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Variable selections for regression with high-dimensional big data have found many applications in bioinformatics and
computational biology. One appealing approach is the 𝐿0 regularized regression which penalizes the number of nonzero features
in the model directly. However, it is well known that 𝐿0 optimization is NP-hard and computationally challenging. In this paper, we
propose efficient EM (𝐿0EM) and dual 𝐿0EM (D𝐿0EM) algorithms that directly approximate the 𝐿0 optimization problem. While𝐿0EM is efficient with large sample size, D𝐿0EM is efficient with high-dimensional (𝑛 ≪ 𝑚) data. They also provide a natural
solution to all 𝐿𝑝 𝑝 ∈ [0, 2] problems, including lasso with 𝑝 = 1 and elastic net with 𝑝 ∈ [1, 2]. The regularized parameter 𝜆 can be
determined through cross validation or AIC and BIC. We demonstrate our methods through simulation and high-dimensional
genomic data. The results indicate that 𝐿0 has better performance than lasso, SCAD, and MC+, and 𝐿0 with AIC or BIC has
similar performance as computationally intensive cross validation.The proposed algorithms are efficient in identifying the nonzero
variables with less bias and constructing biologically important networks with high-dimensional big data.

1. Introduction

Variable selectionwith regularized regression has been one of
the hot topics in machine learning and statistics. Regularized
regressions identify outcome associated features and estimate
nonzero parameters simultaneously and are particularly use-
ful for high-dimensional big data with small sample sizes. Big
data are datasets with either huge sample size or very high
dimensions or both. In many real applications, such as bioin-
formatics, image and signal processing, and engineering, a
large number of features are measured, but only a small num-
ber of features are associated with the dependent variables.
Including irrelevant variables in the model will lead to over-
fitting and deteriorate the prediction performance.Therefore,
different regularized regressionmethods have been proposed
for variable selection andmodel construction. 𝐿0 regularized
regressions, which directly penalize the number of nonzero
parameters, are the most essential sparsity measure. Several
popular information criteria, including Akaike information
criterion (AIC) [1], Bayesian information criterion (BIC)
[2], and risk inflation criteria (RIC) [3], are based on 𝐿0

penalty andhave been used extensively for variable selections.
However, solving a general 𝐿0 regularized optimization is
NP-hard and computationally challenging. Exhaustive search
with AIC or BIC over all possible combinations of features is
computationally infeasible with high-dimensional big data.

Different alternatives have been proposed for the reg-
ularized regression problem. One common approach is to
replace 𝐿0 by 𝐿1. 𝐿1 is known as the best convex relaxation
of 𝐿0. 𝐿1 regularized regression [4] is convex and can be
solved by an efficient gradient decent algorithm. It has found
many applications in statistical genetics, bioinformatics, and
medicine [5, 6]. Minimizing 𝐿1 is equivalent to minimizing𝐿0 under certain conditions. However, the estimates of 𝐿1
regularized regression are asymptotically biased, and lasso
may not always choose the true model consistently [7].
Experimental results by Mancera and Portilla [8] also posed
additional doubt about the equivalence ofminimizing 𝐿1 and𝐿0. Moreover, there were theoretical results [9] showing that
while 𝐿1 regularized regression never outperforms 𝐿0 by a
constant, in some cases 𝐿1 regularized regression performs
infinitely worse than 𝐿0. Lin et al. [9] also showed that
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the optimal 𝐿1 solutions are often inferior to 𝐿0 solutions
found using greedy classic stepwise regression, although solu-
tions with 𝐿1 penalty can be found effectively. More recent
approaches aimed to reduce bias and overcome discontinuity
include SCAD [10], 𝐿𝑝 𝑝 ∈ (0, 1] regularization [11, 12],
and MC+ [13]. However, multiple free parameters (𝜆 and 𝑝)
must be tuned in those approaches, which is computationally
intensive. They are not suitable for big data mining. Even
though there are some effects for solving 𝐿0 regularized
optimization problems [14, 15], 𝐿0 was either approximated
by a different continuous smooth function or transformed
into a much larger ranking optimization problem. To the
best of our knowledge, currently, there is no efficient method
directly approximating 𝐿0 for big data problem.

In this paper, we propose efficient EM algorithms that
directly approximate 𝐿0 regularized regression problem. Our
proposed approaches effectively deal with 𝐿0 optimization
by solving a sequence of convex 𝐿2 optimizations and are
efficient for high-dimensional data. They also provide a
natural solution to all 𝐿𝑝 𝑝 ∈ [0, 2] problems, including
lasso with 𝑝 = 1, elastic net with 𝑝 ∈ [1, 2] [16], and
the combination of 𝐿1 and 𝐿0 with 𝑝 ∈ (0, 1] [17]. Similar
to lasso, the regular parameter 𝜆 can be determined by
the generalized information criterion [18]; optimal 𝜆 with𝐿0 regularized regression can also be predetermined with
different model selection criteria such as AIC, BIC, and
RIC. 𝐿0 local graphical model with either AIC or BIC is
faster than 𝐿1 with cross validation. We demonstrate our
methods through simulation and high-dimensional genomic
data. The proposed methods identify the nonzero variables
with less bias and outperform lasso, SCAD, and MC+ by a
large margin. They can also choose the important genes and
construct biological networks effectively.

2. Methods

Given an 𝑛 × 1 dependent variable y and an 𝑛 × 𝑚 feature
matrix𝑋, a linear model is defined as

y = 𝑋𝜃 + 𝜀, (1)

where 𝑛 is the number of samples and 𝑚 is the number of
variables and 𝑛 ≪ 𝑚, 𝜃 = [𝜃1, . . . , 𝜃𝑚]𝑡 are 𝑚 parameters to
be estimated, and 𝜀 ∼ 𝑁(0, 𝜎2𝐼𝑛) are the random errors with
mean 0 and variance 𝜎2. Assume that only a small subset of{x𝑗}𝑚𝑗=1 has nonzero 𝜃𝑗s. Let𝑅 ⊆ {1, . . . , 𝑚} be the subset index
of relevant variables with 𝜃𝑗 ̸= 0, and let 𝑂 ⊆ {1, . . . , 𝑚} be
the index of irrelevant features with 0 coefficients; we have𝑅 ∪ 𝑂 = {1, 2, . . . , 𝑚}, 𝑋𝑅 ∪ 𝑋𝑂 = 𝑋, and 𝜃𝑅 ∪ 𝜃𝑂 = 𝜃, where𝜃𝑂 = 0. The error function for 𝐿0 regularized regression is

𝐸 = 12 y − 𝑋𝜃2 + 𝜆2 ‖𝜃‖0
= 12
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑚∑
𝑗=1

𝜃𝑗𝑥𝑖𝑗)
2

+ 𝜆2
𝑚∑
𝑗=1

𝐼 (𝜃𝑗 ̸= 0) ,
(2)

where ‖𝜃‖0 = ∑𝑚𝑗=1 𝐼(𝜃𝑗 ̸= 0) = |𝑅| counts the number of
nonzero parameters. One observation is that (2) is equivalent
to (3) when reaching the optimal solution.

𝐸 = 12 y − 𝑋𝜃2 + 𝜆2 ‖𝜃‖0 = 12 y − 𝑋𝜃2 + 𝜆2∑
𝑗∈𝑅

1
= 12 y − 𝑋𝜃2 + 𝜆2 |𝑅| .

