aqueous). Ag release was

retarded from aqueous
nanotubes compared to Ti

surfaces.

[230]

Gentamicin
(GEN)

TiO2 NTs on coarse
or

ultrafine-grained Ti

D: not specified
L: 8 µm or 15 µm

immersion of samples in
phosphate-buffered saline
solution containing GEN

Partly delayed release of
gentamicin, for targeting
bacterial inflammation

around the implant.

[232]

Ibuprofen (IBU)
or

Gentamicin
(GEN)

TiO2 NTs
Amorphous

Anatase
Anatase and rutile

D: 65 nm
L: 2.1 µm

10 wt.% solution of IBU in
methanol, and 10 wt.% GEN

in water. 5× of 1 mL
pipetting and drying (drying
in air, room temperature or 75

◦C)

The release process is
governed by the desorption of
the drug from the top surface,
followed by a combination of
desorption and slow diffusion
of the drug from the inside of

the nanostructure.

[127]

Doxorubicin
(DOX)

TiO2 NTs
(amorphous)

D: 110 nm
L: 0.80 µm

(a) immersion of samples in
DOX solution (soaking) or
(b) vacuum impregnation

(drying under vacuum,
several times)

DOX loaded by soaking, the
elution time is around 7 days,

while for wet vacuum
impregnation it reached 30

days.

[229]

TiO2 NTs
(amorphous)

D: 170—220 nm
L: 0.93 µm

15 cycles of deposition and
drying under vacuum in DOX
solution. Polyethylene glycol
(PEG) layer for capping (1 to

50% PEG)

Release of doxorubicin can be
controlled (slowed down)
only during the first 3 h by
the PEG layer. TiO2 NTs are
competitive for drug release

of low polarity drugs
compared to other boron or

carbon-based materials.

[233]

Ibuprofen (IBU)
and Gentamicin

(GEN)

TiO2 NTs
(anatase)

D: 49 nm
L: 0.5, 0.8 or 1.8 µm

10 wt.% solution of IBU in
methanol, or GEN in water

were prepared. 1 mL of each
solution: a) IBU and GEN at
the same time (de-noted IG),
b) GEN and then IBU (GI), c)

IBU and then GEN (I&G)

The length, crystallinity, and
loading procedure of NTs
influence the drug loading

and release processes. Drug
release can be modified by
the loading procedure (GI

approach led to the longest
period or release time for
GEN as the initial burst
release was inhibited).

[236]

Jarosz et al. [127] clarified the drug release kinetics and mechanism using a desorption-
desorption-diffusion (DDD) model of the drug release. In their study for ibuprofen/
gentamicin release from TiO2 NTs, two different drug release kinetics were shown: drug
desorption from the top of the nanostructure, and then desorption and diffusion of the
drug from the inner nanostructure. A first-order kinetics is responsible for the initial
fast drug delivery (from the surface of the nanostructure), while the slow release of the
drug from within the nanostructure combined the first-order kinetics with a Higuchi
model [236]. Further, the work of Pawlik et al. [236] has shown that release rate can
be differentially controlled according to the characteristics of drug combinations. The
co-delivery of ibuprofen and gentamicin, moderate water-insoluble and water-soluble,
respectively, enables controlling the release time from TiO2 NTs when the loading procedure
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consisted of first gentamicin and then ibuprofen serially, leading to a much slower release
of gentamicin thus avoiding an initial overdose burst.

Coating methods can also contribute to prolong the drug release rate, for example (i)
capping techniques, such as doxorubicin loaded in NTs with a polyethylene glycol layer
coating as a barrier [233], chitosan coatings of NTs loaded with indomethacin [234], gen-
tamicin [238], selenium [239], quercetin [237] or mixed coatings of gelatin/chitosan [240],
(ii) deposition of the ions on top of polymer layers (for example, Ag on polydopamine
decorated TiO2 NTs [231]), or (iii) for encapsulation of the drugs in micelles and their
loading into the NT structures (indomethacin [234]).

3.2.2. Drug Delivery for Antibacterial and Osteoinductive Activities

For drug delivery on TiO2 nanotubular bio-implants, so far a high number of inves-
tigations has mainly focused on antibacterial effect using (i) metal ions or nanoparticles
(Ag [241–243], silver oxide - Ag2O [244,245], gold - Au [122], selenium - Se [239], Zn [246],
zinc oxide - ZnO [247], Cu [248], Sr [249,250], tantalum (Ta) and Cu [124], Zn-Ag [251],
Sr-Ag [250], or calcium and phosphorus - Ca-P [252,253]), (ii) drugs (vancomycin [36],
gentamicin [254], metformin [255], alendronate [256], simvastatin [257]) or (iii) polymers
(polyaniline [258], chitosan [210,238]) to provide a contamination/infection-reduced condi-
tion beneficial for osseointegration (see Figure 11 and Table 2).

