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Abstract 

Preterm birth leading to cerebral palsy (CP) is the most common cause of childhood dystonia, a 

movement disorder that is debilitating and often treatment refractory. Dystonia has been 

typically associated with dysfunction of striatal cholinergic interneurons, but clinical imaging data 

suggests that cortical injury may best predict dystonia following preterm birth. Furthermore, 

abnormal sensorimotor cortex inhibition has been found in many studies of non-CP dystonias. 

To assess the potential for a cortical etiology of dystonia following preterm birth, we developed a 

new model of preterm birth in mice. Noting that term delivery in mice on a C57BL/6J 

background is embryonic day 19.1 (E19.1), we induced preterm birth at the limits of pup viability 

at embryonic day (E) 18.3, equivalent to human 22 weeks gestation. Mice born preterm 

demonstrate display clinically validated metrics of dystonia during gait (leg adduction amplitude 

and variability) and also demonstrate reduced parvalbumin immunoreactivity in the sensorimotor 

cortex, suggesting dysfunction of cortical parvalbumin-positive inhibitory interneurons. Notably, 

reduced parvalbumin immunoreactivity or changes in parvalbumin-positive neuronal number 

were not observed in the striatum. These data support the association between cortical 

dysfunction and dystonia following preterm birth. We propose that our mouse model of preterm 

birth can be used to study this association and potentially also study other sequelae of extreme 

prematurity.  
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Introduction 

In the United States, preterm birth is the most common cause of cerebral palsy (CP), a lifelong 

motor disability affecting between 2-4 of every 1000 people.(Boyle et al., 2011; McIntyre et al., 

2022; Van Naarden Braun et al., 2016) As a result, preterm birth is also the most common cause of 

dystonia, which can affect up to 80% of people with CP.(Rice et al., 2017) Dystonia is formally 

defined as voluntary-movement triggered overflow muscle activation and can be worsened with 

fatiguing or increasingly challenging voluntary movement tasks, making dystonia an inherently 

disabling movement disorder.(Albanese et al., 2013; Sanger et al., 2010, 2003) Dystonia is 

notoriously difficult to diagnose in people with CP and is often under-diagnosed, precluding 

treatment.(Bhooma R Aravamuthan et al., 2023; Miao et al., 2022) Furthermore, commonly used 

treatments, like anticholinergic agents, are variably effective at treating dystonia in CP.(Bohn et 

al., 2021) This necessitates dedicated investigation of treatment targets specific to dystonia 

following preterm birth.   

Identification of dystonia treatment targets specific to preterm birth requires a clinically relevant 

model of preterm birth and clinically relevant methods to quantify dystonia in mice. Mouse 

models of prematurity have been difficult to develop because of differences in the mouse 

neurodevelopmental timeline and human neurodevelopmental timeline.(Clancy et al., 2007; 

Semple et al., 2013) Based on rate of brain growth and myelination patterns, postnatal day 10 

(P10) in the mouse is thought to be equivalent to human term gestation. The day of birth in the 

mouse (P0) is thought to be equivalent to human 24 weeks gestation.(Clancy et al., 2007; Semple 

et al., 2013) Existing mouse models of prematurity involve hypoxic or inflammatory insults prior to 

putative human equivalent gestation (P10) but do not result in true preterm birth of the 

mouse.(Le Dieu-Lugon et al., 2020; McCarthy et al., 2018) Existing mouse models of true preterm 

birth focus on outcomes to the dam without assessment of outcomes in viable pups.(McCarthy et 

al., 2018) Examining the outcomes of true preterm birth in pups is additionally important because 

lower gestational ages contribute to the highest morbidity. For example, a child born between 

22-24 weeks gestation has almost double the risk of CP compared to a child born between 25-

27 weeks gestation.(Boyle et al., 2011; Chen et al., 2021; Van Naarden Braun et al., 2016) Therefore, 

an ideal model of mouse prematurity would replicate true preterm birth.  

Assessing dystonia in mouse models of disease is difficult in large part because clinical 

diagnosis is difficult. Gold standard clinical diagnosis involves qualitative consensus-based 

expert review of neurologic exam videos, which is obviously a difficult practice to translate to 
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animal models. Identification of dystonia in mice has canonically involved identification of 

clasping during tail suspension, a phenomenon where mice adduct their limbs to midline and 

clasp their paws together.(Oleas et al., 2013; Richter and Richter, 2014; Tassone et al., 2011) 

Unfortunately, this phenomenon is observed primarily during tail suspension, a task that is 

difficult to assess in people, and is not present in more clinically relevant tasks like gait. 

