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Immune privilege is an evolutionary adaptation that protects vital tissues with limited
regenerative capacity from collateral damage by the immune response. Classical
examples include the anterior chamber of the eye and the brain. More recently, the
placenta, testes and articular cartilage were found to have similar immune privilege. What
all of these tissues have in common is their vital function for evolutionary fitness and a
limited regenerative capacity. Immune privilege is clinically relevant, because corneal
transplantation and meniscal transplantation do not require immunosuppression. The
heart valves also serve a vital function and have limited regenerative capacity after
damage. Moreover, experimental and clinical evidence from heart valve transplantation
suggests that the heart valves are spared from alloimmune injury. Here we review
this evidence and propose the concept of heart valves as immune privileged sites. This
concept has important clinical implications for heart valve transplantation.
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INTRODUCTION

The term immune privilege was coined by Sir Peter Medawar in the 1940s to describe sites of the
body in which the introduction of foreign antigens does not elicit an inflammatory immune
response. While most tissues can tolerate complex inflammatory responses and immune reactions
to clear infections, some tissues are unique in the fact that even minor periods of inflammation can
have lasting consequences for the evolutionary fitness of the organism (1). Therefore, such vital
tissues with limited regenerative capacity need to be protected from collateral damage caused by the
immune response. The classical immune privileged sites are the eye, central nervous system,
placenta, testes and articular cartilage (Figure 1). Here we provide an overview of the immune
privilege of these sites, and evaluate the evidence that heart valves also have immune privilege.
OCULAR IMMUNE PRIVILEGE

Medawar’s initial investigations of transplant immunity demonstrated that both the anterior
chamber of the eye and the brain exhibit immune privilege. In his experiment, Medawar
sensitized recipient rabbits to skin allografts of donor rabbits by grafting the skin of the donor
onto the skin of the recipient (2). After the allografts were rejected by the recipients, Medawar used
the same donor-recipient pairs and implanted skin allografts from the donor rabbits into one of
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three different anatomical sites on the recipients: the skin, the
anterior chamber of the eye, and the left cerebral hemisphere.
The allografts implanted in skin were rejected rapidly, but the
allografts implanted in the anterior chamber of the eye and the
left cerebral hemisphere demonstrated a reduced rate of
rejection, i.e. immune privilege.

The tissues of the eye have a limited regenerative capacity, so
it is thought that the function of immune privilege in the eye is an
evolutionary strategy for protecting these tissues from a systemic
immune response (3). The immune privilege of the eye is
maintained via several mechanisms: the physical sequestration
of alloantigen, the presence of a local anti-inflammatory milieu,
and the induction of systemic immune tolerance (4). The
physical sequestration of antigens is achieved through a
relative absence of efferent lymphatics in the eye and the
presence of the blood-retina barrier. The blood-retina barrier is
composed of an outer layer of retinal pigment epithelial cells and
an inner layer composed of retinal microvascular endothelial
cells, both of which are upheld by tight junctions between cells
(5). These layers regulate the passage of solutes into the
microenvironment of the eye (5). The anti-inflammatory local
microenvironment of the eye is characterized by the FasL-
mediated induction of apoptosis of T cells entering the eye (6)
and the production of immunomodulatory molecules such as a-
MSH, TGFb2, and neuropeptide Y (4). There is also evidence for
the protective role of the inducible costimulatory molecule ICOS
in corneal transplantation and maintenance of immune privilege
(7). Lastly, immune privilege in the eye is mediated by the
induction of systemic immune tolerance, known as anterior
chamber-associated immune deviation (ACAID) (4). This
tolerance against alloantigens in the eye is caused by the
upregulation of regulatory T cells via a pathway involving the
presentation of the alloantigen on F4/80+ macrophages in
the spleen (4). Conversely, pathological conversion of
regulatory T cells contributes to the loss of corneal immune
privilege (8).
CENTRAL NERVOUS SYSTEM PRIVILEGE

