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Electroencephalogram- (EEG-) based brain-computer interface (BCI) systems usually utilize one type of changes in the dynamics
of brain oscillations for control, such as event-related desynchronization/synchronization (ERD/ERS), steady state visual evoked
potential (SSVEP), and P300 evoked potentials. There is a recent trend to detect more than one of these signals in one system to
create a hybrid BCI. However, in this case, EEG data were always divided into groups and analyzed by the separate processing
procedures. As a result, the interactive effects were ignored when different types of BCI tasks were executed simultaneously. In this
work, we propose an improved tensor based multiclass multimodal scheme especially for hybrid BCI, in which EEG signals are
denoted as multiway tensors, a nonredundant rank-one tensor decomposition model is proposed to obtain nonredundant tensor
components, a weighted fisher criterion is designed to select multimodal discriminative patterns without ignoring the interactive
effects, and support vector machine (SVM) is extended to multiclass classification. Experiment results suggest that the proposed
scheme can not only identify the different changes in the dynamics of brain oscillations induced by different types of tasks but also
capture the interactive effects of simultaneous tasks properly. Therefore, it has great potential use for hybrid BCI.

1. Introduction

Brain-computer interface (BCI) system, also known as a
brain-machine interface, is designed to translate human brain
signals into commands to control an external device [1]. It
provides a direct communication pathway between human
brain and computer or machine and is most helpful to people
with severe motor disabilities [2]. Since the scalp-recorded
electroencephalogram (EEG) has an exquisite temporal reso-
lution in the order of millisecond and is a noninvasive brain
signal measurement, it has been the most popular sensory
signal used for BCI [3].

EEG-based BCI systems usually utilize changes in the
dynamics of brain oscillations for control, such as event-
related desynchronization/synchronization (ERD/ERS) with
imagined movements, steady state visual evoked potential
(SSVEP), P300 evoked potentials, and related components
[4, 5]. Conventional BCIs typically use only one of these
signals and have not been practically applicable because of
the lack of reliability, low accuracy, and low information

transfer rate (ITR) [6]. Therefore, there is a recent trend
to combine different types of BCIs to create hybrid BCI,
which could help improve ITR, usability, accuracy, speed,
and other features. Pfurtscheller et al. took a motor imagery-
(MI-) based BCI as a self-paced brain switch to initiate a
four-step SSVEP-based BCI [7]. Li et al. designed hybrid
BCI systems that combined P300 potential and MI-based
BCIs for multidimensional control, for example, 2D cursor
control [8] or the direction and speed control of a wheelchair
[9]. Wang et al. introduced a hybrid BCI paradigm using
P300 and SSVEP could significantly improve the classifica-
tion accuracies and ITR [10]. Allison et al. confirmed that
by detecting MI and SSVEP simultaneously classification
reliability can be improved [5]. Our previous studies [11, 12]
proposed a hybrid BCI combining SSVEP and MI-based
ERD, and the system could generate parallel multidegree
commands for real wheelchair navigation. More and more
studies show hybrid BCIs, especially those working in a
simultaneous manner [12–19], can reduce disadvantages of
each conventional BCI system and increase efficiency and

Hindawi Publishing Corporation
Computational Intelligence and Neuroscience
Volume 2016, Article ID 1732836, 15 pages
http://dx.doi.org/10.1155/2016/1732836

http://dx.doi.org/10.1155/2016/1732836


2 Computational Intelligence and Neuroscience

flexibility of control by detecting two or more different types
of BCI tasks.

In EEG-based BCI, distinctive patterns induced by spe-
cificmental task can be identified andutilized for information
transmission by the EEG classification algorithm. Effective
and accurate feature extraction and classification are of
paramount importance for the success of the BCI [2]. Accord-
ing to the characteristics of applied signals, conventional BCIs
rely on time-frequency or temporal-spatial analysis for fea-
ture extraction and classification. For example, themost com-
monly used techniques in time-frequency analysis include
Fourier transforms (FT) [20], autoregressive (AR) mod-
els [21], wavelet transform [22], and canonical correlation
analysis (CCA) [23], while the temporal-spatial techniques
typically used are independent component analysis (ICA)
[24] and common spatial patterns (CSP) [25]. Although
many signal analysis methods have been well developed in
conventional BCI research, there is no algorithm focusing on
the hybrid task classification. Now, in the hybrid BCI systems,
different types of tasks are detected separately. In this case,
EEG data collected in hybrid tasks are divided into individual
groups and fed into separate processing procedures [7–19].
For example, in the hybrid BCIs combining SSVEP and MI,
including our previously developed hybrid BCI [11, 12], the
data from occipital channels were selected for SSVEP tasks,
and the spectral features or other related features (e.g., CCA
coefficients) were calculated to identify the SSVEP target.
On the other way, specific algorithms to detect the ERD
phenomena (e.g., CSP algorithm) were applied in the data
from the parietal channels to discriminate the MI tasks [12,
14, 18, 19]. As a result of separate processing procedures,
the interactive effects were ignored when different types
of tasks were executed simultaneously. Therefore, although
those methods could achieve reasonable results, they are not
optimized for hybrid tasks classification.