Table 2. Overview of drug or active compounds delivery applications using anodic nanostructures on Ti or Ti alloys
(D—diameter, L—length).

Drug/
Compound

Nanostructure Drug/Compound
Deposition Biological Effects Reference

Type D, L

Sr2+, Ag
TiO2 NTs
(anatase)

D: 70 nm
L: not specified

Sr2+—hydrothermal
treatment; Ag+ by

photodeposition to Ag NPs

Enhancement of the
osteobonding capability of
the nanotubes, as well as of

their antibacterial activities by
combining the pro-osteogenic

effects of Sr2+ and strong
antibacterial effect of Ag NPs.

[250]

Ag2O TiO2 NTs
(amorphous)

D: 80 nm
L: 6 µm to 2 µm,

decreasing with Ag
%

Ag2O nanoparticles are
embedded into the nanotubes.

Substrates are TiAg layers
(magnetron sputtering)

Sustained antibacterial
activity due to the controlled

low dose Ag+ release,
improved cell attachment and

spreading, no deleterious
effects on pre-osteoblast cell
viability, proliferation, and

differentiation.

[244]

Zn

TiO2 NTs
(30 nm: anatase,

rutile; 80 nm:
anatase)

D: 30 nm, 80 nm
L: not specified

Zn—deposition onto the NTs
by hydrothermal treatment

Antibacterial effects
depending on the amount of

loaded and released Zn in
NTs. 80 nm NTs (3 h Zn

deposition) enhance MSC
osteogenic differentiation

(enhanced protein deposition,
enabling cell functionalities

and Zn release).

[246]

Polyaniline
(PANI)

TiO2 NTs
(anatase/rutile)

D: 85 nm
L: not specified

PANI deposition by
electropolymerization

PANI/TiO2 NTs supported
the viability/proliferation of

MG-63 osteoblasts and
showed good anti-biofilm

activity.

[258]

Se-Chitosan TiO2 NTs
(amorphous)

D: 110 nm
L: 0.90 µm

Se is deposited by
electrodeposition and

Chitosan by spin coating

NTs-Se-Chi samples showed
excellent antibacterial activity

and promoted the
proliferation and biological

functions of healthy
osteoblasts while inhibiting

the growth of cancerous
osteoblasts.

[239]
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Table 2. Cont.

Drug/
Compound

Nanostructure Drug/Compound
Deposition Biological Effects Reference

Type D, L

Metformin
(MET)-Chitosan TiO2 NTs D: 160 nm

L: ≈9–10 µm

5 cycles of deposition-drying
in air of MET solution in fetal
bovine serum. Chitosan was

deposited by spin coating

A 15-layer chitosan
deposition could prolong the

metformin release up to 21
days (with a significant

decrease in the burst release),
while the chitosan coating of

the MET-loaded TiO2 NTs
increased MSCs attachment,

proliferation, and
differentiation.

[255]

Briefly, for Ag nanoparticle (NP) decoration, deposition is achieved via: (i) a combina-
tion of solution deposition and subsequent photodeposition or UV-induced photoreduc-
tion [242,250], which can also be available for depositing the Ag+ ions on polydopamine
decorated TiO2 NTs [231], or (ii) solution deposition and reduction by gluconolactone
(reducing the silver ammonia to Ag NPs) [243], and more recent approaches such as (iii)
anodizing alloys (TiNbAg [242] and TiNbAgPt alloys [93]), or (iv) ion implantation (graded
Ag incorporation into TiO2 NTs by silver plasma immersion ion implantation [126] or the
mixed Zn-Ag ion co-implantation [251]). While most of the works focus on the antibacterial
activity of Ag decorated NTs (see also Coman et al. [259]), some researchers investigated
also the interactions between Ag and host cells in view of biocompatibility. While an Ag
overdose strongly influences biocompatibility due to increased toxicity against the host
cells and surrounding tissue [126,241], if the Ag amount is optimal, the Ag-decorated
NTs have been reported to show a similar cellular response as the undecorated NTs with
epithelial cells and fibroblasts in vitro and a minimal inflammatory response in vivo [126].
Moreover, Taipinia et al. [242] reported that anodic NTs grown on TiNb alloys containing
Ag have antibacterial activity without a detrimental effect on MC3T3-E1 pre-osteoblasts
rather promoting cell proliferation.