As Medawar observed, immune privilege is also seen in the
central nervous system (CNS). Similar to the eye, the tissues of
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the CNS are essential for survival and possess a limited
regenerative capacity, thus immune privilege in the CNS
prevents damage from occurring during an immune response
(3). The immune privilege of the CNS is maintained through
physical barriers as well as cellular and molecular mechanisms
restricting traversal across these barriers (9). The physical
barriers of the CNS that maintain immune privilege are the
blood-brain barrier (BBB), which is composed of tight junctions
between vascular endothelial cells; the blood-cerebrospinal fluid
barrier (BCSFB), which is upheld by tight junctions between
epithelial cells of the choroid plexus; and the glia limitans, which
is composed of astrocyte foot processes and the parenchymal
basement membrane on the outermost layer of the CNS (9, 10).
These barriers allow antigens in the CNS to be relatively
sequestered from the immune system. The CNS parenchyma
generally does not contain adaptive immune cells, but the BCSFB
allows low numbers of adaptive immune cells to migrate into the
cerebrospinal fluid (11). Furthermore, the pericytes of the BBB
regulate transmigration of immune cells across the BBB and
promote an immunosuppressive environment by producing
TGFb (11, 12).
PLACENTAL IMMUNE PRIVILEGE

Immune privilege is also observed in the placenta during
pregnancy. The placenta contains fetal antigens, which appear
foreign to the maternal immune system. Immune privilege in the
placenta prevents the maternal immune system from rejecting
the placenta and causing spontaneous abortion. Placental
immune privilege is maintained by a physical barrier that
regulates the passage of maternal leukocytes, altered expression
of human leukocyte antigen (HLA), and molecular mechanisms
that locally inhibit T cells (13, 14). The physical barrier of the
placenta is known as the maternal-fetal interface and is
composed of a layer of fetal syncytiotrophoblast and maternal
decidua (14). This barrier separates the fetal and maternal
circulatory systems, although the fetal syncytiotrophoblast does
come into contact with maternal blood. The syncytiotrophoblast
is able to avoid recognition by the maternal immune system by
not expressing any HLA (13). Extravillous trophoblast within the
maternal decidua expresses HLA-G, which is a non-classical
FIGURE 1 | The classical immune privileged sites are the eye, central nervous system, placenta, testes and articular cartilage.
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MHC class I antigen (15). HLA-G attenuates the immune
response at the placental barrier by inhibiting maternal natural
killer and T cells (16). The placental trophoblasts also have
several other molecular mechanisms for altering T cell response:
the expression of costimulatory B7, which promotes Treg
activation; the production of indoleamine 2,3-dioxygenase
(IDO), which starves T cells of tryptophan; and the expression
of FasL and TNF-related apoptosis-inducing ligand (TRAIL),
which induces the apoptosis of T cells (17).
TESTICULAR IMMUNE PRIVILEGE

The testis is another anatomical site possessing the properties of
immune privilege. Spermatogenesis within the testis produces
highly immunogenic spermatozoa, which express different
antigens than somatic cells. Testicular immune privilege
serves to prevent the systemic immune response from
impacting fertility. Immune privilege in the testis occurs
because of its unique physical structure, an anti-inflammatory
local environment, and systemic immune tolerance (13).
Antigens within the innermost portion of the seminiferous
tubules of the testis are physically sequestered from the
immune system by the blood-testis barrier, which is formed by
adjacent Sertoli cells tethered via specialized junctions near the
basement membrane of the seminiferous epithelium (14). The
local environment of the testis is immunosuppressive and is
characterized by the expression of TGFb1-b3, IL-10, and activin
A, the last of which inhibits the expression of IL-1 and IL-6
(13). Additionally, androgens are believed to play a role in
maintaining the local immunosuppressive environment within
the testis (13). Testicular macrophages and dendritic cells are less
responsive to antigens than they are in other tissues (15, 18).
Furthermore, the testis contains regulatory T cells, which
attenuate the immune response (19).
CANCER PRIVILEGE