There is an increased interest to represent EEG data as a
multiway array named tensor, and tensor decomposition can
be applied to exploit the characteristics of data among mul-
tiple modes [26–29]. Our previous work [30–32] proposed
several tensor based schemes for EEG classification, in which
single trial EEG data were denoted by multiway tensors and
various tensor decomposition methods were proposed for
multimodal analysis. However, those previous schemes were
all designed for binary classification in conventional BCIs and
cannot be applied in hybrid BCI as the number of the tasks
in the hybrid paradigm increases greatly. Take our previously
developed hybrid BCI [12], for example; the number of the
hybrid tasks is the sum of the number of individual tasks
and the number of simultaneous tasks, and that is fourteen
for our hybrid BCI combining of two-class MI and four-class
SSVEP. In particular, in this case, the tensor decomposition
methods presented in the previous schemes would produce
numerous tensor components, which result in the fact that
the significant components reflecting the interactive effects of
simultaneous tasks are overwhelmed with lots of redundant
ones.

Therefore, in this work, we propose an improved tensor
based multiclass multimodal analysis scheme especially for
hybrid BCI, in which EEG signals of the hybrid tasks are

denoted asmultiway tensors, a nonredundant rank one tensor
decomposition model is proposed to obtain nonredundant
tensor components, a weighted Fisher criterion is designed
to select multimodal discriminative patterns among hybrid
tasks without ignoring the interactive effects of simultaneous
tasks, and support vector machine (SVM) is extended to
multiclass classification for hybrid tasks. Applications in
three datasets suggest that the proposed scheme can not
only identify the different changes in the dynamics of brain
oscillations induced by different types of tasks, but also
capture the interactive effects of simultaneous tasks properly.

2. Tensor Based Multiclass
Multimodal Analysis Scheme

The proposed tensor based multiclass multimodal analysis
scheme for hybrid BCI is illustrated in Figure 1. In this
scheme, first, multichannel EEG data of hybrid tasks are
transformed into multiway tensors representation in mul-
timodes of channel, time, and frequency domain, and for
each hybrid task, including individual tasks and simultaneous
tasks, the assembled tensors in training dataset are calculated.
Second, a nonredundant rank one tensor decomposition
model is proposed to obtain the nonredundant rank one
tensor components from the assembled tensors. Third, pro-
jection coefficients to the selected rank one tensors for each
hybrid task are calculated and concatenated as the feature vec-
tors. Fourth, a weighted Fisher criterion especially regarding
the interactive effects of simultaneous tasks is proposed to
select discriminative features and then obtain discriminative
multimodal patterns among hybrid tasks. Finally, multiclass
SVM is applied to multiclass classification for hybrid tasks.
Each component is described in the following subsections.

2.1. EEG Signal of Hybrid Tasks Multiway Representation.
Multichannel EEG signals can be added to the spectral
modality by wavelet transform and yield a three-way tensor
data (this step is conducted in the same way as proposed in
our previous work [30, 31], and detailed description can be
found in [30]). Let 𝑋(𝑐,𝑓,𝑡) denote the convolution amplitude
with a wavelet, at 𝑐th channel, 𝑓th frequency, and 𝑡th time.
Then for each class of hybrid tasks, the assembled tensors are
calculated as follows:

𝑋(𝑐,𝑓,𝑡)

𝑖=1,...,𝑚
=

𝑖

∑

𝑗=1,...,𝑛𝑖

𝑋(𝑐,𝑓,𝑡)𝑗
. (1)

Here, 𝑖 = 1, . . . , 𝑚 denotes the different class of hybrid
tasks, and there are 𝑛𝑖 trials for each class of hybrid tasks.
Owing to the multiway representation, it becomes possible
to exploit the different characteristics for different types of
hybrid tasks simultaneously.

2.2. Nonredundant Rank One Tensor Decomposition. Tensor
decomposition can analyze multiway data without losing
some potential information among modalities [26]. Parallel
factor analysis (PARAFAC) decomposition is a classic tensor
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Figure 1: Tensor based multiclass multimodal analysis for hybrid tasks.
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Input: 𝑛–order tensor:𝑋, and the given number of components: 𝑟
Output: 𝑟 rank-one tensor 𝑟
Initialization:

for 𝑖 = 1 to 𝑟 do
set 𝑢𝑖𝑑|

𝑛
𝑑=1 as the first principle component on all modes of tensor𝑋;