Gao et al. [244] investigated Ag2O NPs-embedded NT structures (size 5 to 20 nm, and
0–15 at.% Ag) by a combination of sputtering titanium and silver on Ti and subsequent an-
odization, showing adequate antibacterial properties without cytotoxicity. The crystallized
Ag2O NPs were embedded in an amorphous TiO2 NT wall enabling the sustained and
slow Ag+ release, thus minimizing the cytotoxicity and ensuring a long-lasting antibac-
terial activity. More importantly, they showed no appreciable influence on the osteoblast
viability, proliferation, and differentiation compared to the Ag-free bare nanotubes. Similar
results of a bactericidal effect against Escherichia coli without detrimental effects on human
osteoblast proliferation were reported when the Ag2O NPs were deposited by physical
vapor deposition on NTs grown on Ti6Al4V [245].

Strontium represents another widely used element for functionalization of biomedical
materials due to its dual mode of action on bone cells, namely, stimulation of osteoblast pro-
liferation and differentiation, and inhibition of osteoclast function [260,261]. Sr2+ decoration
of the NTs via a hydrothermal treatment has been reported to increase the osteobonding
ability of the materials based on in vitro experiments with Saos-2 osteosarcoma cells and
MC3T3-E1 pre-osteoblasts, respectively [249,250]. It is worth noting that in the latter study,
Pan et al. [250] additionally incorporated Ag NPs onto Sr-loaded NTs by adsorption of Ag+

from 0.02 AgNO3 solution and subsequent UV irradiation. The simultaneous presence of
Sr and Ag endowed the materials with excellent antibacterial properties and osteogenic
capability in terms of pre-osteoblast adhesion, proliferation, and mineralization, as well as
gene expressions of osteoblast-specific markers.

A similar hydrothermal treatment in Zn acetate solution results in Zn decoration
of the TiO2 NTs with very good antibacterial activity and biocompatibility—while an
optimum sample in respect of tube diameter (80 nm) and the time of the hydrothermal
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treatment (3 h) with optimal Zn release significantly enhances the osteogenic differentiation
of the MSCs due to increased matrix protein deposition [246]. In addition, Jin et al. [251]
reported that a simultaneous Zn and Ag co-decoration of the NTs (by plasma immersion
ion implantation) results in Ag NP decoration on a Zn layer covering the NTs and this
co-decoration increases initial adhesion and spreading, proliferation, differentiation, and
osteogenesis of MSCs coupled with a long-term antibacterial effect (compared to Ti, or
Ag or Zn single deposition), in both in vitro and in vivo experiments (due to formation of
Ag-Zn micro-galvanic couples [262]). ZnO NPs decorated on NTs have also an antibacterial
effect, and once the optimal loading is exceeded its efficacy can be tackled with further
co-doping of Ag [247]. In a most recent study, Chen et al. [263] reported on the fabrication
of Zn-incorporated TiO2 surfaces and their influence on the osteogenic microenvironment
and bone formation. In their culture model, a MC3T3-E1 pre-osteoblasts cell line was
grown in the conditioned media (CM) derived from a RAW 264.7 macrophages cell lines
cultured in standard or pro-inflammatory (stimulation with lipopolysaccharide—LPS)
conditions on these Zn-incorporated TiO2 surfaces. The results showed that macrophages
cultured on Zn-incorporated TiO2 NTs display a M2 phenotype, while M1 markers were
moderately inhibited, as compared to the LPS group. The pre-osteoblasts grown on Zn-
incorporated NTs incubated in CM showed increased cell adhesion and proliferation, as
well as osteogenic differentiation in comparison to their TiO2 NTs counterparts and the Ti
group. The authors hypothesized that superimposing Zn onto a titania NT surface could
increase the osteogenic potential of osteoblasts through the improved immunomodulatory
function of macrophages. The study thus brought to attention the crucial roles of Zn in both
bone homeostasis and regeneration [264] and in innate and adaptive immune systems [265].