Furthermore, the typical assessment of limb adduction culminating in clasping is binary (i.e. 

clasping is present or absent), precluding quantification of more subtle limb adduction that may 

still be dystonic but is not formally clasping. We have demonstrated that limb adduction 

amplitude and variability during gait is cited by experts when differentiating dystonia from 

spasticity and when assessing dystonia severity in people with CP.(Aravamuthan et al., 2021; 

Bhooma R. Aravamuthan et al., 2023) We have also demonstrated quantifiable metrics of leg 

adduction amplitude and variability track with expert assessments of dystonia severity in people 

with CP.(Bhooma R. Aravamuthan et al., 2023; Gemperli et al., 2023) Therefore, we propose that 

quantifying leg adduction amplitude and variability during gait in mice is a clinically-relevant 

metric of dystonia.  

Dystonia is typically associated with striatal injury, particularly striatal cholinergic interneuron 

(ChIN) excitation which has been viewed as a unifying mechanism of non-CP dystonia 

etiologies like DYT1 and DYT6.(Bonsi et al., 2011; Chintalapati et al., 2020; Eskow Jaunarajs et al., 

2019, 2015; Gemperli et al., 2023; Pappas et al., 2015) By measuring leg adduction variability and 

amplitude, we have also shown that chronic striatal ChIN excitation can cause 

dystonia.(Gemperli et al., 2023) Finally, we have shown that a rat model of hypoxic-ischemic 

injury at human-equivalent term gestation demonstrates an increased number of striatal 

ChINs.(Gandham et al., 2020) However, despite this evidence implicating abnormal striatal ChIN 

excitation in dystonia pathogenesis, anticholinergic agents are often ineffective to treat dystonia 

in CP.(Bohn et al., 2021) This suggests involvement of other brain regions in dystonia 

pathogenesis. We have shown that cortical injury may cause dystonia in people born 

preterm.(Chintalapati et al., 2023; Ueda et al., 2023) Over half of people with CP with cortical injury 

alone on MRI have dystonia.(Ueda et al., 2023) Furthermore, a marker of cortical atrophy, more 

so than striatal volume loss, best correlates with the presence of dystonia in people with CP 

born preterm.(Chintalapati et al., 2023) Lesion mapping,(Corp et al., 2019) PET,(Garibotto et al., 

2011) electrocorticography,(Miocinovic et al., 2015) and fMRI data(Norris et al., 2020) all also 

implicate abnormal inhibition(Gallea et al., 2017) of the sensorimotor cortex in the pathogenesis of 

non-CP dystonia, suggesting involvement of cortical inhibitory interneurons. The largest 
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population of inhibitory neurons in the cortex are parvalbumin-positive interneurons (PVINs).(Lim 

et al., 2018; Nahar et al., 2021; Tremblay et al., 2016) Cortical PVINs are lost or have reduced 

activity in many mouse models of autism(Juarez and Martínez Cerdeño, 2022) and epilepsy,(Jiang et 

al., 2016) symptoms that commonly occur in people with CP.(Dos Santos Rufino et al., 2023; 

Påhlman et al., 2021) However, it is unclear if they are involved in dystonia pathogenesis following 

preterm birth.  

Here, we demonstrate that dystonia, as measured by the clinically-relevant metrics of leg 

adduction variability and adduction, is present in our novel mouse model of preterm birth and 

extreme prematurity. We also show that this model has decreased parvalbumin 

immunoreactivity that is restricted to the cortex and is not present in the striatum. We propose 

that this model can be used to study the cortical pathophysiology of dystonia following preterm 

birth.  

Methods 

All procedures were approved by the Washington University in St. Louis Institutional Animal 

Care and Use Committee (protocol # 21-0174) and were in strict accordance with the National 

Institute of Health Guidelines on the Care and Use of Laboratory Animals. All mice used for 

these experiments were on a C57BL/6J background and obtained from Jackson Labs. Mice 

were housed in a reverse light cycle facility (lights on from 6PM to 6AM).  