Method:
(1) Repeat
(2) for 𝑑 = 1 to 𝑛 do

(3)𝑊𝑑 = mat
𝑑

(𝑋

𝑛

∏

𝑘=1;𝑘 ̸=𝑑

𝑢
𝑖

𝑘)

(4) Set 𝑢𝑑 as the first principle component of𝑊𝑑
(5) End for
(6) Until ∑𝑛𝑑=1 ‖𝑢

(𝑖)
new

𝑑
− 𝑢
(𝑖)

old

𝑑
‖
2
≤ 𝜀

(7) Calculate the projection coefficient to the 𝑖th tensor

(8) 𝜆𝑖 = 𝑋

𝑛

∏

𝑑=1

𝑢
𝑖

𝑑

(9)𝑋 = 𝑋 − 𝜆𝑖

𝑛

∏

𝑑=1

𝑢
𝑖

𝑑

(10) for𝑚 = 1 to 𝑖 − 1 do
(11) Calculate the correlation coefficients 𝑐1, 𝑐2, . . . , 𝑐𝑛 between the 𝑖th tensor and the𝑚th tensor on all modes
(12) if abs(𝑐1 ∗ 𝑐2 ∗ ⋅ ⋅ ⋅ ∗ 𝑐𝑛) > 𝜉, then reject the 𝑖th tensor; end if
(13) End for
(14) End for

Algorithm 1: The nonredundant rank one tensor decomposition algorithm.

decomposition model and has been successfully used as an
exploratory tool in the analysis of EEG signals [28]. Com-
pared to other popular tensor models, for example, Tucker
model [33], nonnegative multiway factorization (NMWF)
[29], the number of components included in the model can
be directly limited and the patterns of components are easily
interpretable [34], which are very important for EEG analysis
for hybrid BCI with a large number of tasks. However, the
components in the model are out of order. Besides, the given
number of components greatly impacts on the decomposi-
tion results. Our previous work [32] proposed an ordered
PARAFACmodel to find a set of ordered tensor components.
Although it ensures achieving a more stable model under
mild conditions than classic PARAFAC model, redundant
components increase dramatically with increasing number of
tasks in the hybrid paradigm, which directly impacts further
feature extraction for the hybrid tasks. Therefore, in order
to overcome this issue, a nonredundant rank one tensor
decomposition model is especially developed in this work.

For each class of hybrid tasks, the assembled tensor
𝑋(𝑐,𝑓,𝑡)

𝑖=1,...,𝑚 is decomposed into sums of nonredundant
rank one tensors by the proposed nonredundant rank one
tensor decomposition model, which is described as shown in
Algorithm 1.

2.3. Tensor Projection. By the proposed nonredundant
rank one tensor decomposition, the assembled tensors
𝑋(𝑐,𝑓,𝑡)

𝑖=1,...,𝑚 could be decomposed into sums of nonredun-
dant rank one tensors. Each rank one tensor can be denoted as
the outer product of the unit vectors. Let 𝑢1,𝑖

𝑗
I𝑢
2,𝑖
𝑗
I𝑢
3,𝑖
𝑗
define

the 𝑗th rank one tensor for the 𝑖th class of the hybrid tasks;
then for each tensor data𝑋(𝑐,𝑓,𝑡), projection coefficients to the
nonredundant rank one tensors are calculated, respectively,
as follows:

𝑐𝑗=1,...,𝑟
𝑖=1,...,𝑚

=

(𝑢
1,𝑖
𝑗
I𝑢
2,𝑖
𝑗
I𝑢
3,𝑖
𝑗
)
𝑇
𝑋

((𝑢
1,𝑖
𝑗
I𝑢
2,𝑖
𝑗
I𝑢
3,𝑖
𝑗
)
𝑇
(𝑢
1,𝑖
𝑗
I𝑢
2,𝑖
𝑗
I𝑢
3,𝑖
𝑗
))

. (2)

Then those projection coefficients for each hybrid task are
concatenated as the feature vectors.

2.4. Discriminative Multimodal Patterns Selection. As men-
tioned before, there is no algorithm focusing on the hybrid
task classification. So far, EEGdata of hybrid tasks are divided
into individual groups and fed into separate processing
procedures. In this case, the interactive effects on distinctive
patterns are totally ignored when different types of tasks are
executed simultaneously. Fisher score has been used to select
discriminative features for binary classification in our previ-
ously proposed tensor based scheme [30]. Here, we propose a
weighted Fisher criterion for multimodal patterns selection,
in which greater weights are given to simultaneous tasks to
help extract the distinctive patterns when different types of
tasks are executed simultaneously rather than individually.