Cu is a well-known antibacterial agent that is widely used in biomedical applications
with other biomaterials and has anti-inflammatory, anti-microbial, and anti-proliferative
properties [266]. More recently, the focus was on developing TiCu alloys, and their in vitro
and in vivo evaluation corroborated their good biocompatibility and osteogenesis ability
(e.g., 5 wt.% Cu content [267,268], or 10 wt.% Cu [248]). TiCu alloys enhanced the ex-
pressions of osteogenesis-related genes (including alkaline phosphatase - ALP, Collagen I,
osteopontin - OPN, and osteocalcin - OCN) in vitro [268] and promoted the surrounding
bone-bonding (bone-to-implant contact) and the osteogenesis in vivo [267]. In addition,
Wang et al. [248] has reported the anodization of TiCu alloys (containing 90-x % Ti, 10% Cu
and x Al, with x = 0.45) to have excellent antibacterial activity and minimal cytotoxicity on
osteoblast cells. Currently, Wu et al. [124] has shown that a multifunctional TaCu coating on
anodic TiO2 by magnetron sputtering (Ta:Cu 1:1 at.% ratio) enables effective bacteriostatic
properties with distinct angiogenesis compared to bare NTs or a Ta coating only.

During the electrochemical anodization, ions such as Ca and P can be incorporated
into the anodic nanostructures by anodizing in an electrolyte containing simulated body
fluid (SBF) and subsequent cathodic deposition of Ag. This resulted in a functionalized NT
layer with calcium, phosphorus and silver (Ca-P-Ag), which can enhance bone-like apatite
formation in SBF and stimulate cell adhesion and proliferation of murine pre-osteoblast
cells accompanying inhibition of the bacterial growth [252]. Similar results can be achieved
by thin Ca-P layer deposition on NTs via immersion in Hank’s solution, followed by
nano-Ag deposition by magnetron sputtering [253].

For Ag NPs decoration of NTs, a nano-hydroxyapatite co-decoration can be employed
too [243], which has been reported to increase the biocompatibility and improve the control
of the release rate [269,270]. A similar approach can also be used for the incorporation of
drugs [36,256]. As depicted in Figure 11, polymers can be employed for filling/capping of
the NTs to enhance the biocompatibility or to control the drug release (polyaniline [258],
polyethylene glycol [233], chitosan [234,238] or gelatin and chitosan [240,257] as a capping
agent).

For targeting antibacterial effect combined with an improved osteoinduction, the re-
lease mechanism and release rate of gentamicin [254,271], metformin [255], ibuprofen [37]
from TiO2 NTs have been extensively studied [127,229,236]. Further, a variety of com-
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bination sets of drugs and NT decorations has been designed and suggested to get the
synergistic effects on antibacterial effect and improved osteoinduction. Draghi et al. [254]
confirmed that loading gentamicin into the smaller diameter (31 nm) NTs resulted in a
protracted release and antibacterial action together with improved cell adhesion and prolif-
eration of an osteosarcoma cell line. Lai et al. [257] tailored the release of simvastatin from
chitosan/gelatin-coated TiO2 NTs improving osteoblast differentiation and inhibition of
osteoclastic differentiation (compared to free-drug bare NTs).

BMP2-loaded TiO2 NTs with a hyaluronidase-sensitive-multilayer coating consisting
of chitosan, sodium hyaluronate-lauric acid, chitosan, and gelatin have been reported to
have good biocompatibility, higher cell viability, mineralization capability, and antibacterial
effect [272].

Metformin-loaded NTs with a 15 layers chitosan deposition to control the drug release
led to a long-term release rate of up to 21 days and significantly decreased the burst release
while promoting cell attachment and proliferation of MSCs [255].

3.2.3. In Vivo Drug Delivery Approaches Using Anodic TiO2 Nanotube Implants

In contrast to abundant in vitro research works investigating the advantages of TiO2
NTs as drug delivery systems, only a limited number of studies progressed to in vivo drug
delivery experiments on animal models using nanostructured implants based on TiO2 NTs
(please see Table 3).

Table 3. Overview of bioactive compounds delivery platforms using anodic TiO2 nanostructures in the animal in vivo
models (D—diameter, L—length).

Bioactive Compound Implant Characteristics Drug Loading Method Animal in Vivo
Model/Biological Effects Reference

rhBMP2

TiO2 NTs D: ~70 nm, ~110
nm;

Implant: D 3.5 mm;
L 8.5 mm

Dip-coating in 1.5 mg
rhBMP-2/mL (in a
vacuum chamber)

Pilot in vivo study: New
Zealand white rabbits, 4 types of

implants (proximal tibia);
rhBMP2-loaded implants: the

highest BIC and enhanced bone
remodeling.

[38]

rhBMP2/ Lenti-BMP2
TiO2 NTs: D ~100;

L: 400 nm;
Ti rods (D: 2 mm; L: 8 mm)

Lyophilization of
Lenti-BMP2 in the

presence of trehalose

Femur defect model in Fisher
344 rats; TiO2-Lyo-Tre-BMP2

implant: most effective in terms
of BMP2 stability, sustained

release, bioactivity, bone
regeneration.