(3)

Our 𝐿0EMmethods will be derived from (3). We can rewrite
(3) as the following two equations:

𝐸 = 12 y − 𝑋𝜃2 + 𝜆2∑
𝑗∈𝑅

𝜃2𝑗𝜂2𝑗 , (4)

𝜂 = 𝜃. (5)

Given 𝜂𝑗, (4) is a convex quadratic function and can be
optimized by taking the first-order derivative:

∇𝐸 = 𝜆𝜃𝑅 ⊘ 𝜂2𝑅 − 𝑋𝑡𝑅 (y − 𝑋𝜃) = 0, (6)

where ⊘ indicates element-wise division. Rewriting (6), we
have

𝜆𝜃𝑅 − 𝜂2𝑅 ⊙ 𝑋𝑡𝑅 (y − 𝑋𝜃) = 0. (7)

In addition,

𝜆𝜃𝑂 − 𝜂2𝑂 ⊙ 𝑋𝑡𝑂 (y − 𝑋𝜃) = 0, ∀𝜆 > 0, (8)

since 𝜃𝑂 = 𝜂0 = 0, where ⊙ is element-wise multiplication,𝜂2𝑅 ⊙ 𝑋𝑡𝑅 = [𝜂2𝑅 ⊙ x𝑡1𝑅, . . . , 𝜂2𝑅 ⊙ x𝑡𝑛𝑅], and 𝜂2𝑂 ⊙ 𝑋𝑡𝑂 = [𝜂2𝑂 ⊙
x𝑡1𝑂, . . . , 𝜂2𝑂⊙x𝑡𝑛𝑂] = 0. Let𝐷 = diag(𝜂21 , . . . , 𝜂2𝑚) be a diagonal
matrix with 𝜂2𝑗 s on the diagonal and combine (7) and (8)
together; we have

𝜂2 ⊙ ∇𝐸 = 𝜆𝜃 − 𝐷𝑋𝑡 (y − 𝑋𝜃) = 𝜆𝜃 − 𝐷𝑋𝑡y + 𝐷𝑋𝑡𝑋𝜃
= 0. (9)

Solving (9) leads to following explicit solution:

𝜃 = (𝐷𝑋𝑡𝑋 + 𝜆𝐼)−1𝐷𝑋𝑡y, (10)

𝜂 = 𝜃, (11)

where (10) can be considered as the M-step of the EM
algorithm maximizing negative cost function −𝐸 and (11)
can be regarded as the E-step with 𝐸(𝜂) = 𝜃. Equations
(10) and (11) together can also be treated as a fixed point
iteration method in nonlinear optimization. It is guaranteed
to have optimal solutions under certain conditions as shown
inTheorem 1.

Theorem 1. Given an input matrix 𝑋, output matrix y, and
initialized solution 𝜃0, the nonlinear system determined by (10)
and (11) will converge to an optimal solution, when 𝜆‖(𝐷𝑋𝑡𝑋+𝜆𝐼)−2‖∞‖√𝐷𝑋𝑡y‖∞ < 1/2.
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Proof. Equations (10) and (11) are the same as

𝜃 = (𝐷𝑋𝑡𝑋 + 𝜆𝐼)−1𝐷𝑋𝑡y
= (𝜃2 ⊙ 𝑋𝑡𝑋 + 𝜆𝐼)−1 (𝜃2 ⊙ 𝑋𝑡) y. (12)

First, 𝐺(𝜃) = (𝜃2 ⊙ 𝑋𝑡𝑋 + 𝜆𝐼)−1(𝜃2 ⊙ 𝑋𝑡)y is Lipschitz
continuous for 𝜃 ∈ 𝑅𝑚, and

∇𝐺 (𝜃) = (𝐷𝑋𝑡𝑋 + 𝜆𝐼)−2
⋅ [(𝜃2 ⊙ 𝑋𝑡𝑋 + 𝜆𝐼) (2𝜃 ⊙ 𝑋𝑡) y − 2𝜃
⊙ 𝑋𝑡𝑋(𝜃2 ⊙ 𝑋𝑡) y] = (𝜃2 ⊙ 𝑋𝑡𝑋 + 𝜆𝐼)−2 [2𝜆𝜃
⊙ 𝑋𝑡y] = 2𝜆 (𝐷𝑋𝑡𝑋 + 𝜆𝐼)−2 (√𝐷𝑋𝑡y) .

(13)

Because 𝜆‖(𝐷𝑋𝑡𝑋 + 𝜆𝐼)−2‖∞‖√𝐷𝑋𝑡y‖∞ < 1/2, it is clear
from (13) that there is a Lipschitz constant

𝛾 = ‖∇𝐺 (𝜃)‖∞ = 2𝜆2 (𝐷𝑋𝑡𝑋 + 𝜆𝐼)−2 (√𝐷𝑋𝑡y)∞
≤ 2𝜆 (𝐷𝑋𝑡𝑋 + 𝜆𝐼)−2∞ √𝐷𝑋𝑡y∞ < 2 ⋅ 12 = 1. (14)

So the derivative for every 𝜃𝑗 is less than 1. Now, given the
initial value for (10) and (11) 𝜂 = 𝜃0 ∈ 𝑅𝑚, the sequence {𝜃𝑟}
remains bounded because, ∀𝑖 = 1, . . . , 𝑟,𝜃𝑖+1 − 𝜃𝑖∞ = 𝐺 (𝜃𝑖) − 𝐺 (𝜃𝑖−1)∞

= ∇𝐺 (𝜉) (𝜃𝑖 − 𝜃𝑖−1)∞
≤ ∇𝐺 (𝜉)∞ 𝜃𝑖 − 𝜃𝑖−1∞

(where 𝜉 ∈ (𝜃𝑖−1, 𝜃𝑖))
= 𝛾 𝜃𝑖 − 𝜃𝑖−1∞ ≤ ⋅ ⋅ ⋅ ≤ 𝛾𝑖 𝜃1 − 𝜃0∞ .

(15)

And therefore

𝜃𝑟 − 𝜃0∞ = 
𝑟−1∑
𝑖=0

(𝜃𝑖+1 − 𝜃𝑖)∞ ≤ 𝜃1 − 𝜃0∞
𝑟−1∑
𝑖=0

𝛾𝑖

≤
𝜃1 − 𝜃0∞(1 − 𝛾) .

(16)

Now, ∀𝑟, 𝑘 ≥ 0,𝜃𝑟+𝑘 − 𝜃𝑟∞ = 𝐺 (𝜃𝑟+𝑘−1) − 𝐺 (𝜃𝑟−1)∞
≤ 𝛾 𝜃𝑟+𝑘−1 − 𝜃𝑟−1∞
≤ 𝛾 𝐺 (𝜃𝑟+𝑘−2) − 𝐺 (𝜃𝑟−2)∞
≤ 𝛾2 𝜃𝑟+𝑘−2 − 𝜃𝑟−2∞ ≤ ⋅ ⋅ ⋅
≤ 𝛾𝑟 𝜃𝑘 − 𝜃0∞ ≤ 𝛾𝑟 𝜃1 − 𝜃0∞1 − 𝛾 .

