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Metabolic Syndrome Induces Release
of Smaller Extracellular Vesicles from
Porcine Mesenchymal Stem Cells
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Abstract
Mesenchymal stromal/stem cells (MSCs) belong to the endogenous cellular reparative system, and can be used exogenously in
cell-based therapy. MSCs release extracellular vesicles (EVs), including exosomes and microvesicles, which mediate some of
their therapeutic activity through intercellular communication. We have previously demonstrated that metabolic syndrome
(MetS) modifies the cargo packed within swine EV, but whether it influences their phenotypical characteristics remains
unclear. This study tested the hypothesis that MetS shifts the size distribution of MSC-derived EVs. Adipose tissue-derived
MSC-EV subpopulations from Lean (n ¼ 6) and MetS (n ¼ 6) pigs were characterized for number and size using nanoparticle-
tracking analysis, flow cytometry, and transmission electron microscopy. Expression of exosomal genes was determined using
next-generation RNA-sequencing (RNA-seq). The number of EV released from Lean and MetS pig MSCs was similar, yet MetS-
MSCs yielded a higher proportion of small-size EVs (202.4 + 17.7 nm vs. 280.3 + 15.1 nm), consistent with exosomes. RNA-
seq showed that their EVs were enriched with exosomal markers. Lysosomal activity remained unaltered in MetS-MSCs.
Therefore, MetS alters the size distribution of MSC-derived EVs in favor of exosome release. These observations may reflect
MSC injury and membrane recycling in MetS or increased expulsion of waste products, and may have important implications
for development of adequate cell-based treatments.
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Introduction

Metabolic syndrome (MetS) is characterized as a cluster of

cardiometabolic risk factors that include abdominal obesity,

insulin resistance, hypertension, hyperglycemia, and dysli-

pidemia. It affects more than one-third of American adults,

and is associated with increased morbidity1. Abdominal obe-

sity is considered the predominant instigator of MetS2. Amid

the growing prevalence of obesity, the manifestation of MetS

remains a health concern. The microenvironment of MetS is

fraught with hyperinsulinemia, endoplasmic reticulum

stress, inflammation, free radical generation, and biochem-

ical changes related to cellular senescence3,4. Consequently,

MetS accelerates the risk of type-2 diabetes, chronic kidney

disease, and atherosclerotic cardiovascular diseases, ulti-

mately leading to organ injury and dysfunction5.

Mesenchymal stromal/stem cells (MSCs) constitute an

endogenous cellular repair system and are being clinically

explored as a novel therapeutic strategy for a variety of

diseases. MSCs exert their therapeutic properties by migrat-

ing to sites of injury, where they might temporarily engraft

into damaged tissues, and at times differentiate into mature
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cell lineages6,7. However, more frequently, MSCs actively

surveil the requirements of the microenvironment, and

release soluble mediators and extracellular vesicles (EVs)

that mediate their intercellular communication8. Besides

apoptotic bodies, the two main types of EVs released by

cells include exosomes and microvesicles9. Microvesicles

(100–1000 nm) are formed by cellular membrane budding,

and contain cellular cytoplasm10. Exosomes (50–130 nm)

are derived by fusion of multi-vesicular bodies with the

plasma membrane. In addition, multi-vesicular bodies can

fuse with the lysosomes where their molecular content is

degraded, and may partly serve to rid the cell of waste prod-

ucts11. The endosomal sorting complexes required for trans-

port (ESCRT) is considered to be the main machinery that

regulates exosome production, trafficking, anchorage at

plasma membrane, and release from the cell12. Endocytic

trafficking proteins such as Rho and Rab GTPases work

collaboratively with the ESCRT to control vesicular traffick-

ing13. Coordination of exosome biogenesis can also be con-

trolled, independent of ESCRT, by Rab proteins solely or

lipid rafts14.

Both exosomes and microvesicles serve as paracrine vec-

tors that package a broad range of proteins, lipids, and

nucleic acids (messenger-RNA, miRNA, and DNA) charac-

teristic of their parent cells, and deliver them to distant or

neighboring damaged cells, therein triggering a pro-

regenerative program15–18. Through their paracrine actions,

EVs participate in diverse physiologic processes, including

immune signaling19,20, angiogenesis16,21, as well as cellular

maintenance/homeostasis22. Conversely, depending on the

parent cell and the microenvironment, studies have high-

lighted a potential role of exosomes as mediators of disease

progression, such as cancer, diabetes, cardiovascular dis-

ease, neurodegenerative pathologies, obesity, and autoim-

mune disorders23. Indeed, we have shown that MetS

modulates MSC-derived EV packaging19, and cargo related

to inflammation and insulin resistance genes and proteins24.