More recently, cancers have been identified as immune
privileged sites. Cancer cells contain mutations that produce
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antigens which appear foreign to the host immune system.
Consequently, immune privilege is advantageous in cancer
because it allows the cancer to evade the host immune system
(20). There are a very large number of possible cancer mutations,
and each type of cancer may possess unique mechanisms of
immune privilege depending on the mutations it has accrued
(21). Generally, cancers can avoid the host immune system by
downregulating the activation of T cells through the expression
of checkpoint proteins, expressing enzymes and ligands that
induce the apoptosis of T cells, and maintaining an
immunosuppressive microenvironment (21, 22). Cancers may
express checkpoint molecules such as cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) and programmed cell death
protein ligand 1 (PD-L1), which negatively regulates the
activation of T cells (21, 22). Cancers can also express other
proteins such as FasL and IDO, which can induce T cell
apoptosis (21, 22). Additionally, the immunosuppressive
microenvironment of cancers can be characterized by the
upregulation of anti-inflammatory cytokines, such as IL-10 and
TGFb (21, 22). These cytokines limit the activation of the host
immune response.
IMMUNE PRIVILEGE OF HEART VALVES

Heart valves share many features with the immune privileged
sites discussed above. Like classic immune privilege sites, the
heart valves are of vital importance to the organism, ensuring
that blood flows in a single direction from the heart, through the
lungs, and to the rest of the body. Furthermore, heart valves,
which are composed of an interstitial core lined by endothelium,
have limited regenerative capacity (Figure 2). Injury to these
tissues has potentially immediate fatal cardiac or systemic
consequences (23). Therefore, similar to immune privileged
sites, very little inflammation can be tolerated in the heart
valves without detrimental effects for the organism. In fact,
because heart valves cannot regenerate spontaneously, diseases
involving the heart valves frequently necessitate surgical
replacement (23). The earliest surgical implants used for valve
replacement were homografts. Aortic homografts have been
inserted into the subcoronary position since 1962 (24, 25).
FIGURE 2 | The aortic valve is in continuity with the aorta and the myocardium. It is composed of an endothelial lining and an interstitial core.
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Contrary to organ transplants which require immediate and
lifelong immunosuppression, allograft heart valve implants
display long-term functionality without HLA and ABO
matching and without immunosuppression of the recipient
(26). Furthermore, even transplanted hearts that have failed
due to rejection have been shown to have functionally and
structurally intact semilunar valves, suggesting valves may be
immunologically distinct from heart tissue (27–29). Several other
studies have noted the aortic valve as a possible immune
privileged site (30–32). In a study done by Mitchell and
colleagues looking at the aortic valves from transplanted
hearts, they found the aortic valves maintained near-normal
overall architecture and cellularity, without apparent
immunologic injury, even in the setting of fatal myocardial
rejection or graft arteriosclerosis (27). When they looked at
explanted cryopreserved allografts in the same study, they
found no differences in valves from allografts failing due to
severe parenchymal rejection regardless of immunosuppression
regimen, nor in valves from allografts having as many as 12
rejection episodes. They therefore concluded that there was no
valvular destruction, dysfunction, or morphological effect
resulting from cell-mediated immune injury (27).

A similar study by Valente and colleagues also looked at the
aortic valve after heart transplantation and found that valve
competence and cusp pliability were maintained even in long-
term specimens, with no cases of valve dysfunction or significant
calcification (28). Interestingly, the study noted concomitant
subendothelial lymphocytic infiltrates and aortic valve edema in
cases with acute myocardial rejection, however this did not appear
to compromise the long-term viability or durability of the valve.
Tissue viability was confirmed by histology and showed perfectly
preserved fibroblasts both early and in the long-term (28).

Similarly, O’Brien and colleagues were able to demonstrate
long-term viability of homografts with chromosomal analysis
that demonstrated the persistence of male donor cells in culture
of fibroblasts from a valve leaflet removed over 9 years after
implantation in a female recipient, indicating donor cells are able
to survive and proliferate without destruction by the host
immune system (33). Another study performed by O’Brien
et al. examining aortic valves from six transplanted hearts
found that while there was some evidence of interfibrillary
edema and mild cellular infiltrates, the general appearance was
essentially that of normal, viable valves (29).

Furthermore, Balch et al. concluded that blood group rhesus
mismatch are not associated with an increased risk of valve
degeneration in fresh allograft valves (34).