(17)

Hence,

lim
𝑟,𝑘→∞

𝜃𝑟+𝑘 − 𝜃𝑟∞ = 0, (18)

and therefore {𝜃𝑟} is a Cauchy sequence that has a limit
solution 𝜃∗.

Note that 𝐺(𝜃) is not a convex function; multiple local
optimal solutions may exist. However, given initial 𝜃0, our
algorithm always reaches the same optimal solution closest
to 𝜃0. Assuming that there were two solutions 𝜃∗ and 𝜃⬦,𝜃∗ − 𝜃⬦∞ = 𝐺 (𝜃∗) − 𝐺 (𝜃⬦)∞ ≤ 𝛾 𝜃∗ − 𝜃⬦∞ . (19)

Since 𝛾 < 1, (19) can only hold, if ‖𝜃∗ − 𝜃⬦‖∞ = 0. That
is, 𝜃∗ = 𝜃⬦, so the optimal solution of the EM algorithm is
always the same.

Finally, the EM algorithm will be closer to the optimal
solution at each step, because𝜃𝑟+1 − 𝜃∗∞ = 𝐺 (𝜃𝑟) − 𝐺 (𝜃∗)∞ ≤ 𝛾 𝜃𝑟 − 𝜃∗∞ . (20)

Theorem 1 indicates that both the regularized parameter𝜆
and initial values of the parameter 𝜃 are important. Given an
initial value 𝜃0, the method converges to an optimal solution
as long as 𝜆‖(𝐷𝑋𝑡𝑋 + 𝜆𝐼)−2‖∞‖√𝐷𝑋𝑡y‖∞ < 1/2.
Lemma 2. When 𝜆 < ‖𝐷𝑋𝑡𝑋‖∞ and ‖𝐷𝑋𝑡𝑋‖∞ >(1/2)‖√𝐷𝑋𝑡y‖∞, the algorithm will find a nontrivial optimal
solution for 𝜃. More specifically, it will converge to an optimal
solution, when 𝜆 < (1/4)‖(𝑋𝑡𝑋)−1diag2(𝑋𝑡y)‖∞ and ‖𝜃‖∞ >(1/2)‖𝑋𝑡𝑋‖−1∞‖𝑋𝑡y‖∞ for 𝜆 and 𝜃, respectively, where diag(x)
is a diagonal matrix with 𝑥𝑖 on the diagonal.

Proof. Since 𝜆‖(𝐷𝑋𝑡𝑋 + 𝜆𝐼)−2‖∞‖√𝐷𝑋𝑡y‖∞ < 1/2, we have
1 > 2𝜆 (𝐷𝑋𝑡𝑋 + 𝜆𝐼)−2∞ √𝐷𝑋𝑡y∞
≥ 2𝜆 𝐷𝑋𝑡𝑋 + 𝜆𝐼−2∞ √𝐷𝑋𝑡y∞
≥ 2𝜆 (𝐷𝑋𝑡𝑋∞ + 𝜆)−2 √𝐷𝑋𝑡y∞
= 2𝜆(‖𝐷𝑋𝑡𝑋‖∞ + 𝜆)

√𝐷𝑋𝑡y∞(‖𝐷𝑋𝑡𝑋‖∞ + 𝜆) .

(21)

Inequality (21) is satisfied, if

2𝜆(‖𝐷𝑋𝑡𝑋‖∞ + 𝜆) < 1,
√𝐷𝑋𝑡y∞(‖𝐷𝑋𝑡𝑋‖∞ + 𝜆) < 1

⇓
𝜆 ≤ 𝐷𝑋𝑡𝑋∞ ,

𝐷𝑋𝑡𝑋∞ > 12 √𝐷𝑋𝑡y∞ .

(22)
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In addition, we have𝐷𝑋𝑡𝑋∞ = diag (𝜃) diag (𝜃𝑡)𝑋𝑡𝑋∞
= diag ((𝐷𝑋𝑡𝑋 + 𝜆𝐼)−1𝐷𝑋𝑡y)
⋅ diag (y𝑡𝑋𝐷(𝐷𝑋𝑡𝑋 + 𝜆𝐼)−1)𝑋𝑡𝑋∞
≥ (2𝑋𝑡𝑋)−1 diag2 (𝑋𝑡y) (2𝑋𝑡𝑋)−1𝑋𝑡𝑋∞
= 14 (𝑋𝑡𝑋)−1 diag2 (𝑋𝑡y)∞ ,

(23)

and let

‖𝐷‖∞ 𝑋𝑡𝑋∞ ≥ 𝐷𝑋𝑡𝑋∞ > 12 √𝐷∞ 𝑋𝑡y∞
≥ 12 √𝐷𝑋𝑡y∞ . (24)

Therefore, if we take

𝜆 < 14 (𝑋𝑡𝑋)−1 diag2 (𝑋𝑡y)∞ ≤ 𝐷𝑋𝑡𝑋∞ ,
‖𝜃‖∞ = √𝐷∞ > 12 𝑋𝑡𝑋−1∞ 𝑋𝑡y∞ , (25)

the algorithm will find a nontrivial optimal solution. In
particular, when𝑋𝑡𝑋 = 𝐼, we have

𝜆 < 14 diag2 (𝑋𝑡y)∞ = 14 max {(x𝑡𝑗y)2}𝑚𝑗=1 ,
‖𝜃‖∞ > 12 𝑋𝑡y∞ . (26)

BothTheorem 1 and Lemma 2 provide some useful guid-
ance for implementing the method and choosing appropriate𝜆 and 𝜃0. They show that the EM algorithm always converges
to an optimal solution, given certain 𝜆 and initial solution𝜃0, and the estimated value is closer to the true solution
after each EM iteration. Note that there is a trivial solution𝜃𝑗 = 0, ∀𝑗 = 1, . . . , 𝑚, for (10) and (11); therefore, nonzero
initial 𝜃0 is critical for finding a nontrivial solution. Our
experiences with this method indicate that initializing 𝜃 with
the estimates from 𝐿2 penalized ridge regression will lead
to quick convergence and super performance. The algorithm
with such initialization usually converges under one hundred
iterations and the performance is substantially better than
lasso as shown in Section 3. The EM algorithm is as shown
in Algorithm 1.

To deal with big data problem with 𝑛 ≪ 𝑚, we also
propose an efficient algorithm by solving the much smaller
(𝑛 × 𝑛) matrix inverse problem similar to [19]. The algorithm
is based on the following fact:

(𝐷𝑋𝑡𝑋 + 𝜆𝐼𝑚)−1𝐷𝑋𝑡 = 𝐷𝑋𝑡 (𝑋𝐷𝑋𝑡 + 𝜆𝐼𝑛)−1 . (27)

So 𝜃 has the analytical solution:
𝜃 = 𝐷𝑋𝑡 (𝑋𝐷𝑋𝑡 + 𝜆𝐼𝑛)−1 y. (28)

Given a 0 < 𝜆 ≤ 𝜆max, a small number 𝜀 = 1𝑒 − 6,
and training data {𝑋, y},
Initializing 𝜃 = (𝑋𝑡𝑋 + 𝜆𝐼)−1𝑋𝑡y,
While 1,

E-step: 𝜂 = 𝜃, and𝐷 = diag(𝜂21 , . . . , 𝜂2𝑚)
M-step: 𝜃 = (𝐷𝑋𝑡𝑋 + 𝜆𝐼)−1𝐷𝑋𝑡y
if ‖𝜃 − 𝜂‖ < 𝜀, Break; End

End

Algorithm 1: 𝐿0EM algorithm.