However, the sub-populations of EVs released by MetS

remain uncharacterized.

In the present study, we compared the phenotypes of

MSC-derived daughter EVs harvested from Lean and MetS

pigs. We tested the hypothesis that MetS differentially

affects the production of exosomes compared with larger

microvesicles in MSCs.

Materials and Methods

Induction of Experimental MetS

A total of 12 juvenile female domestic pigs were randomly

placed on either a standard pig chow (Lean diet; 13% pro-

tein, 2% fat, 6% fiber, Purina Animal Nutrition LLC, Arden

Hills, MN, USA) or MetS diet (5B4 L, protein 16.1%, ether

extract fat 43.0% and carbohydrates 40.8%, Purina Test Diet,

Richmond, IN, USA)25. All animals received fresh water ad

libitum. After 16 weeks of diet, the pigs were euthanized by a

terminal intravenous injection of sodium pentobarbital (100

mg/kg IV, Fatal Plus, Vortech Pharmaceuticals, Dearborn,

MI, USA), at which time 5–10 g of subcutaneous abdominal

adipose tissue was excised in order to isolate and expand

MSC in culture. The Mayo Clinic Animal Care and Use

Committee approved this study.

MSC Culture, Characterization, and EV Isolation

MSCs were isolated and expanded from adipose tissue, as

previously described26,27. Following tissue harvest, fat was

immediately processed under sterile conditions by mincing

and digesting in collagenase-H at 37�C for 45 min. Serum-

containing medium was added to the enzymatically digested

suspension to stop the reaction. The suspension was filtered

through a 100-mm cell strainer to remove remaining tissue

pieces, and then centrifuged to pellet cells. Cells were resus-

pended in advanced minimum essential medium supplemen-

ted with 5% platelet lysate (PLTmax, Mill Creek Life

Sciences, Rochester, MN, USA), and expanded in culture

for three passages. MSCs were phenotyped by flow cytome-

try to confirm the expression of MSC-specific markers

(CD90þ and CD105þ; CD45– and CD34–), and RhoF

(Abcam, Cat. #ab101349, Cambridge, MA, USA) protein

expression evaluated using Western blot to assess vesicle

trafficking activity in MSCs. Glyceraldehyde 3-phosphate

dehydrogenase (GAPDH) served as a loading control.

MSCs were then serum-starved for 48 hr in order to sti-

mulate release of EVs in conditioned medium. MSC super-

natants were centrifuged at 2000 g for 20 min and

subsequently at 37,000 rpm for 1 hr at 4�C using an ultra-

centrifuge to isolate EVs. EVs were collected and suspended

in buffer containing 2 M sucrose and 500 mM 2-(N-morpho-

lino)ethanesulfonic acid, 4-morpholineethanesulfonic acid

(MES) at pH 6.0, and stored at –80�C until further analyses.

EV Characterization

Ultracentrifugation-based EV isolation commonly results in

a heterogeneous EV preparation, containing both small and

large vesicles that have co-pelleted. Nanoparticle tracking

analysis (NTA) permits distinguishing the subpopulations

of EVs by size, in which the most frequent size is represented

by a peak17. Therefore, EV samples were diluted in filtered

PBS and continuously run through a flow-cell top-plate at 50

mL/min on the NanoSight NS300 (Malvern Panalytical,

Westborough, MA, USA). Ten videos (30 sec each) of

Brownian motion of nanoparticles were recorded and ana-

lyzed by NTA software 3.0.

To inspect their morphology, MSC-derived EVs were

also negatively stained with 2% uranyl acetate and observed

under a transmission electron microscope. Images were

acquired on the JEOL 1400þ transmission electron micro-

scope (JEOL, Peabody, MA, USA)17. The diameters of 20

EVs were measured using image processing software Ima-

geJ, and averaged.
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For an additional measure of size, EVs were labeled with

Tag-it Violet™ tracking dye, visualized by the fluorescent

signal, and acquired by imaging flow cytometry (FlowSight,

Amnis, Seattle, WA, USA); data were analyzed using

Amnis® Image Data Exploration and Analysis Software

(IDEAS version 6.2)28.