Several animal studies have also indicated that aortic valves
may be immunologically distinct from other cardiac tissues.
Chen et al. demonstrated that while porcine hearts
transplanted into baboon recipients were hyperacutely rejected
within hours after implantation, the aortic and pulmonary valves
were entirely spared, with no signs of IgM- or membrane attack
complex- mediated damage (32). Another study reported no
microscopic evidence of rejection in fresh canine aortic valve
allografts transplanted to subcoronary sites when the animals
were pre-sensitized with skin grafts after 10 days (30).
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Additionally, Heslop et al. found no acceleration of skin graft
rejection in rats who received subcutaneous implantation of
aortic valve leaflets (35). In attempt to delineate the role of
immune-mediated injury in allograft valve failure, several animal
models were utilized and found that aortic valves heterotopically
implanted into the abdominal aorta resulted in greater
inflammatory infiltration and structural deformity in allogeneic
transplants as compared to syngeneic ones (31, 36, 37). Other
studies using similar models showed daily treatment with
cyclosporine prevented leaflet structural integrity and inhibited
cellular infiltration, suggesting that early valve leaflet failure is
immune mediated (38, 39). However, of note, to prevent local
thrombosis in these animals models, one valvular cusp is often
rendered incompetent to ensure the sinuses of Valsalva are
washed out (40, 41). Therefore, since the valves are non-
functional, they are not satisfactory models to study the effect
of alloreactivity on the function of aortic valve allografts.
Furthermore, these heterotopically placed aortic valves
typically fail by retrovavular thrombosis, which is used as a
maker for immune-mediated damage in these studies. However,
thrombosis in human allografts is rare, indicating their findings
may not be clinically translatable. Additionally, to implant the
aortic valve into the abdominal aorta, a relatively greater length
of aorta as well as the attached myocardium on the ventricular
side of the valve graft must be retained, which are important
sources of antigen that may be contributing to the immune
response detected in these models (31).

Others have proposed that heart valves are in fact antigenic
and capable of eliciting an immune response in its host (42–44).
Moreover, while the fact that homografts are usually
transplanted without matching the donor and recipient for
blood group or human leukocyte antigens and without
immunosuppression points to a potential immune privilege-
like property of semilunar valves, homografts are prone to
failure, particularly in children. In children younger than 3,
allograft failure may be as high as 70% with a mean
replacement interval of 1.9 years after the original operation
(45). Interestingly, in one study looking at failed homografts, all
the valves examined from infants contained a lymphocytic
infiltrate, while the failed homografts from adults showed
leaflet calcification and fibrosis but no inflammation (46).
While several factors such as preparation, handling,
hemodynamic, technical, or infectious causes may contribute
to this deterioration, many suggest an immunologic basis for
failure of aortic valve allografts despite previous notions that
valves are spared from rejection. For instance, cryopreserved
allografts have been found to induce a detectable donor HLA-
specific humoral response, however the location of induction and
amplification of the immune response to aortic valve allografts
remains less certain (47).

Most regard valvular endothelial cells as the main target cells
in the immune response directed against aortic valve allografts
(42, 44, 48). Li et al. demonstrated an immune response to
homograft valve endothelial cells both in vivo and in vitro, and
found that FasL can be overexpressed in endothelial cells to
modify the cells’ immunological behavior (48). Another study
August 2021 | Volume 12 | Article 731361
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found valvular endothelial cells expression of intercellular
adhesion molecules-1 (ICAM-1) and E-selectin, which play
critical roles in peripheral blood mononuclear cell attachment
and initiation of immune responses (44). Interestingly, the same
study found cryopreserved allograft valves were almost always
completely denuded while valves obtained from previous
transplanted hearts contained a confluent layer of valvular
endothelium with no signs of re-endothelization by the
recipient, indicating they were resistant to degeneration when
implanted fully viable, without previous cryopreservation, into a
recipient receiving systemic immunosuppresion (44). However,
despite evidence that the endothelial cells act as an antigenic
surface for the valves and may contribute to long-term
degeneration, the use of valves containing viable endothelial
cells have resulted in significant improvements in the long-
term performance of homografts (49).