Breeding and induction of labor 

Mice were bred between 4-6 PM on alternate days and checked for mucus plugs at 6 PM to 

determine the time of conception. The documentation of a mucus plug was timed as embryonic 

day 0 and mice were weighed on that day to establish their pre-pregnancy weight. To induce 

labor, mice were subcutaneously injected with mifepristone (or vehicle for controls) at E17.6 (8 

AM on 18th day after the plug was noted). Of note, though mifepristone is known to cross the 

placenta, there is no evidence for adverse neurologic effects from mifepristone based on human 

data or from data examining mouse pup outcomes or cortical injury patterns when delivered at 

term gestation (E19.5).(Bernard et al., 2013; HILL et al., 1990; Morin et al., 2022) Mifepristone 

(Sigma Aldrich, M8046) was dosed at 3 μg per gram of pre-pregnancy weight using a 1 µg/µL, 

suspended in 100% ethanol. Dams delivering term-born controls were given the weight-based 

dosing of an equivalent volume of ethanol. Mifepristone injections were timed to induce delivery 

at E18.3, 18 hours after injection, at human equivalent 22 weeks gestation. This gestational age 
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was chosen to limit pup mortality noting that pup skin integrity (impermeability to extraneously 

applied dyes) develops at E18.   

All deliveries were filmed to calculate gestational age at birth using a GardePro E7 WiFi Trail 

Camera. The time of birth was documented as the 5 minute window in which the first pup was 

seen as delivered (postnatal day 0, or P0). Gestational age was calculated as P0-E0.  

Motor behavioral assessment 

Mouse gait was assessed in adolescence at P42, after gait patterns are fully mature. We 

assessed gait in two ways: via treadmill gait and via open field. We constructed a clear treadmill 

using ¼” thick acrylic sheets with a walkway 1.5” in diameter and 10.5” in length that was 

elevated 11.5” off the ground (Figure 1). A rotary motor (Tsiny 2GN-90K 110V DC Gear-Box) 

was used to run an acetate sheet (4mm thickness) over the treadmill. Mice were placed on this 

treadmill belt and were filmed while walking for 30 seconds each at 3 different speeds: 5, 8, and 

11 cm/second. 

Open field gait was assessed by placing mice in a 50cm x 50cm clear acrylic box placed on a 

clear acrylic top table 3 feet tall. Walls were obscured with blue film, but the bottom of the box 

remained transparent. This allowed for filming from underneath the mouse. Mice were placed in 

the center of the box and the top of the box was covered with another blue sheet. Spontaneous 

mouse movements were recorded for 10 minutes.  

Videos for both treadmill and open field. were recorded from underneath each mouse such that 

the ventral surface of the mouse and foot placement was visible on camera. Videos were 

recorded using a Google Pixel 2 (Google, Mountain View, CA, USA) at 120 frames per second 

at 1980 x 1020 pixel resolution. 

Quantification of locomotor impairment and dystonia 

We used open source pose estimation software called DeepLabCut(Mathis et al., 2018; Nath et 

al., 2019) (https://github.com/DeepLabCut/) to train neural network models to label the following 

points of interest on each mouse in each recorded video: nose, body midpoint, tail base, left and 

right fore- and hindpaw tops (middle toes) and bases (pad of each paw). For open field, the four 

corners of the open field box were also labeled. To train these models, twenty frames were 

extracted from each video used for training (42 for treadmill, 28 for open field) using k-means 

extraction. We labeled points of interest manually on these frames and these labels were used 

to train and test separate models to label the above points on mice across all videos recorded 
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for each task. Models were ResNet-50-based neural network trained for at least 500,000 

iterations with 95% of frames used for training and 5% of frames used for testing the network to 

yield less than a 5 pixel train error and 5 pixel test error. These models generate X and Y 

coordinates for each labeled point and also a p-value indicative of the likelihood of correct 

labeling. If a point is not visible on a frame, its p-value is low (minimum 0). If a point is easily 

identifiable on a frame, its p-value is high (maximum 1). All coordinates used for analysis had a 

p-value greater than 0.99. 

Locomotion was assessed using the following metrics:(Broom et al., 2017)  

• For both open field and treadmill gait: number of steps taken and percent time spent in 

bipedal support vs. tripedal/quadrupedal support (analogous to human single support vs. 

double support). We note that children with CP spend a decreased amount of time in the 

single support gait phase and, consequently, spend increased time in the double support 

gait phase to compensate for decreased gait stability.(Brégou Bourgeois et al., 2014; 

Carcreff et al., 2020) The analogous finding in mice would be decreased time spent in 

bipedal support.  

• For open field alone: total distance traveled (cm) and maximum speed during a single 

second epoch (cm/sec) were also calculated (which could not be calculated for treadmill 

due to the set distance and speeds traveled). 