MSC and EV RNA-Sequencing and
Bioinformatics Analysis

Next generation RNA-sequencing (RNA-seq) of MSCs and

EVs was performed as described24 using a standardized pro-

tocol. Isolated RNA from Lean and MetS pigs adipose-

tissue-derived MSC and their daughter EV were sequenced

on a HiSeq 2000 (Illumina, San Diego, CA, USA). Gener-

ated datasets were collected using the Tru-Seq SBS kit ver-

sion 3 and HCS v2.0.12 (Illumina), and analyzed on the

MAPRSeq v.1.2.1 system and Mayo Clinic’s Bioinformatics

Core standard tool, which includes TopHat 2.0.6 and feature

counts used for alignment and gene counts, respectively.

Expression values for each gene were normalized to 1 mil-

lion reads, and corrected for gene length (reads per kilobase

pair per million mapped reads, RPKM).

The molecular cargo in Lean and MetS EVs was assessed

using ExoCarta (http://www.exocarta.org/), an exosomal

database of proteins, RNA and lipids. The GeneCards® data-

base (http://www.genecards.org/) was used to screen genes

associated with exosome biogenesis from the parent MSCs.

Enriched genes in MetS-EVs and MSCs were classified as a

fold-change �1.4 and p values �0.05. Morpheus (https://

software.broadinstitute.org/morpheus/) was used to deter-

mine the differential expression between Lean- and MetS-

EVs and MSCs.

Lysosomal Activity

Because increased lysosomal activity may intensify exo-

some production in parent cells, especially under conditions

of oxidative and metabolic stresses11,29, we probed the

MSCs for lysosomal activity. An intracellular lysosomal

cell-based activity assay (BioVision, Milpitas, CA, USA)

was performed, following the manufacturer’s instructions.

MSCs (1 x 106) were exposed to a self-quenched substrate

diluted in culture medium supplemented with 0.05% FBS.

After incubation for 1 h, cells were harvested and run on the

imaging flow cytometer (488 nm excitation laser).

Statistical Analysis

Data are represented as mean + standard error and analyzed

by using JMP 14.1 Software. The normality assumption was

tested using the Shapiro-Wilk Test. Differences between

groups were tested using a one-sided two-sample t-test with

a 5% type I error rate.

Results

MSC-Derived EV Size Distribution

In our established model, following 16 weeks of high-fat diet

feeding, MetS pigs developed hypertension, dyslipidemia,

insulin resistance, and a significant increase in body weight,

in comparison to Lean pigs (Table 1).

Fig. 1A illustrates representative peaks corresponding to

exosomes and microvesicles obtained from NTA. NTA

showed that overall MetS-MSC EV yield was not different

compared with Lean-MSCs (2.9 x 108 + 0.4 vs. 3.5 x 108 +
0.7 vesicles/mL; p ¼ 0.09) (Fig. 1B). Similarly, flow cyto-

metry showed no significant difference (34% + 8.2 vs. 45%
+ 2.4, respectively; p ¼ 0.12) in the total concentration of

EV produced by Lean or MetS-MSCs (Fig. 1C). However,

NTA and transmission electron microscopy both revealed

that MetS-EVs were on average smaller in size (Fig. 1D)

(202.4 + 17.7 vs. 280.3 + 15.1 nm; p ¼ 0.005) and dia-

meter (Fig. 1E) (69.7 + 5.8 vs. 90.7 + 8.1 nm; p ¼ 0.02),

respectively, as compared with Lean-EVs. EV size distribu-

tion analyses confirmed that MetS-MSCs released overall

smaller vesicles, with a significantly higher percentage of

EVs measuring under 130 nm, compared with EVs of Lean

pigs (Fig. 1F).

Characterization of MSC-Derived EVs

Analysis of the RNA cargo of Lean- and MetS-EVs revealed

several differentially expressed exosomal genes (fold change

� 1.4, p � 0.05). Of these, 10 commonly associated exo-

some genes were enriched in MetS-EVs compared with

Lean-EVs (Figs. 2A and 2B), suggesting that exosomes are

relatively increased in abundance in MetS-EVs.

We therefore evaluated potential mechanisms of exosome

generation in the parent MSCs. There was no significant

difference in lysosomal activity between Lean and MetS

parent MSCs, as shown by the percentage of cells that take

up the substrate (Fig. 2C). We then investigated MSC

expression of RhoF – a small GTPase that modulates

Table 1. Systematic Characteristics in Experimental Groups (n¼ 6
pigs, each) at 16 weeks.