Therefore, one the one hand, aortic valve allografts have
successfully been implanted donor-recipient matching or
immunosuppression, and aortic valves from transplanted
hearts appear to be relatively spared from immune-mediated
damage, indicating valves may have immune-privilege. It is
therefore reasonable to conclude there is something
immunologically distinct about the valve itself or the sub-
coronary position.

On the other hand, there is a body of evidence that aortic valves
are in fact immunogenic and capable of eliciting a donor-specific
immune response in the recipient. However, it is unknown
whether or to what extent this alloreactivity ultimately results in
valve allograft failure.
POSSIBLE MECHANISMS FOR HEART
VALVE IMMUNE PRIVILEGE

There are several potential mechanisms that may contribute to
heart valves’ relative resistance to immune injury. These
properties may be a result of intrinsic characteristics of the
valve itself or as a result of anatomical and physiologic aspects
of the sub-coronary position.

Some have postulated that the homologous aortic valve may
be inherently un-immunogenic or demonstrate low antigenicity
(30, 35). Interestingly, Heslop et al. found that whole aortic valve
allografts implanted into the abdominal aorta unequivocally
mounted an immune response while valve leaflets alone were
ineffectual (35). They concluded antigenicity resides
predominantly in the rim of the cardiac muscle, while
allogenic aorta elicited a less pronounced response and valve
leaflets were not demonstratable immunogenic. They also
showed the antigenicity of whole aortic valve grafts was low in
comparison to other tissues such as skin, kidney, and heart
muscle (35). Mousthapha and colleagues also commented on the
importance of the transplanted myocardial cuff, stating that the
massive infiltration of polymorphonuclear leukocytes seen in
both syngeneic and allogeneic grafts may be a result of a non-
specific inflammatory reaction caused by ischemic necrosis of the
Frontiers in Immunology | www.frontiersin.org 5
myocardial cuff. This PMN spill over resulting in medial cell loss
may be the source of the release of cytokines and growth factors
resulting in the up-regulation of cell adhesion molecules, which
may contribute to the initial infiltration of lymphocytes or
potentiate thrombosis (36). Mitchell et al. similarly postulated
that the lower metabolic demand of valves compared to
myocardium may result in less ischemic injury and
consequently less ischemia-induced up-regulation of adhesion
molecules (27).

While aortic valve leaflets themselves may be less antigenic
than their surrounding tissue, finite quantities of myocardium
and aorta are necessarily implanted with the valve in human
valve transplantation (31). Additionally, with the mounting
evidence that aortic allograft valves are in fact antigenic,
another explanation must be considered to explain valves’
seemingly resistance to rejection (31, 42, 44, 48, 50–52). It is
reasonable to theorize that valve allografts may be a low-visibility
target for the host immune system because no microvasculature
develops between the host and the graft (31, 46, 50). In addition
to the lack of blood vessels in cardiac valves, the hemodynamics
of the sub-coronary position may also have a protective factor.
The aortic valve is constantly in motion within a fast-moving
stream, with washing jets from the sinuses of Valsalva. This high-
pressure and high flow over the valves, relative to slower flow
within the myocardium, may nullify the chemotactic response
(27, 53). Additionally, protein expression is closely regulated in
endothelial cells and may be modulated by the shear force
exerted on valvular endothelium. Specifically, expression of
proteins such as major histocompatibility complex antigen and
vascular cell adhesion molecule 1 are known to be influenced by
flow rate (54, 55). Interestingly, in a study done in canines,
subcutaneously implanted homologous aortic valves showed
infiltration by plasma cells and lymphocytes while no round
cell infiltration characteristic of immune reaction was
demonstrated in orthotopically transplanted leaflets, suggesting
something unique about the subcoronary position—perhaps the
hemodynamic of the environment (30).

Furthermore, it is possible that leaflet tissue has a distinct
mechanism of trafficking effector cells. One study found that
treatment with anti-a4/b2 integrin resulted in significant
reduction in leaflet infiltration by macrophages, T-cells, and
CD8+ T cells in a rat model (38). However, the same blockade
was unable to reduce monocyte or macrophage infiltration in the
adventitia of the graft, indicating valve tissue may have a distinct
pathway for immune cell chemotaxis that differs from its
surrounding tissue.