Dystonia was assessed using hindlimb foot angles (the angle between each hindpaw top, base, 

and tailbase). Angles were only calculated when the mouse was walking in a straight line (nose 

to body midpoint to tail base angle between 170-190 degrees) and was walking at a speed of at 

least 5 cm/sec (either on treadmill or open field) to ensure a consistent gait pattern when 

assessing foot angles.  Foot angle minimum and foot angle variance were used to measure limb 

adduction amplitude and variability, as we have previously demonstrated.(Bhooma R. 

Aravamuthan et al., 2023; Gemperli et al., 2023) All calculations were done using custom written 

code in MATLAB.  

Trained DeepLabCut models and MATLAB analysis code are available here: 

https://wustl.box.com/s/xzshevre9zsp0z6xi5qyfkzn6stfycn0 

Brain tissue processing and immunohistochemistry 

Mice were anesthetized deeply with isoflurane and transcardially perfused with phosphate-

buffered saline (PBS) and then 4% paraformaldehyde diluted in PBS. Brains were extracted and 
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then stored in 4% paraformaldehyde for 24 hours before cryoprotection with 30% sucrose in 

PBS for at least 24 hours before further processing. Brains were sliced in 50 μm sections using 

a freezing microtome. Two slices per mouse were used for quantification at 1.1 mm and 0.7 mm 

anterior to bregma, regions encompassing both the sensorimotor cortex (defined as the 

adjacent primary motor and primary sensory cortices) and the striatum. To evaluate 

parvalbumin immunoreactivity, free floating slices were immunohistochemically stained for 

parvalbumin (Primary: anti-Parvalbumin, MilliporeSigma MAB1572, 1:500 dilution; Secondary: 

goat anti-mouse Alexa Fluor™ 568, ThermoFisher Scientific, 1:500 dilution). Brain sections 

were then mounted in Fluoromount (ThermoFisher Scientific, Waltham, MA) and scanned using 

a Hamamatsu NanoZoomer 2.0 digital slide scanner (Hamamatsu Photonics K.K., Shizuoka, 

Japan).  

Parvalbumin immunoreactivity quantification 

Images were calibrated for identical brightness levels (68%) post-imaging using NDP.view2 

software (Hamamatsu Photonics K.K., Shizuoka, Japan). This brightness allowed for optimal 

viewing of neuronal staining without contamination from background staining across all brain 

slices. Images were further analyzed using ImageJ. Regions of interest (ROIs) were drawn 

bilaterally on a single non-experimental slice at 0.7 mm anterior to Bregma. These ROIs 

encompassed: 1) the primary motor and primary sensory cortices using the corpus callosum as 

a landmark, 2) the dorsal striatum using the corpus callosum as the superior and lateral borders, 

the lateral ventricle as the medial border, and the anterior commissure as the inferior border). 

The same ROIs were used on to quantify parvalbumin immunoreactivity on every slice 

assessed to ensure comparable areas were assessed for each brain. Slices were set to 8-bit 

grayscale and then thresholded identically using the MaxEntropy profile with a range of 39-255. 

ROIs were then overlayed on these thresholded slices. For quantifying parvalbumin 

immunoreactivity in the sensorimotor cortex, we calculated the percent area occupied by the 

thresholded signal within each sensorimotor cortex ROI. For quantifying parvalbumin 

immunoreactivity in the striatum, individual neuron bodies were manually counted for each ROI 

for each slice. Notably, throughout all quantification, the experimenter was blinded to the cage 

ID and experimental group of each mouse. To further avoid bias from a single slice or ROI, all 

values generated for each brain region were averaged to generate a single value for 

parvalbumin immunoreactivity for the sensorimotor cortex and a single value for parvalbumin 

neuron number for the striatum for each mouse.  

Statistics 
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All statistical analysis was done in GraphPad Prism (version 8, GraphPad Software). 

Parvalbumin immunoreactivity, locomotor impairment metrics during open field, and dystonia 

metrics during open field were compared between term and preterm mice using t-tests when 

appropriate (with normality of data sets assessed using the Shapiro-Wilk test). For data with 

unequal standard deviations between groups, a t-test with Welch’s correction was applied. For 

data that were not normally distributed, Mann-Whitney tests were used. Locomotor impairment 

metrics and dystonia metrics during treadmill gait were compared between term and preterm 

mice across three different treadmill belt speeds using a two-way repeated measures ANOVA.. 