Given a 0 < 𝜆 ≤ 𝜆max, a small number 𝜀 = 1𝑒 − 6,
and training data {𝑋, y},
Initializing 𝜃 = 𝑋𝑡(𝑋𝑋𝑡 + 𝜆𝐼𝑛)−1y,
While 1,

E-step: 𝜂 = 𝜃, and𝐷 = diag(𝜂21 , . . . , 𝜂2𝑚)
M-step: 𝜃 = 𝐷𝑋𝑡(𝑋𝐷𝑋𝑡 + 𝜆𝐼𝑛)−1y
if ‖𝜃 − 𝜂‖ < 𝜀, Break; End

End

Algorithm 2: D𝐿0EM algorithm.

The dual 𝐿0EM (D𝐿0EM) algorithm dealing with 𝑛 ≪ 𝑚
problem with (28) is as shown in Algorithm 2.

Apparently, while 𝐿0EM algorithm is efficient for solving
the large 𝑛 big data problem, D𝐿0EM can handle 𝑛 ≪ 𝑚
problem more efficiently.

Lemma 3. Given appropriate initial 𝜃0, the final solution of𝐿0EM and D𝐿0EM algorithm is an optimal solution for 𝐿0
approximation problem that minimizes 𝐸 = (1/2)‖y − 𝑋𝜃‖2 +(𝜆/2)|𝑅| in (3).

Proof. First, we show that the proposed algorithm is 𝐿0
approximation. Given a high-dimensional matrix 𝑋𝑛×𝑚(𝑛 ≪𝑚) and a threshold 𝛾 for the coefficient estimates, 𝐿0 rejects
all the coefficient estimates below 𝛾 to 0 and keeps the large
coefficients unchanged. This is the same as defining a binary
vector 𝑆 = [0, . . . , 1, . . . , 1]𝑡, with the value of 0 or 1 for
each feature, where 𝑆𝑗 = 1, if the coefficient estimate for
that feature is above the threshold 𝛾 and 0 otherwise. Let𝑆 = diag(𝑆) be a diagonal matrix with 𝑆 on its diagonal; we
have the selected feature matrix 𝑋𝑆 = 𝑋𝑆. We can build
the standard models with the matrix 𝑋𝑆, if we know 𝑆 in
advance. For instance, we can estimate the coefficients of a
ridge regression given𝑋𝑆 and 𝑦 with

𝜃 = (𝑋𝑡𝑆𝑋𝑆 + 𝜆𝐼)−1𝑋𝑡𝑆𝑦 = (𝑋𝑡𝑆𝑋 + 𝜆𝐼)−1𝑋𝑡𝑆𝑦
= (𝑆𝑋𝑡𝑋 + 𝜆𝐼)−1 𝑆𝑋𝑡𝑦, (29)

where 𝑋𝑡𝑆𝑋𝑆 = 𝑆𝑋𝑡𝑋𝑆 = 𝑆𝑋𝑡𝑋 because of the special
structure of matrix 𝑆. It is guaranteed that the estimate for
feature 𝑗 is 0 with 𝑆𝑗 = 0. However, in reality, we do
not know 𝑆. Estimating both 𝑆 and 𝜃 is NP-hard problem,
since we need to solve amixed-integer optimization problem.
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Comparing (29) with the M-step of the primal algorithm,𝜃 = (𝐷𝑋𝑡𝑋 + 𝜆𝐼𝑚)−1𝐷𝑋𝑡𝑦, where 𝐷 = diag(𝜂21 , . . . , 𝜂2𝑚); it
is clear that 𝑆 is replaced by 𝐷 and binary 𝑆𝑗 is approximated
by continuous 𝜂2𝑗 in the proposed algorithm. Therefore, The
proposed algorithm is a direct 𝐿0 approximation.

Next, we show that the proposed algorithm leads to a
sparse solution. Note that the penalties for 𝐿0 regularized
regression in (4) are inversely proportional to the squared
magnitude of the parameters. That is,

𝜆𝑗 = {{{{{
𝜆2𝜂2𝑗 if 𝜂𝑗 ̸= 0

∞ if 𝜂𝑗 = 0, (30)

and 𝜂 = 𝜃, when 𝐿0EM or D𝐿0EM algorithm converges.
Equation (30) shows that when the true parameter 𝜃𝑗 = 0, the
penalty 𝜆𝑗 goes to infinity, so �̂�𝑗 must be 0 with the proposed
algorithms. In addition, when the true parameters 𝜃𝑗 ̸= 0,

𝐸 = 12 y − 𝑋𝜃2 + 𝜆2∑
𝑗∈𝑅

𝜃2𝑗𝜂2𝑗 =
12 y − 𝑋𝜃2 + 𝜆2 |𝑅| , (31)

because 𝜂𝑗 = 𝜃𝑗, when the algorithm converges. Therefore,
Lemma 3 holds. Note that our proposed methods will find a
sparse solution with a large number of iterations and small𝜀, even though the solution of 𝐿2 regularized regression is
not sparse. Small parameters (𝜃𝑗s) become smaller at each
iteration and will eventually go to zero (below the machine
epsilon). We can also set a parameter to 0 if it is below
predefined 𝜀 = 10𝑒 − 6 to speed up the convergence of the
algorithm.

The proposed algorithms are similar to the iteratively
reweighted least square approach for 𝐿𝑝/𝐿𝑞 optimization
in the literature [20, 21]. However, instead of solving 𝐿𝑝
optimization problem directly, they added a small value 𝜀
in 𝜃2𝑗/(𝜂2−𝑝𝑗 + 𝜀) to handle the undefined 0/0 problem when𝜃𝑗 = 0, leading to approximation and bias estimations. In
our proposed algorithm, 0s are multiplied into the feature
matrix 𝑋 (𝑋𝐷 = 𝑋𝐷). There is no undefined 0/0 problem
in the proposed algorithm. Finally, similar procedures can
be extended to general 𝐿𝑝; 𝑝 ∈ [0, 2] without much
difficulty. 𝐿𝑝 based EM algorithm 𝐿𝑝EM and the statistical
properties of 𝐿0 penalized regression are reported in the
Appendix in Supplementary Material available online at
http://dx.doi.org/10.1155/2016/3456153. The proposed 𝐿𝑝EM
algorithm is similar to adaptive lasso [7] in that both use
a weighted penalty. However, the weights in adaptive lasso
are predetermined by ordinary least estimates when 𝑛 > 𝑚
and univariate regression coefficients when 𝑛 < 𝑚, which
may lead to inaccurate estimate. In contrary, our proposed𝐿𝑝EM updates the weights with an analytical solution at each
iteration and automatically finds the optimal weights and
estimates.