Parameter Lean MetS

Body Weight (kg) 71.1 + 13.0 91.1 + 2.5*
Mean blood pressure (mmHg) 96.4 + 12.7 127.2 + 8.5*
Total cholesterol (mg/dl) 81.1 + 6.9 438.0 + 81.9*
HDL cholesterol (mg/dl) 46.4 + 4.3 134.5 + 27.5*
LDL cholesterol (mg/dl) 32.8 + 6.0 371.7 + 143.0*
Triglycerides (mg/dl) 8.0 + 1.2 19.8 + 5.8*
Fasting glucose (mg/dl) 127.3 + 13.7 116.5 + 17.9
Fasting insulin (mU/ml) 0.4 + 0.1 0.7 + 0.1*
HOMA-IR score 0.7 + 0.1 1.8 + 0.4*

*p � 0.05 (vs. Lean); HDL, High-density lipoprotein; LDL, Low-density
lipoprotein; HOMA-IR, Homeostasis model assessment of insulin
resistance.
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trafficking in the cell. As displayed in Fig. 2D, MetS-MSCs

exhibited increased protein expression of RhoF.

Furthermore, RNA-seq analysis of the parent MSCs

showed in MetS enrichment of genes associated with

ESCRT, such as VSP36 – a component necessary for

multi-vesicular body formation (Fig. 3A). Additionally,

MetS-MSCs showed upregulated expression of 99 and 101

genes involved in the exosome biogenesis and the lipid raft

pathways, respectively (Fig. 3B and 3C). These included

several Rab family members (e.g., RAB5A, RAB14, RAB5,

and RAB3GAP) that were enriched in MetS-MSCs, as was

NPC1, a mediator of intracellular lipoprotein trafficking, as

well as TSPAN6, a gene involved in exosomal release.

Discussion

This study reveals distinct differences among EV popula-

tions released by Lean and MetS pig MSCs. We employed

quantitative analyses to characterize the phenotypic differ-

ences in Lean- and MetS-EVs released from adipose-tissue-

derived MSCs, and assessed gene expression and the activity

of the lysosome intracellularly in the parent MSCs. EVs

released from Lean pig MSCs were larger in size and rela-

tively depleted of exosomal genes. In contrast, MetS pig

MSCs released smaller vesicles that were packed with genes

commonly associated with exosomes. The exosomal nature

of MetS-EVs was supported by evident upregulation of

genes involved in the exosome production and release

machinery in the parent MSCs. Overall, these observations

demonstrate that MetS alters the size distribution of MSC-

derived EVs, and might provide insight into the modifica-

tions of MSC-EVs in MetS and the associated mechanisms

leading to EV release.

MSCs release EVs, which acts to mediate their communi-

cation with other cells, directly delivering a unique signature

of biological molecules from the parent (MSC) to the target

cell17,18. Through their paracrine effects, EVs also contribute

to the repair process15–18. We previously demonstrated that

intrarenal delivery of MSC-derived EVs attenuates inflamma-

tion and fibrosis in a porcine model of renal artery stenosis,

signifying that EVs directly boost the regenerative capacity of

the injured kidney16. Conversely, we have shown that, in a

diseased microenvironment, MetS interferes with the pro-

tein30, miRNA31, and mRNA19 content packaged within por-

cine EVs. The primary goal of this study was to extend our

previous observations, and to compare the phenotypic char-

acteristics of EVs derived from a healthy (Lean) versus MetS-

MSCs, which may impose aberrant reparative capacities.

Fig. 1. Adipose-tissue-derived MSCs from MetS pigs release smaller vesicles. (A) Representative size distribution curve by NTA. (B)–(C).
Overall concentration of secreted vesicles in Lean and MetS pigs using NTA and flow cytometry, with EV stained with Tag-it-Violet™,
tracking dye. (D)–(F). Average vesicle size (NTA), electron microscopy images showing diameter, and percentage of vesicles separated into
size increments to show size distribution in Lean- and MetS-EV. *p � 0.05, **p � 0.01, ***p � 0.005 (vs. Lean).
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Ultracentrifugation remains one of the most common