The significance level for all tests was set a priori to p<0.05.  

Data availability  

The authors confirm that the data supporting the findings of this study are available from 

qualified investigators upon request.  

Results 

We generated 5 litters born at term gestation (mean gestational age 19.12 days, 95% CI 19.05-

19.19, range 19.03-19.23) yielding 34 term-born pups and 6 litters born at preterm gestation 

(mean gestational age 18.31 days, 95% CI 18.28-18.35, range 18.23-18.38) yielding 29 pups 

born preterm. Litter sizes trended toward being smaller for preterm born mice (3-6 pups per 

litter) compared to term born mice (5-9 pups per litter) but were not significantly different 

between groups (Figure 2). 

Mice born preterm demonstrated subtle, but nonetheless clinically relevant, motor impairments 

during treadmill and open field gait. During both tasks, mice born preterm demonstrated 

significantly reduced time spent in bipedal support compared to term born controls, suggesting 

diminished gait stability requiring increased duration tripedal or quadrupedal gait. There was no 

difference in number of steps taken during either task or in total distance traveled or maximum 

speed during the open field task (Figure 3). 

Mice born preterm also demonstrated dystonic gait features as measured by leg adduction 

variability and amplitude. These dystonic features were most pronounced during the treadmill 

task, where mice were forced to continuously ambulate at progressively increasing speeds, as 

opposed to during open field, where mice were allowed to ambulate at will at their preferred 

speeds. Compared to term born controls, mice born preterm demonstrated lower foot angle 

minimums (demonstrating greater leg adduction amplitude) and higher foot angle variance 
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(demonstrating greater leg adduction variability) during treadmill gait (Figure 4A). However, 

these metrics were not significantly different between mice born preterm and term born controls 

during open field gait when including both support phases (bipedal and tripedal/quadrupedal 

support). However, during the less stable bipedal support phase of gait, mice born preterm 

demonstrated significantly lower foot angle minimums and higher foot angle variances 

compared to term born mice, suggesting emergency of dystonia during open field when mice 

were in more challenging periods of the gait cycle (Figure 4B) 

Finally, to begin assessing cortical and striatal dysfunction in this novel model of preterm birth, 

we assessed parvalbumin immunoreactivity in the sensorimotor cortex and the striatum (Figure 

5). Mice born preterm demonstrated decreased parvalbumin immunoreactivity in the 

sensorimotor cortex compared to term-born controls as measured by the percent area stained 

within a standardized sensorimotor cortex ROI (Figure 6A). This percent area difference could 

encompass both decreased neuropil staining and decreased interneuron number (Figures 5C 

and 5D). This decrease in parvalbumin immunoreactivity is potentially selective for the cortex: 

there is no significant difference in parvalbumin neuron number in the striatum between mice 

born preterm and term-born controls (Figure 6B).  

Discussion 

We describe a new mouse model of preterm birth where mice develop subtle locomotor 

impairment (reduced bipedal support duration) and clinically-validated features of dystonia (leg 

adduction variability and amplitude). Mice born preterm also have reduced parvalbumin 

immunoreactivity in the sensorimotor cortex, but not the striatum. These data taken together 

support clinical data suggesting that abnormal sensorimotor cortex inhibition can cause dystonia 

following preterm birth. We propose that this model of preterm birth can be used to study 

potential cortical etiologies and treatment targets of dystonia in CP.  

The presence of any locomotor impairment in this model of preterm birth is an improvement 

upon many existing animal models of dystonia.(Oleas et al., 2013; Richter and Richter, 2014; Tassone 

et al., 2011) However, the mouse model most commonly used to study CP, the Rice-Vannucci 

neonatal stroke model, demonstrates much more robust motor impairment and associated 

cystic or atrophic changes in the cortex and striatum.(Rice et al., 1981; Vannucci and Back, 2022) 

The histologic findings in mice born preterm are also comparatively subtle, given a lack of 

obvious cystic or atrophic changes. Future work can also incorporate inflammatory and hypoxic 

insults together with induction of preterm birth to determine whether that results in a more 
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severe phenotype. However, we note that detailed circuit-based studies to understand dystonia 

pathophysiology require intact brain tissue to assess. Furthermore, people with CP who are 

most likely to respond to dystonia interventions clinically are those with largely intact brain tissue 

such that existing circuits can be modulated with surgical or pharmacologic 

intervention.(McClelland et al., 2018) Therefore, we view the subtle histologic and locomotor 

abnormalities demonstrated by this model as a strength for translationally focused dystonia 

research.  