𝐿0 Based Local Graphical Model. One important application
of 𝐿0 regularized regression is to detect high-order correla-
tion structures, which have numerous real-world applications

including gene network analysis. Givenmatrix𝑋, let x𝑗 be the𝑗th variable, and let 𝑋−𝑗 be the remaining variables; we have𝑃(x𝑗 | 𝑋−𝑗) ∼ 𝑁(𝑋−𝑗𝜃, 𝜎2), where the coefficients 𝜃measure
the partial correlations between x𝑗 and the rest of variables.
Therefore, we will minimize

argmin
𝜃

𝐸 (𝜃) = argmin
𝜃

{x𝑗 − 𝑋−𝑗𝜃2 + 𝜆 ‖𝜃‖0} . (32)

The high-order structure of 𝑋 has been determined via a
series of 𝐿0 regularized regressions for each x𝑗 with the
remaining variables 𝑋−𝑗. The collected regression nonzero
coefficients are the edges on the graph. 𝐿0 local graphical
model without cross validation is much efficient computa-
tionally than 𝐿1 local graphical model. 𝐿1 local graphical
model is computationally intensive, because the regularized
parameter 𝜆 for 𝐿1 has to be determined through cross
validation [22, 23]. For instance, given a matrix 𝑋 with 100
variables, to find the optimal 𝜆opt from 100 candidate 𝜆’s with
5-fold cross validation, 500 models need to be evaluated for
each variable x𝑗.Therefore a total of 500×100 = 50000models
have to be estimated to detect the dependency among𝑋with
lasso. It usually takes hours to solve this problem. However,
only 100 models are required to identify the same correlation
structure with 𝐿0 regularized regression and AIC or BIC,
which only takes less than one minute to solve a similar
problem. Notice that negative correlations between genes are
difficult to confirm and seemingly less biologically relevant
[24]. Most national databases are constructed with similarity
(dependency) measures. It is straightforward to study only
the positive dependency by simply setting 𝜃 (𝜃 < 0) = 0 in
the EM algorithm.

Determination of 𝜆. Regularized 𝜆 determines the sparsity
of the model. The standard approach for choosing 𝜆 is cross
validation and optimal 𝜆 is determined by the minimal mean
squared error (MSE) of the test data (MSE = ∑(𝑦𝑖 −𝑦𝑖)2/𝑛). One could also adapt the stability selection (SS)
approach for 𝜆 determination [25, 26]. It chooses smallest𝜆 that minimizes the inconsistencies in number of nonzero
parameters with cross validation. We first calculate the mean
and standard deviation (SD) of the number of nonzero
parameters for each 𝜆 and then find smallest 𝜆 with SD =
0, where SD = 0 indicates that all models in 𝑘-fold cross
validation have the same number of nonzero estimates. Our
experiences indicate that larger 𝜆 chosen from both minimal
MSE and stability selection (𝜆 = max{𝜆MSE, 𝜆SS}) has the best
performance. Choosing optimal 𝜆 from cross validation is
computationally intensive and time-consuming. Fortunately,
unlike lasso, identifying optimal 𝜆 for 𝐿0 does not require
using cross validation. Optimal 𝜆opt can be determined by
variable selection criteria. Optimal 𝜆opt can be directly picked
usingAIC, BIC, or RIC criteriawith𝜆opt = 2, log 𝑛, or 2 log𝑚,
respectively. Each of these criteria is known to be optimal
under certain conditions. This is a huge advantage of 𝐿0,
especially for big data problems. In general, we recommend
to use BIC as information criteria for high-dimensional
problem (𝑛 ≪ 𝑝) and to use AIC when 𝑛 > 𝑝.

http://dx.doi.org/10.1155/2016/3456153
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Table 1: Performance measures for 𝐿0 and 𝐿1 regularized regression over 100 simulations, where values in the parentheses are the standard
deviations. # SF: number of average selected features; MSE: average mean squared error; ‖�̂� − 𝜃‖: average absolute bias when comparing true
and estimated parameters.

𝑟 𝐿0 𝐿1
# SF MSE �̂� − 𝜃 # SF MSE �̂� − 𝜃

0 3.39 (±1.1) 1.01 (±0.14) 0.206 (±0.12) 14.5 (±3.45) 1.19 (±0.19) 0.38 (±0.1)
0.3 3.37 (±0.9) 1.02 (±0.16) 0.23 (±0.12) 14.5 (±2.91) 1.21 (±0.19) 0.41 (±0.19)
0.6 3.49 (±1.7) 1.02 (±0.23) 0.23 (±0.16) 13.5 (±3.0) 1.26 (±0.2) 0.54 (±0.15)
0.8 3.32 (±0.9) 1.06 (±0.15) 0.28 (±0.21) 11.7 (±2.69) 1.3 (±0.21) 0.89 (±0.25)
Table 2: Performance measures for 𝐿0 and 𝐿1 regularized regression with 𝜆 = max{𝜆MSE, 𝜆SS} over 100 simulations, where values in the
parenthesis are the standard deviations. # SF: number of average selected features; MSE: average mean squared error; ‖�̂�−𝜃‖: average absolute
bias when comparing true and estimated parameters.

𝑟 𝐿0 𝐿1
# SF MSE �̂� − 𝜃 #SF MSE �̂� − 𝜃

0 3.09 (±0.53) 1.04 (±0.15) 0.18 (±0.11) 13.3 (±4.56) 1.21 (±0.17) 0.39 (±0.1)
0.3 3.08 (±0.54) 1.04 (±0.15) 0.17 (±0.07) 14.5 (±4.20) 1.22 (±0.17) 0.42 (±0.19)
0.6 3.10 (±0.46) 1.07 (±0.17) 0.21 (±0.10) 13.8 (±5.4) 1.27 (±0.47) 0.57 (±0.25)
0.8 3.02 (±0.14) 1.04 (±0.14) 0.26 (±0.13) 13.4 (±4.91) 1.25 (±0.21) 0.74 (±0.25)
3. Results

3.1. Simulation Study Application. To evaluate the perfor-
mance of 𝐿0 and 𝐿1 regulation, we assume a linear model y =𝑋𝜃+𝜀, where the inputmatrix𝑋 is fromGaussian distribution
withmean 𝜇 = 0 and different covariance structures Σ, whereΣ(𝑖, 𝑗) = 𝑟|𝑖−𝑗| with 𝑟 = 0, 0.3, 0.6, 0.8, respectively. The true
model is y = 2x1 − 3x2 + 4x5 + 𝜀 with 𝜀 ∼ 𝑁(0, 1). Therefore,
only three features are associated with output y, and the rest
of 𝜃𝑖’s are zero. In our first simulation, we first compare 𝐿0
and 𝐿1 regularized regressions with a relatively small number
of features 𝑚 = 50 and a sample size of 𝑛 = 100. Fivefold
cross validation is used to determine optimal 𝜆 and compare
the models performances. We seek to fit the regularized
regression models over a range of regularization parameters𝜆. Each 𝜆 is chosen from 𝜆min = 1𝑒 − 4 to 𝜆max with 100
equally log-spaced intervals, where 𝜆max = max{𝑋𝑡y} for 𝐿1
and max{(x𝑡𝑗y)2/4x𝑡𝑗x𝑗} for 𝐿0. Lasso function in the statistics
toolbox of MATLAB (http://www.mathworks.com/) is used
for comparison. Cross validation with MSE is implemented
nicely in the toolbox. The computational results are reported
in Table 1. Table 1 shows that 𝐿0 outperforms lasso in all
categories by a substantial margin, when using the popular
test MSE measure for model selection. In particular, the
number of variables selected by 𝐿0 are close to 3, the true
number of nonzero variables, while lasso selected more than
11 features on average with different correlation structures
(𝑟 = 0, 0.3, 0.6, 0.8). The test MSEs and bias both increase
with the growth of correlation among features for both 𝐿0
and lasso, but the test MSE and bias of 𝐿0 are substantially
lower than these of lasso. The maximal MSE of 𝐿0 is 1.06,
while the smallest MSE of 𝐿1 is 1.19, and the largest bias of𝐿0 is 0.28, while the smallest bias of lasso is 0.38. In addition
(results are not shown in Table 1), 𝐿0 correctly identifies the
true model 81, 74, 81, and 82 times for 𝑟 = 0, 0.3, 0.6 and 0.8,

respectively, over 100 simulations, while lasso never chooses
the correct model. Therefore, compared to 𝐿0 regularized
regression, lasso selects more features than necessary and has
larger bias in parameter estimation. Even though it is possible
to get a correct model with lasso using larger 𝜆, the estimated
parameters will have a bigger bias and worse predicted MSE.