methods of EV isolation from cell culture supernatants. Cells

can release at least three different types of extracellular vesi-

cles, including apoptotic bodies, exosomes, and microvesi-

cles, with the latter two constituting the most studied EV

populations. Exosomes and microvesicles can be distin-

guished based on their size/morphology, associated protein

markers, and intracellular origin. Exosomes originate from

the endosomal multi-vesicular compartment of the cell, and

are released extracellularly following fusion of multi-

vesicular bodies with the plasma membrane. In contrast,

microvesicles, which are larger, are formed by cellular mem-

brane protrusions that bleb from the cell, and express pro-

teins reflective of the parent cell10. In this study, we

observed distinct differences in the size of EVs released by

Lean and MetS pig MSCs. Although we detected no signif-

icant difference in overall EV number released by Lean- and

MetS-MSCs, assessment of their size distribution disclosed

that Lean-EVs contained larger-size vesicles in comparison

to MetS-EVs, and that classical genes associated with

exosomes were enriched in MetS-EVs. In agreement with

our current findings, we previously found that MetS-EVs

have intensified expression of CD9, a commonly reported

exosomal marker, while proteins specific to the parent cell

(CD73) remained unchanged between Lean- and MetS-

EVs31, supporting the notion that MetS pigs may release a

higher proportion of exosomes. Interestingly, not only were

MetS-EVs on average smaller than Lean-EVs, but transmis-

sion electron microscopy demonstrated that the exosome

diameters were also smaller.

Therefore, our findings highlight that smaller EVs, likely

exosomes, are released into the extracellular environment by

Lean- and MetS-MSCs. Possibly, amplified exosome release

by MSCs might facilitate disposal or recycling of waste

products engulfed or produced by the cell in the noxious

microenvironment involving hyperlipidemia and insulin

resistance, but these may, in turn, harm neighboring or target

cells. The precise mechanisms responsible for these pro-

cesses can be speculated, based on the origin of the different

populations. Intraluminal vesicles destined for exosome

Fig. 2. Exosome genes are upregulated in MetS-EVs. (A) Statistically significant exosome genes with a fold-change�1.4, compared with Lean
EV. (B) Heat map depicting the differentially expressed exosome genes in Lean- vs. MetS-EVs. (C) Lysosomal activity assay performed using
imaging flow cytometer, showing the intensity of intracellular uptake of the self-quenched substrate and percentage of positively stained
cells. (D) Western blot analysis showed increased protein expression of RhoF in MetS-MSC. **p� 0.01, (vs. Lean); BF, Brightfield; SQS, Self-
quenched substrate; SSC, side scatter.
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release after fusion with the multi-vesicular bodies can be

regulated by the ESCRT machinery, and by various Rab

GTPases, which act to coordinate the essential stages of

vesicle biogenesis and trafficking. Indeed, RNA-seq analy-

ses demonstrated in MetS-MSCs a higher abundance of

genes known to influence exosome trafficking and fusion

to the plasma membrane, consistent with increased exosome

release activity in MetS-MSCs. For example, the ESCRT

contain more than 20 proteins that assemble to form four

different complexes that interact with the endosomal mem-

brane, and ultimately exosomes are extruded from the cell.

In addition, members of the Rab superfamily (Rab5, Rab7,

Rab9, and Rab27) aggregate with the ESCRT to modulate

different steps of exosome release and trafficking13. Further-

more, Rab11 and -35 work independently of this machinery,

and can elicit degradation of molecular content or recycling

of the cargo. Alvarez-Erviti et al.11 demonstrated that alpha-

synuclein-expressing exosomes are increased following

changes to lysosomal function, and can influence the trans-

mission of this cargo to stimulate disease pathology. Thus,

lysosome activity levels can regulate exosome secretion.

However, in our study, we found no differences in intracel-

lular lysosomal activity between Lean- and MetS-MSCs,

arguing against its effect on differences in exosome produc-

tion, and suggesting alternative production routes.

The present study is limited by several factors. A brief

induction of MetS in our experimental model was sufficient

to observe increases in cardiometabolic risk factors, but does

not fully mimic the lengthy duration of human disease or the

heterogeneous population. Additionally, the reparative func-

tion of MetS-EVs in this context will need to be interrogated

in future studies. Furthermore, the exact mechanism initiat-

ing the abundant release of exosomes in MetS-MSCs

remains to be resolved.

Conclusions

In summary, this study shows that adipose-tissue-derived

MSCs obtained from MetS pigs release smaller size EVs

consistent with exosomes, compared with those obtained

from Lean pigs. These findings extend our understanding

of EVs release from Lean and MetS-MSCs under

Fig. 3. Pathways associated with exosome production are enriched in MetS-MSCs. (A)–(C) RNA-seq has shown that genes involved
in ESCRT machinery, exosome biogenesis, and the lipid raft are enriched in MetS-MSCs, consistent with increased exosome release activity
in these cells.
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pathological conditions. Further studies are needed to deter-

mine the functional differences among those EVs.
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