[273,274]

rhBMP2 and Ibuprofen
(IBU)

TiO2 NTs: D ~70 nm;
L: 5 µm;

Ti rods (D: 2 mm; L: 8 mm)

IBU (1.5 mg/mL) and
rhBMP-2 (10 mg/mL)
loading by dip coating

(3×), lyophilized, freeze
and vacuum dried.

IBU-NTs behaved as an
anti-inflammatory drug and

improved the osseointegration
of orthodontic miniscrews

in vivo. However, the effect of
rhBMP2-loaded NTs on the

osseointegration was slightly
lower.

[37]

rhPDGF-BB Ti rods (D: 2 mm; L: 8 mm)
NTs: D—70 nm

Immersion in 100 µg/mL
rhPDGF-BB at RT (PDGF

group) or put in the
vacuum pump (PDGF +

Vacuum group) for 10 min

OVX rats with bilateral femurs
were used for the implantation;

the newly designed coating
contributed to the new bone
formation surrounding the
implant and enhanced bone

fixation in OVX rats showing
great promise for clinical

applications in osteoporotic
patients.

[275]
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Table 3. Cont.

Bioactive Compound Implant Characteristics Drug Loading Method Animal in Vivo
Model/Biological Effects Reference

Alendronate (ALN)

Ti rods (D: 3 mm;
L: 13 mm); NTs D: 70 nm;

L: 0.7–1.0 µm (anodic
oxidation), HA layers:
alternate immersion
method on TiO2 NTs

surface.

NTs-HA-ALN implant:
immersion into ALN

20 mg/mL solution at RT
(12 h).

NT-ALN implant:
physical absorption of

ALN on TiO2 NTs

Implants into the femoral
epiphysis of OVX female New

Zealand white rabbits.
NTs-HA-ALN implants showed

great potential for increasing
osseointegration as compared to
Ti, NTs, and NTs-HA implants,

with the highest
anti-osteoporosis potential

[256]

Icariin (ICA)
Cylindrical implants (D:

1.5 mm, L: 2 mm); Anodic
TiO2 NT (D: 80 ± 10 nm)

Immersion in ICA solution
(2 days), drying at 37 ◦C (1
day): PLGA coating (twice

in a dropwise manner)

Sprague Dawley rats received
implants in the femora’s
mid-diaphysis; TiO2 NT

structure and ICA synergistically
promote osteoblasts’ function

and PLGA coating endowed the
implant surface with better

osteogenic/osseointegration
ability.

[276]

Silicon (Si)

Ti screws, inner/ outer D:
1.7/2 mm, L: 10 mm.

Anodic NTs: inner/ outer
D 60/80 nm.

Si plasma immersion ion
implantation (PIII)

method

Sprague Dawley rats received
implants in the distal femur in

the horizontal direction;
Si-TiO2-NTs induced enhanced
early osseointegration positive

effect on implant
osseointegration and trabecular

microarchitecture formation.

[277]

Polyhexa-methylene
guanidine (PHMG)

cp-Ti rods (D: 3.175 mm; L:
1.5 ± 0.1 cm; Anodic TiO2

NTs: D—46.4 ± 5.9 nm,
L—650–800 nm.

Addition of 100 µL of 25%
PHMG aqueous solution
onto rods dropwise and

drying by a vacuum oven
at RT for 1 h (×10 times).

Rabbits implanted with S.
aureus-contaminated rods in the

femoral medullary cavity;
PHMG-NTs showed an excellent

capacity to prevent bacterial
infections, as well as to promote

osteogenic differentiation by
increased expression of

osteogenic-related genes in the
femur tissues around

the implants.

[278]

Propolis (PL)

Ti rods (D: 0.85 mm;
L: 4.5 mm)

screw-processed at a
thread angle of 20 degrees;

anodic TiO2 NT (D:
60–90 nm).

Immersion in propolis
solution for 24 h at 25 ◦C

followed by
vacuum-drying at 25 ◦C

for 24 h

Sprague Dawley rat mandibular
model; increased new bone

formation and mineral density
around the PL-NT-Ti implant;

enhanced osteogenic
differentiation and increased
expression of collagen fibers

while pro-inflammatory markers
decreased

[279]