The same parameter setting is used for our second
simulation, but the regularized parameter 𝜆 is determined
by larger 𝜆 from both minimal MSE and stability selection
(𝜆 = max{𝜆MSE, 𝜆SS}).The computational results are reported
in Table 2. Table 2 shows that the average number of
associated features is much closer to 3 with slightly larger
test MSEs. The maximal average number of features is 3.1
with 𝑟 = 0.6, reduced from 3.49 with the test MSE only.
In fact, with this combined model selection criteria and
100 simulations, 𝐿0EM identified the true model with three
nonzero parameters 95, 95, 95, and 97 times, respectively
(not shown in the table), while lasso did not choose any
correct models. The average bias of the estimates with 𝐿0EM
is also reduced. These indicate that the combination of
test MSE and stability selection in cross validation leads to
better model selection results than MSE alone with 𝐿0EM.
However, the computational results did not improve much
with lasso. Over 13 features on average were selected under
different correlation structures, suggesting that lasso inclines
to selectmore spurious features than necessary. Amuchmore
conservative criterion with larger 𝜆 is required to select the
right number of features, which will induce larger MSE and
bias and deteriorate the prediction performance.

Simulation with High-Dimensional Data. Our third simula-
tion deals with high-dimensional data with the number of
samples 𝑛 = 100 and the number of features 𝑚 = 1000. The
correlation structure is set to 𝑟 = 0, 0.3, 0.6, and the same
model y = 2x1 − 3x2 + 4x5 + 𝜀 was used for evaluating model

http://www.mathworks.com/
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Table 3: Performance measures for 𝐿0, 𝐿1, SCAD, and MC+ regularized regressions with cross validation and 𝜆 = Max{𝜆MSE, 𝜆SS} over 100
simulations and the sample size of 𝑛 = 100, and 𝑚 = 1000, where values in the parenthesis are the standard deviations. # SF: number of
average selected features; MSE: average mean squared error; ‖�̂� − 𝜃‖: average absolute bias when comparing true and estimated parameters.

Measures 𝑟 = 0 𝑟 = 0.3 𝑟 = 0.6
𝐿0

# SF 3 (±0) 2.9 (±0.47) 2 (±0.73)‖�̂� − 𝜃‖ 0.14 (±0.09) 0.39 (±0.63) 1.69 (±1.25)
Test MSE 1.14 (±0.34) 1.59 (±1.3) 2.8 (±1.72)

# true model 100/100 78/100 23/100

𝐿1
# SF 24 (±18.4) 31.3 (±20.7) 36.7 (±16.5)‖�̂� − 𝜃‖ 0.57 (±0.11) 0.73 (±0.13) 1.14 (±0.25)

Test MSE 1.50 (±0.25) 1.63 (±0.29) 1.92 (±0.41)
# true model 0/100 0/100 0/100

SCAD

# SF 106.8 (±110.6) 73 (±111) 56.2 (±62.4)‖�̂� − 𝜃‖ 0.62 (±0.13) 0.72 (±0.14) 1.13 (±0.26)
Test MSE 1.32 (±0.27) 1.54 (±0.27) 2.04 (±0.51)

# true model 0/100 0/100 0/100

MC+

# SF 60.3 (±38.6) 70.5 (±26.0) 78.73 (±16.5)‖�̂� − 𝜃‖ 0.56 (±0.14) 0.66 (±0.12) 0.78 (±0.17)
Test MSE 1.25 (±0.21) 1.31 (±0.27) 1.46 (±0.27)

# true model 0/100 0/100 0/100

performance. Besides 𝐿1, 𝐿0 was also compared with two
other cutting-edge regulations including SCAD and MC+,
implemented in SparseReg package [27]. The simulation was
repeated 100 times. The computational results are reported
in Table 3. Table 3 shows that 𝐿0 outperforms lasso by
a large margin when correlations among features are low.
When there is no correlation among features, 100 out of 100
simulations identify the truemodel with 𝐿0, and 78 out of 100
simulations choose the correct model when 𝑟 = 0.3, while
lasso, SCAD, and MC+ choose more features than necessary
and no true model was found under any correlation setting.
However, when correlations among features are large with𝑟 = 0.6, the results aremixed.𝐿0 can still identify 23 out of 100
correct models, but the test MSE and bias of the parameter
estimate of 𝐿0 are slightly large than those of lasso, MC+,
and SCAD. MC+ has the second best performance with less
bias and smaller test MSE but chooses more features than
necessary. In addition, we notice that 𝐿0 is a more sparse
model when correlation increases, indicating that 𝐿0 tends to
choose independent features. One reason for selecting more
features with SCAD andMC+may be that we only tuned the
parameter 𝜆 and fixed 𝛾 = 3.7 and 𝛾 = 1 for SCAD andMC+,
respectively. A regularization path of 𝐿0 regression is shown
in Figure 1. As shown in Figure 1(a), the three associated
features first increase their values when 𝜆 goes larger and
then go to zero when 𝜆 becomes extremely big, while the
rest of the irrelevant features all go to zero when 𝜆 increases.
Unlike lasso, which shrinks all parameters uniformly, 𝐿0 will
only force the estimates of irrelevant features to go to zero,
while keeping the estimates of relevant features to their true
value.This is thewell-knownoracle property of𝐿0.The oracle
propertymeans that the penalized estimator is asymptotically
equivalent to the oracle estimator obtained only with signal
variables without penalization. For this specific simulation,
the three parameters [𝜃1, 𝜃2, 𝜃5] = [1.85, −2.94, 4.0], very
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Figure 1: Regularized path for𝐿0 penalized regressionwith 𝑛 = 100,𝑚 = 1000, and 𝑟 = 0.3.

close to their true values [2, −3, 4]. Figures 1(b) and 1(c) are
the test MSE and the standard deviation of the number of
nonzero variables. Optimal 𝜆 is chosen from larger 𝜆 with
minimal test MSE and stability selection as shown in the
vertical lines of Figure 1.
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Table 4: Performance measures for 𝐿0 regularized regression with AIC and BIC over 100 simulations with 𝑛 = 100, and 𝑚 = 1000, where
values in the parenthesis are the standard deviations. # SF: number of average selected features; MSE∗: in-sample average mean squared error;‖�̂� − 𝜃‖: average absolute bias when comparing true and estimated parameters.