Yet another explanation for the relative immune sparing
properties of heart valves may lay within the valve interstitial
cells. Valve endothelial cells and interstitial cells express similar
levels of human leukocyte antigens and adhesion and
costimulatory molecules, however, it is only the endothelial
cells that are immunogenic (50). In fact, while T-cell responses
to endothelial cells were detected after interferon gamma
treatment, no response was detected after interferon gamma-
treated interstitial cells, resulting in the induction of T-cell
anergy (50). Moreover, the addition of the costimulatory
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molecule B7-1 restored full T-cell activation against the valve
interstitial cells, suggesting these cells are deficient in a
costimulatory factor which appears to be present on
endothelial cells. It is therefore possible that the donor-specific
T-cell anergy induced by valve interstitial cells may counteract
the immunogenic valvular endothelial cells, resulting in the
relative immune sparing phenotype observed in heart valves.

Finally, a possible unique mechanism for the immune
privilege of heart valves could be inhibition of immune cell
extravasation in the context of rapid blood flow in the aorta,
combined with the vigorous movement of the opening and
closing valve leaflets (Figure 3).
CLINICAL IMPLICATIONS OF
IMMUNE PRIVILEGE

Immune privilege has important clinical implications. With
immune privileged sites, there are fewer immunogenic processes
that need to be disrupted to prevent rejection. This is exemplified
by corneal transplantation. Because there is little to no rejection
seen in corneal transplantation, it has become the most successful
human solid organ transplantation (56). In the cornea,
hemangiogenesis and lymphangiogenesis, immune-modulating
factors and the immunogenic potential of the corneal tissue can
all be inhibited using local agents without the need for systemic
immune suppression. Topical antagonistic antibodies, localized
gene therapy and inhibitory immune checkpoint expression can
all be used (2). These types of immunosuppression reduce the
need for systemic immunosuppression because they can be
applied to the corneal tissue only (57). Once the donor cornea
is implanted in the recipient, the anatomic, molecular and cellular
barriers of the eye, such as the blood-ocular barrier, prevent
Frontiers in Immunology | www.frontiersin.org 6
a majority of immune molecules and cells from accessing the
site, reducing the number of immunogenic processes that
occur (56).

Knee meniscal transplantation is similar to corneal
transplantation because the meniscus is another immune
privileged site in the body. There are no adverse immunological
reactions or allograft transplant rejections seen in animal models
(58, 59). This transplantation has been shown to decrease pain,
reduce swelling and be chondroprotective by improving peak
contact stresses and total contact area in the knee in humans (60,
61). Both corneal and knee meniscal transplantation greatly
improve the quality of life of patients through restoring vision
and ambulation, respectively, in addition to reducing pain. The
potential clinical implications of transplanting immune privileged
heart valves are huge because they could save lives of patients with
disease valves, improve the quality of life they lead and decrease
the need for systemic immunosuppression and decrease the
associated side effects.

Immune privilege of heart valves also has important clinical
implications. For example, allograft heart valve implants display
long-term functionality without HLA and ABO matching even
in the absence of immunosuppression of the recipient (26).
Moreover, it raises the possibility that heart valve transplants
may grow adaptively with children with limited or no need for
immune suppression (62).
CONCLUSION

Immune privilege is a spectrum of evolutionary adaptations that
protect vital tissues with limited regenerative capacity from
collateral damage by the immune response. There is evidence
that heart valves are on the spectrum of immune privileged sites.
FIGURE 3 | A possible mechanism for the immune privilege of heart valves could be inhibition of immune cell extravasation in the context of rapid blood flow in the
aorta, combined with the vigorous movement of the opening and closing valve leaflets.
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The mechanism could be related to inhibition of immune cell
extravasation in the context of rapid blood flow combined with
the vigorous movement of the opening and closing leaflets.
This also has important clinical implications for heart
valve transplantation.
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