The most recent studies have been focused on growth factors applications that can
endow the NT surfaces with additional benefits in terms of implant osseointegration. BMP2,
which was proven as the most potent stimulator in inducing bone regeneration [280,281],
has been widely used to functionalize TiO2 NTs. One of the well-designed in vivo studies
performed by Lee et al. [38] established anodic TiO2 NTs (with diameters of ~70 nm and
~110 nm, respectively) decorated with rhBMP2 by dip coating. The in vivo study was
performed on the following implant groups in New Zealand white rabbits: (Group 1) a
machined surface; (Group 2) a sandblasted large-grit and acid-etched SLA implant (as
a positive control group); (Group 3) TiO2 NT; and Group 4) TiO2 NTs with rhBMP-2.
Histomorphometric/micro-computed tomographic analysis at 8 weeks post-implantation
showed that Group 4 obtained the highest BIC and bone volume ratio. As a conclusion, the
authors suggested the designed NT drug delivery platform as a promising reservoir that
allows a slow and sustained rhBMP2 release to reinforce implant osseointegration.
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In line with this, Zhang et al. [273,274] proposed a new strategy to functionalize TiO2
NTs by loading a lentiviral vector encoding BMP2 (Lenti-BMP2) by lyophilization following
trehalose addition. The obtained TiO2-Lyo-Tre-BMP2 nanoplatform ensured a slow and
prolonged BMP2 release and promoted the highest extent osteogenic differentiation of
bone marrow stromal cells as well as anti-inflammatory activity. The studies suggested
that the delivery of BMP2 using the Lyo-Tre-based system is an effective method avoiding
the adverse effects induced by the administration of high doses of BMP2.

In other studies, the osseointegration capability of BMP2 was compared with other
bioactive agents such as the anti-inflammatory drug ibuprofen [37] (see also Table 2). The
in vivo study [37] composed of four implant groups (conventional, NT coated, rhBMP2
loaded-, and ibuprofen loaded-TiO2 NTs) showed that the histological analysis at eight
weeks after implantation surprisingly revealed the highest BIC ratio (71.6%) in the ibuprofen-
loaded group, while rhBMP2 loaded implants showed a significantly decreased BIC (24.6%).
The authors explained this effect by the osteoclastic bone-resorbing activity of rhBMP2,
indicating that careful fine-tuning may be required to get the optimal dosage of rhBMP2
for successful osseointegration.

Another growth factor widely investigated for bone regeneration is platelet-derived
growth factor-BB (PDGF-BB) [275], as it can stimulate the recruitment, proliferation, and
osteogenic differentiation of osteoprogenitor cells or MSCs as well as the angiogenesis
process [282]. Zhang et al. [275] applied rhPDGF-BB on 70 nm diameter TiO2 NT surfaces
arrays by vacuum extraction for in vivo osseointegration in ovariectomized (OVX) rats as an
osteoporosis-induced animal model. Protein particles aggregated on the surface and inside
NTs could be slowly released for at least 14 days without losing their bioactivity. A higher
rhPDGF-BB immobilization to the underlying TiO2 NTs substrate by vacuum extraction
method led to an enhanced cell adhesion, proliferation, and osteogenic differentiation
in vitro. Further, an in vivo study of osseointegration (oxalic acid-etched Ti group; TiO2
NTs modified Ti group; PDGF-coated TiO2 NTs group; and PDGF coated TiO2 NTs +
Vacuum group) showed that the NTs loaded with rhPDGF-BB under vacuum improve the
implant fixation ability and the rapid new bone formation in OVX rats, suggesting a novel
implant coating strategy in the treatment of bone defects associated with osteoporosis.

To endow the NT surface with a local anti-osteoporosis property, Shen et al. [256]
proposed a loading of alendronate (ALN), a powerful anti-osteoporosis compound that is
largely used in clinics due to its antiresorptive capacity [283], onto hydroxyapatite-TiO2 NT
substrates (NTs diameter 70 nm, length 0.7–1.0 µm). The resulted material (NTs-HA-ALN)
has shown great potential in improving the proliferation and osteogenic differentiation of
osteoblasts isolated from neonatal rat calvaria and inhibiting differentiation of RAW 264.7 in
mature osteoclasts, compared to bare Ti, TiO2 NTs, and TiO2 NTs deposited with nano-HA
layers (NTs-HA). Furthermore, in vivo tests with osteoporotic rabbits, attested the highest
potential of NTs-HA-ALN implants to enhance the local osseointegration with excellent pro-
osteogenic and anti-osteoporosis properties at three months after implantation, considered
as the synergistic effects of the release of Ca2+ and ALN.