Measures 𝑟 = 0 𝑟 = 0.3 𝑟 = 0.6
AIC

# SF 3.26 (±0.54) 3.72 (±1.94) 4.8 (±2.77)‖�̂� − 𝜃‖ 0.19 (±0.09) 0.36 (±0.58) 1.02 (±1.2)
MSE∗ 0.96 (±0.14) 1.02 (±0.31) 1.27 (±0.51)

# true model 78/100 73/100 59/100

BIC

# SF 3.0 (±0.0) 3.0 (±0.38) 2.89 (±0.80)‖�̂� − 𝜃‖ 0.16 (±0.08) 0.45 (±0.69) 1.80 (±1.20)
MSE∗ 0.97 (±0.15) 1.29 (±0.81) 2.48 (±1.17)

# true model 100/100 94/100 53/100

𝐿0 Regularized Regression without Cross Validation. Choosing
the optimal parameter 𝜆opt with cross validation is time-
consuming, especially with big data. As we mentioned pre-
viously, optimal 𝜆 can be picked from theory instead of cross
validation. Sincewe are dealingwith 𝑛 ≪ 𝑚 big data problem,
RIC with 𝜆opt = 2 log𝑚 tends to penalize the parameters too
much. So computational results with AIC and BIC without
cross validation are reported in Table 4. Table 4 shows that𝐿0 regularized regression with AIC and BIC performs very
well when compared with the results from computationally
intensive cross validation in Table 3.Without correlation, BIC
identifies the true model (100%), which is the same as cross
validation in Table 3 and better than AIC’s 78%. The bias of
BIC (0.16) is only slightly higher than that of cross validation
(0.14) but lower than that of AIC (0.19). Even though MSE∗’s
with AIC and BIC are in-sample mean squared errors, which
are not comparable to the test MSE with cross validation,
larger MSE∗ with BIC indicates that BIC is a more stringent
criterion than AIC and selects less variables. With mild
correlation (𝑟 = 0.3) and some sacrifices in bias and MSE∗,
BIC performs better than AIC in variable selection, since the
average number of features selected is exactly 3 and 94% of
the simulations recognize the true model, while AIC chooses
more features (3.72) than necessary and only 73% of the
simulations are right on targets. Cross validation is the most
tight measure with 2.9 features on average and 75% of the
simulations finding the correct model.When the correlations
among the variables are high (𝑟 = 0.6), the results are
mixed. Both BIC and AIC correctly identify more than half
of the true models, while cross validation only recognizes
25% (5/20) of the model correctly. Therefore, compared with
the computationally intensive cross validation, both BIC and
AIC perform reasonably well. The performance of BIC is
similar to cross validation with less computational time.
In addition, we have suggested to use the result of ridge
regression as the initial value for the proposed algorithms.
However, the proposed algorithm is quite stablewith different
initializations. With 𝑛 = 100, 𝑝 = 200, 𝑟 = 0.3, and 100 times
of randomized initializations, the estimates of three nonzero
parameters are [𝛽1, 𝛽2, 𝛽5] = [2.05±0.08, −2.89±0.08, 4.01±0.09] with BIC criteria.

Simulations for Graphical Models. We simulate two network
structures similar to those in Zhang andMallick [28]: (i) band

1 network, where Σ is a covariance matrix with 𝜎𝑖𝑗 = 0.6|𝑖−𝑗|,
so𝐴 = Σ−1 has a band 1 network structure, and (ii) amore dif-
ficult problem for a band 2 network with weaker correlations,
where 𝐴 = −Σ−1 with

𝑎𝑖𝑗 =
{{{{{{{
0.25 if 𝑖 − 𝑗 = 1
0.4 if 𝑖 − 𝑗 = 2
0 otherwise.

(33)

The sample sizes are 𝑛 = 50, 100, and 200, respectively,
and the number of variables is 𝑚 = 100. 𝐿0 regularized
regression with AIC and BIC is used to detect the network
(correlation) structure. The consistency between the true
and predicted structures is measured by the area under the
ROCcurve (AUC), false discovery (positive) rate (FDR/FPR),
and false negative rate (FNR) of edges. The computational
results are shown in Table 5. Table 5 shows that both AIC
and BIC performed well. Both achieved at least 0.90 AUC
for band 1 network and 0.8 AUC for band 2 network with
different sample sizes. AIC performed slightly better than
BIC, especially for band 2 network with weak correlations
and small sample sizes. This is reasonable because BIC is a
heavier penalty and forces most of the weaker correlations
with 𝑎𝑖𝑗 = 0.25 to 0. In addition, BIC has slightly larger AUCs
for band 1 network with strong correlation 𝑟 = 0.6 and larger
sample size (𝑛 = 100, 200). One interesting observation is
that FDRs of both AIC and BIC are well controlled. Maximal
FDRs of AIC for bands 1 and 2 networks are 0.29% and
0.2%, while maximal FDRs of BIC are only 0.1%, and 0.03%,
respectively. Controlling false discovery rates is crucial for
identifying true associations with high-dimensional data in
bioinformatics. In general, AUC increases and both FDR and
FNR decrease, as the sample sizes become larger, except for
band 2 network with BIC. The performance of BIC is not
necessarily better with a larger sample size, since the penalty𝜆 increases with the sample size. 𝐿1 graphical model was also
used for comparison purpose [29, 30]. 𝐿1 graphical model
performed equally well as AIC and BIC with band 1 network
but was the worst with the more difficult band 2 network.
More interestingly, 𝐿1 had the largest FDR, indicating that it
selects more features than necessary.

3.2. Application to Real Ovarian Cancer Data. The purpose
of this application is to identify subnetworks and study the
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Table 5: Performance measures for 𝐿0 regularized regression for graphical structure detection over 100 simulations, where values in the
parenthesis are the standard deviations.

Band 1 Band 2
AIC AUC FDR (%) FNR (%) AUC FDR (%) FNR (%)𝑛 = 50 .95 (±.01) .29 (±.08) 9.4 (±2.6) .82 (±.01) .10 (±.05) 36.7 (±1.5)
100 .99 (±.005) .20 (±.06) 1.2 (±1.1) .84 (±.01) .11 (±.04) 32.7 (±1.9)
200 .999 (±.0003) .20 (±.05) 0 (±0) .93 (±.01) .11 (±.04) 14.2 (±2.4)
BIC AUC FPR (%) FNR (%) AUC FPR (%) FNR (%)𝑛 = 50 .90 (±.02) .10 (±.05) 20 (±3.6) .803 (±.008) .02 (±.02) 39.3 (±1.5)
100 .991 (±.007) .03 (±.03) 1.8 (±1.3) .83 (±.01) .03 (±.02) 34.9 (±1.6)
200 .9999 (±.0005) .01 (±.01) .01 (±.10) .82 (±.01) .03 (±.02) 36.7 (±1.8)𝐿1 AUC FPR (%) FNR (%) AUC FPR (%) FNR (%)𝑛 = 50 .91 (±.03) 3.5 (±.05) 11 (±3.6) 0.77 (±.01) 5.3 (±.07) 40.9 (±.62)
100 .99 (±.003) 1.52 (±.22) .33 (±.67) 0.78 (±.007) 7.1 (±1.4) 36.3 (±1.1)
200 .99 (±.003) 1.21 (±.07) .45 (±.53) 0.79 (±.01) 8.1 (±.57) 34.0 (±1.4)
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Figure 2: Subnetwork constructed with 𝐿0 penalized regression,
multisource gene expression profiling, and BIC.