The use of clinically validated dystonia measures in this study also enhances its translational 

applicability. Clasping, arguably the most extreme form of hindlimb adduction in mice, is 

primarily elicited during tail suspension, an inarguably difficult task to recapitulate in the clinic. 

By assessing dystonia during a clinically-relevant task (gait) and also by using clinically-

validated measures of dystonia in CP (limb adduction amplitude and variability), it is possible to 

assess the outcomes assessed in this mouse model directly in the clinic. We propose that our 

highest likelihood of understanding translationally relevant dystonia pathophysiology comes by 

assessing clinically validated outcome measures in animal models of disease.(Gemperli et al., 

2023)   

The role of sensorimotor parvalbumin-positive interneurons in dystonia pathogenesis after 

preterm birth requires further study. Though the reduced cortical parvalbumin immunoreactivity 

observed in this study suggests dysfunction of these interneurons, it does not necessarily 

suggest neuronal loss or reduced neuronal activity. Future work can quantify cortical 

parvalbumin-positive interneuron number and record from these interneurons ex vivo in brain 

slices prepared from mice born preterm. As we have done with striatal cholinergic 

interneurons,(Gemperli et al., 2023) direct chemogenetic modulation of sensorimotor 

parvalbumin-positive interneurons can help determine whether their dysfunction can cause 

dystonia. Finally, noting that dysfunction of these neurons has also been observed in other 

conditions that commonly co-exist with CP like autism and epilepsy,(Dos Santos Rufino et al., 

2023; Jiang et al., 2016; Juarez and Martínez Cerdeño, 2022; Påhlman et al., 2021) longitudinal 

characterization of social behavior, cognition, and seizure risk in this model of preterm birth 

would be valuable.  

In sum, we have demonstrated a novel mouse model of preterm birth that demonstrates gait 

dystonia and evidence of cortical dysfunction. This model can be used to study dystonia 

following preterm birth and may be useful to study other sequelae of prematurity.   
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Figures  

   

Figure 1. Treadmill design. 
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Figure 2. Gestational ages (A) and litter sizes (B) of mice born preterm (n=6 litters) and term-
born controls (n=5 litters). *T-test 
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Figure 3. Locomotor impairment during treadmill gait (A, two-way repeated measures ANOVA) 
and Open field (B, T-test). Mice born preterm demonstrate a reduced proportion of time in 
bipedal support during gait. 

  

D
is
ta
n
c
e
 t
ra
v
e
le
d
 (
c
m
)

N
u
m
b
e
r 
o
f 
s
te
p
s

P
ro
p
o
rt
io
n
 o
f 
ti
m
e
 s
p
e
n
t

in
 b
ip
e
d
a
l 
s
u
p
p
o
rt

N
u
m
b
e
r 
o
f 
S
te
p
s

P
ro
p
o
rt
io
n
 o
f 
ti
m
e
 s
p
e
n
t

in
 b
ip
e
d
a
l 
s
u
p
p
o
rt

A

B

*

Term
(n=34)

Preterm
(n=29)

Term
(n=34)

Preterm
(n=29)

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2024. ; https://doi.org/10.1101/2024.02.01.578353doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.01.578353
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

 Figure 4. Clinically validated dystonic gait features during treadmill (A, two-way repeated 
measures ANOVA) and open field (B, T-test). During treadmill gait, mice demonstrate decreased 
foot angle minimum and variance (A), but during open field, this is only apparent during the less 
stable bipedal support period of gait.  
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Figure 5. Example parvalbumin immunohistochemistry in mice born at term (A, C, E) and 
preterm (B, D, E) in an axial brain slice taken at 0.7 mm anterior to bregma (A, B). Regions 
magnified in C-F are indicated in A and B with rectangular boxes. C,D – sensorimotor cortex. E, 
F – striatum. Note that there is reduced parvalbumin immunoreactivity in this mouse born 
preterm compared to a term born control in the sensorimotor cortex (D vs. C) but not in the 
striatum (F vs. E). 
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Figure 6. Parvalbumin immunoreactivity in the sensorimotor cortex (A) and striatum (B). Mice 
born preterm demonstrate reduced parvalbumin immunoreactivity compared to term born 
controls in the sensorimotor cortex (A), but not in the striatum (B). *T-test 
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