Natural compounds such as propolis [279] and icariin [276,284,285] have also been
introduced as another strategy of surface functionalization to increase the in vivo perfor-
mance of TiO2 NTs. Propolis is a natural compound collected by honeybees from various
plants whose biological activity mainly depends on the flavonoids from the polyphenolic
fractions, followed by aromatic acids, phenolic acid esters, etc. [286]. Its beneficial effects
on bone healing are well known and attributed to its anti-inflammatory, antioxidant, and
anti-osteoclastic activities [287]. Somsanith et al. [279] loaded propolis (PL) on anodic TiO2
NTs (PL-NTs-Ti) and showcased their ability to sustain the viability and differentiation of
MC3T3-E1 pre-osteoblasts and in vivo osseointegration in a rat mandibular model. Besides
enhanced cell viability and alkaline phosphatase activity in cell culture experiments, the
PL-NTs-Ti resulted in enhanced formation of new bone and increased mineral density in
the region surrounding the implant as well as higher expressions of collagen fibers, and
BMP2/BMP7 as compared to the drug-free TiO2. Moreover, the peri-implant expressions
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of the pro-inflammatory cytokines (IL-1ß, and TNF-α) were significantly reduced, suggest-
ing that the propolis-functionalized nanostructure also has the potential to inhibit early
inflammation and block peri-implantitis.

Ma et al. [276] functionalized TiO2 NT surfaces with icariin (ICA, a Herba Epimedii
derived flavonoid with osteogenic and anti-osteoclastogenic effects [288]) and poly lactic-
co-glycolic acid (PLGA). The resulting NTs-ICA-PLGA substrate was able to ensure a
sustained drug release up to two weeks with in vitro best osteogenic differentiation and
in vivo higher bone formation area percentage compared to other groups during the
early-stage of osseointegration. Another approach to improve the osseointegration of
TiO2 NTs was the incorporation of Sr and icariin onto the anodized Ti surface through
hydrothermal treatment and vacuum freeze drying, respectively [284]. In this study, the
authors demonstrated that icariin loading onto Sr-containing TiO2 NT surfaces exerted
additional positive effects on the pre-osteoblast behavior in terms of proliferation and
osteogenic differentiation, as well as on the bone formation around screw-shaped Ti-based
implants. These effects can be ascribed to the icariin ability to guide bone regeneration and
promote osteogenesis [289] combined with the dual effects of Sr on bone tissue through
stimulating the proliferation and differentiation of osteoblasts and inhibiting the osteoclast
activity [290,291], implying that the ICA-Sr-TiO2 coating may be a potentially useful option
in osteoporotic patients.

Si, another bioactive trace element, possesses a bone affinity that has been shown to
enhance osteoblast proliferation and differentiation, stimulate collagen synthesis and bone
mineralization [292,293], and to further inhibit the osteoclastogenesis and bone resorption
processes [294]. Zhao et al. [277] fabricated Ti substrates (discs and screws) modified with
silicon doped TiO2 NTs (Si-TiO2-NTs) by in situ anodization and Si plasma immersion ion
implantation (PIII) technique and compared their activities with those for Ti and TiO2 NTs.
The in vivo results, in line with the in vitro findings, showed that the Si-TiO2-NTs surface
increased pre-osteoblast cell proliferation and differentiation, indicated extensive bone
apposition between the screw threads at the spongy level on this surface and the formation
of more new trabecular bone as compared to bare Ti and TiO2-NTs screws.

Considering that chronic implant-associated bone infections represent a major prob-
lem in orthopedic and trauma-related surgery due to the severe complications in the
affected patients, increasing interest has been given to design surfaces with bacteriostatic
and bactericidal properties. With this purpose, many antibacterial agents such as antibiotics,
metal ions, anti-microbial peptides, and biopolymer coatings [14,227,295,296] were incor-
porated into TiO2 NTs and investigated for their therapeutic efficiency, mostly by in vitro
antibacterial and cell culture-based studies. A very recent paper by Wu et al. [278] has
revealed the antibacterial potential of polyhexamethylene guanidine (PHMG) coated TiO2
NTs (PHMG-NTs) in an animal model implanted with Staphylococcus aureus-contaminated
rods in the femoral medullary cavity. This eco-friendly polymer was shown to exhibit a
high and broad-spectrum antibacterial effect, which can efficiently inhibit bacterial biofilm
formation [297,298] with improved bone-forming capacity.

4. Conclusions and Outlook

Nanoscale surface modification of Ti or Ti-based alloys via electrochemical anodiza-
tion, resulting in TiO2 nanostructures including nanotubes (NTs), has gained significant
recognition and insight in biomedical applications. Herein we discussed the current
state-of-the-art in NT morphology (nanotube, nanopore, mesoporous) and their synthesis
(closed-packed, open-top, and spaced NTs or long-range ordered NTs), with the critical
aspects affecting the drug delivery. Further, we reviewed the properties of anodic NTs
including crystallinity, surface roughness, wetting characteristics, and corrosion resistance.