biologicalmechanisms of potential prognostic biomarkers for
ovarian cancer with multisource gene expression data. The
ovarian cancer data was downloaded from the KMplot web-
site (http://www.kmplot.com/ovar/) [31]. They originally got
the data from searching Gene Expression Omnibus (GEO;
http://www.ncbi.nlm.nih.gov/geo/) andThe Cancer Genome
Atlas (TCGA; http://cancergenome.nih.gov/) with multiple
platforms. All collected datasets have raw gene expression
data, survival information, and at least 20 patients available.
They merged the datasets across different platforms carefully.
The final data has 1287 patients samples and 22277 probe
sets representing 13435 common genes. We identified 112 top
genes that are associated with patient survival times using
univariate Cox regression. We constructed a coexpression
network from the 112 genes with 𝐿0 regularized regression
and identified biologically meaningful subnetworks (mod-
ules) associated with patient survival. Network is constructed
with positive correlation only and BIC. The computational
time for constructing such network is less than 2 seconds.
One survival associated subnetwork we identified is given
in Figure 2. The 22 genes on the subnetwork were then
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Figure 3: Known and predicted protein-protein interactions with
the 22 genes on the subnetwork of Figure 2, where nodes represent
proteins (genes) and edges indicate the direct (physical) and indirect
(functional) associations. Stronger associations are represented by
thicker lines.

uploaded onto STRING (http://string-db.org/). STRING is an
online database for exploring known and predicted protein-
protein interactions (PPI). The interactions include direct
(physical) and indirect (functional) associations. The pre-
dicted methods for PPI implemented in STRING include
text mining, national databases, experiments, coexpression,
cooccurrence, gene fusion, and neighborhood on the chro-
mosome. The PPI networks for the 22 genes are presented
in Figure 3. Comparing Figures 3 and 2, we conclude that
the 22 identified genes on the subnetwork of Figure 2 are
functioning together and have enriched important biological
interactions and associations. Nineteen out of 22 genes on the
survival associated subnetwork also have interactions on the
known and predicted PPI network, except for genes LRRC15,

http://www.kmplot.com/ovar/
http://www.ncbi.nlm.nih.gov/geo/
http://cancergenome.nih.gov/
http://string-db.org/
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ADAM12, and NKX3-2. Even though they are not completely
identical, many interactions on our subnetwork can also
be verified on the PPI interaction network of Figure 3.
For instance, collagen COL5A2 is the most important gene
with the largest number of degrees (7) on our subnetwork.
Six out of 7 genes that link to COL5A2 also have direct
edges on the PPI network. Those direct connected genes
(proteins) include FAP, CTSK, VCAN, COL1A1, COL5A1,
and COL11A1. The remaining gene SNAI2 was indirectly
linked to COL5A2 through FBN1 on the PPI network. In
addition, one of the other important genes with the degree of
the node (6) is Decorin (DCN). Four out of 6 genes directly
connected to DCN on our subnetwork were confirmed
on the PPI network, including FBN1, CTSK, LUM, and
THBS2. The remaining two genes (SNAI2 and COLEC11)
are indirectly connected to DCN on the PPI network. As
indicated on Figure 2, the remaining 5 important genes with
degree of node 4 are POSTN, CTSK, COL1A1, COL5A1, and
COL10A1, and 8 genes with degree of node 3 are FBN1,
LUM, LRRC15, COL11A1, THBS2, SPARC, COL1A2, and FAP,
respectively. Furthermore, those 22 genes are involved in
the biological process of GO terms, including extracellular
matrix organization and disassembly and collagen catabolic,
fibril, and metabolic processes. They are also involved in
several important KEGG pathways including ECM-receptor
interaction, protein digestion and absorption, amoebiasis,
focal adhesion, andTGF-𝛽 signaling pathways. Finally, a large
proportion of the 22 genes are known to be associated with
poor overall survival (OS) in ovarian cancer. For instance,
VCANand POSTNwere demonstrated in vitro to be involved
in ovarian cancer invasion induced by TGF-𝛽 signaling [32],
and COL11A1 was shown to increase continuously during
ovarian cancer progression and to be highly overexpressed
in recurrent metastases. Knockdown of COL11A1 reduces
migration, invasion, and tumor progression in mice [33].
Other genes such as FAP, CTSK, FBN1, THBS2, SPARC, and
COL1A1 are also known to be ovarian cancer associated [34–
39].Those genes contribute to cell migration and the progres-
sion of tumors and may be potential therapeutic targets for
ovarian cancer, indicating that the proposed method can be
used to construct biologically important networks efficiently.

4. Discussion

We proposed efficient EM algorithms for variable selection
with 𝐿0 regularized regression.The proposed algorithms find
the optimal solutions of 𝐿0 through solving a sequence of𝐿2 based ridge regressions. Given an initial solution, the
algorithmwill be guaranteed to converge to a unique solution
under mild conditions, and the EM algorithm will be closer
to the optimal solution after each iteration. Asymptotic prop-
erties, namely, consistency and oracle properties for exact 𝐿0,
are established under mild conditions. Our method applies
to fixed, diverging, and ultra-high-dimensional problems
with ten or hundred thousands of features. We compare
the performance of 𝐿0 regularized regression and lasso
with simulated low- and high-dimensional data. 𝐿0 regu-
larized regression outperforms lasso, SCAD, and MC+ by
a substantial margin under different correlation structures.

Unlike lasso, which selects more features than necessary,𝐿0 regularized regression chooses the true model with high
accuracy, less bias, and smaller test MSE, especially when the
correlation is weak. Cross validation with the computation
of the entire regularization path is computationally intensive
and time-consuming. Fortunately 𝐿0 regularized regression
does not require it. Optimal 𝜆opt can be directly determined
from AIC, BIC, and RIC. Those criteria are optimal under
appropriate conditions. We demonstrate that both AIC and
BIC performed well when compared to cross validation.
Therefore, there is a big computational advantage of 𝐿0,
especially with big data. In addition, we demonstrate that 𝐿0
regularized regression controls the false discovery (positive)
rate (FDR) well with both AIC and BIC with the simulation
of graphical models. The FDR is very low under different
sample sizes with both AIC and BIC. Controlling FDR is
crucial for biomarker discovery and computational biology,
because further verifying the candidate biomarkers is time-
consuming and costly. We applied our proposed method to
construct a network for ovarian cancer from multisource
gene expression data and identified a subnetwork that is
important both biologically and clinically. We demonstrated
that we can identify biologically important genes and path-
ways efficiently. Even though we demonstrated our method
with gene expression data, the proposed method can be
used for RNA-seq and metagenomic data, given that the
data are appropriately normalized. Finally, because of the
nonconvexity of 𝐿0 regularized regression, there are multiple
local optimal solutions for 𝜃𝑗 including a trivial solution 𝜃𝑗 =0, ∀𝑗 = 1, . . . , 𝑚, as shown in (28). However, the nontrivial
solution can be found efficiently as long as all parameterswere
initialized with nonzero values. We recommend the solution
of ridge regression as an initial solution for the proposed
algorithms.
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