Next, we evaluated the key interactions of anodic TiO2 nanostructures with bone-
related cells, such as osteoblast cells and mesenchymal stem cells, emphasizing the influence
of the nanoscale topography on the interactions with these cells. In addition, a more recent
approach, highlighting the synergistic effects of electrical stimulation on cells combined
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with the nanoscale environmental cues from TiO2 NTs for enhancing bone induction was
further discussed. Such a synergistic approach would be promising for tissue engineering
applications using nanostructured scaffolds materials based on anodic TiO2 NTs with
concomitant drug delivery and/or electrical/electromagnetic stimulation.

For dental or orthopedic implants, anodic TiO2 NTs and nanostructures with sur-
face modifications delivering specific targeting drugs are shown to be clinically useful
approaches for superior osteoinduction and successful osseointegration, especially in med-
ically compromised patients including osteoporosis, chronic inflammatory, and metabolic
diseases in the future. For successful osseointegration, nanoscale topographical cues tuning
by nanoscale lateral spacing can be a powerful stimulator when combined with the specific
nanotubular/nanoporous shape and high surface area as a delivery platform, allowing
decoration/incorporations of antibacterial agents and/or other drugs/active agents with
time-scheduled drug release rate. The release rate can be further improved avoiding an
initial burst release, either by the use of polymer capping or by tuning the morphology of
the nanostructures. We discussed in detail the various modifications of anodic NTs with
metal ions, nanoparticles, drugs, growth peptides for controlling the drug release rate and
enhancing antibacterial and osteoinductive properties, both in vitro and in vivo.

Overall, in recent decades, we fully recognized the nanoscale significance of bio-
implantable substrate surface topography on a local wound healing and bone regeneration,
and now more clinicians/researchers in tissue engineering fields are excited to find out
which combinations of stimuli including nanoscale topography, electrical, and/or biomolec-
ular approaches could provide a best-fit synergistic effect on bone tissue engineering.
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nanostructures for biomedical applications. Nanotechnology 2015, 26, 62002. [CrossRef]
10. Bauer, S.; Schmuki, P.; von der Mark, K.; Park, J. Engineering biocompatible implant surfaces. Part I: Materials and surfaces. Prog.

Mater. Sci. 2012, 58, 261–326. [CrossRef]

http://doi.org/10.1016/j.pmatsci.2008.06.004
http://doi.org/10.1002/adem.201801215
http://doi.org/10.3390/ma7128168
http://www.ncbi.nlm.nih.gov/pubmed/28788296
http://doi.org/10.1089/ten.tea.2017.0048
http://www.ncbi.nlm.nih.gov/pubmed/28793839
http://doi.org/10.1038/nbt1006-1211
http://doi.org/10.1016/j.ejcb.2005.09.011
http://doi.org/10.1021/nl070678d
http://www.ncbi.nlm.nih.gov/pubmed/17503870
http://doi.org/10.1021/nl9013502
http://doi.org/10.1088/0957-4484/26/6/062002
http://doi.org/10.1016/j.pmatsci.2012.09.001


Nanomaterials 2021, 11, 2359 29 of 39

11. Mas-Moruno, C.; Espanol, M.; Montufar, E.B.; Mestres, G.; Aparicio, C.; Gil, F.J.; Ginebra, M.P. Bioactive Ceramic and Metallic
Surfaces for Bone Engineering. In Biomaterials Surface Science; Wiley-VCH Verlag GmbH & Co. KGaA: Singapore, 2013; pp. 337–374,
ISBN 9783527649600.

12. Xue, T.; Attarilar, S.; Liu, S.; Liu, J.; Song, X.; Li, L.; Zhao, B.; Tang, Y. Surface modification techniques of titanium and its alloys to
functionally optimize their biomedical properties: Thematic review. Front. Bioeng. Biotechnol. 2020, 8, 1261. [CrossRef]

13. Kurup, A.; Dhatrak, P.; Khasnis, N. Surface modification techniques of titanium and titanium alloys for biomedical dental
applications: A review. Mater. Today Proc. 2020, 39, 84–90. [CrossRef]

14. Ion, R.; Necula, M.G.; Mazare, A.; Mitran, V.; Neacsu, P.; Schmuki, P.; Cimpean, A. Drug Delivery Systems Based on Titania
Nanotubes and Active Agents for Enhanced Osseointegration of Bone Implants. Curr. Med. Chem. 2020, 27, 854–902. [CrossRef]
[PubMed]
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