Let 𝑐𝑗
𝑖 denote the 𝑗th (1 ≤ 𝑗 ≤ 𝑁𝑖) feature in the

𝑖th (1 ≤ 𝑖 ≤ 𝐶) class, 𝑚𝑖 = (1/𝑛𝑖) ∑
𝑛

𝑗=1 𝑐𝑗
𝑖 is the mean value

for this feature in the 𝑖th class, and 𝑚 = (1/𝑛𝑖) ∑
𝑐

𝑖=1 𝑛𝑖𝑚𝑖

is the mean value for this feature in all classes. Given 𝑐𝑗
𝑖,

the corresponding weighted Fisher criterion is defined by the
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Figure 2: A visualization example of the assembled tensor for the left hand MI task. The spectrograms are shown at each channel according
to channels distribution over scalp, with time ranging from 0 to 4 s and frequency ranging from 5 to 30Hz. The spectrograms at C3, Oz, and
C4 channels are enlarged in the bottom.

ratio of the weighted between-class variance to the within-
class variance, as follows:

𝐽𝑗 =

∑
𝑐

𝑖=1 (𝑛𝑖/𝑛) × 𝑑𝑖 (𝑚
𝑗

𝑖
− 𝑚
𝑗
)
2

(1/𝑛)∑
𝑐

𝑖=1∑(𝑥
𝑗

𝑖
− 𝑚𝑗)

2
, (3)

where 𝑑𝑖 = 1 for each individual task and 𝑑𝑖 = 1 + 𝜏 for each
simultaneous task (𝜏 is a positive parameter and is tuned dur-
ing the training procedure for each subject). For the 𝑖th class
of hybrid task, the weighted Fisher criterion ratios of features
𝑐𝑗=1,...,𝑁𝑖

𝑖 are computed, and then features with ratio greater
than a given threshold value are retained as the discriminative
features. The corresponding multiway subspaces of rank one
tensors are selected as the discriminativemultimodal patterns
for this hybrid task. Given the greater weights, the interactive
effects of simultaneous tasks would not be overwhelmed in
the individual patterns when the number of tasks increases
greatly in hybrid BCI.

2.5. Multiclass Hybrid Task Classification. SVM [35] has been
applied to pattern classification in various fields and achieves
good results due to its excellent generalization ability [36].
In BCIs, SVM also acquires top level performance [37–39].
For a linearly separable binary classification problem, SVM
constructs a maximum-margin hyperplane to separate the

two classes of samples. Moreover, SVM can also map sam-
ples into high-dimensional spaces and perform a nonlinear
classification by kernel trick efficiently.

In this scheme, a multiclass SVM method is applied for
hybrid task classification. For 𝑘-classes of hybrid tasks, we
convert the multiclass classification into the two-class classi-
fications by constructing 𝑘(𝑘 − 1)/2 binary classifiers. Each
binary classifier solves the two-class classification problem
between the hybrid tasks. By this approach, the multiclass
classification for hybrid tasks is converted into the two-class
classification. We choose the Gaussian radial basis function
(RBF) as the kernel function, and the SVM parameters, 𝑐 and
𝛾, are selected by a grid search using 5-fold cross-validation
in the training data.

3. Data Description

Three different types of EEG datasets collected in our hybrid
BCI study experiment [12] were applied, and we added
two more healthy male subjects afterwards using the same
experimental setup. There were totally nine subjects in this
work. During the data collection, they were required to
perform individual MI tasks, individual SSVEP tasks, and
hybrid tasks of MI and SSVEP, respectively. MI tasks were
to imagine movements of the right hand or the left hand.
The stimuli frequencies for SSVEP were 7Hz, 8Hz, 9Hz, and
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Figure 3: A visualization example of the assembled tensor for the right handMI task.The spectrograms are shown at each channel according
to channels distribution over scalp, with time ranging from 0 to 4 s and frequency ranging from 5 to 30Hz. The spectrograms at C3, Oz, and
C4 channels are enlarged in the bottom.
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11 Hz. EEG signals were recorded by Gtec Amplifier with the
sampling rate of 256Hz and filter band of 5–30Hz. The right
earlobe was used as the reference. Fifteen electrodes, placed
at FC3, FC4, Cz, C5, C3, C1, C2, C4, C6, CP3, CP4, POz,
Oz, O1, and O2, following the 10–20 international system,

were chosen in this experiment. For each subject, dataset 1
includes 120 trials (60 trials for each MI task; each epoch
contains 2 seconds’ data in noncontrol state and 2 seconds’
MI task data), dataset 2 contains 30 seconds’ continuous data
for each stimulus, and there are 168 trials in dataset 3 (12 trials
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Figure 5: A visualization example of the assembled tensor for a SSVEP task (focusing on the 7Hz stimulus). The spectrograms are shown
at each channel according to channels distribution over scalp, with time ranging from 0 to 2 s and frequency ranging from 5 to 30Hz. The
spectrograms at C3, Oz, and C4 channels are enlarged in the bottom.

for each hybrid task; each epoch includes 2 seconds’ data in
noncontrol state and 2 seconds’ hybrid task data). For more
detailed description of the experiment and data, please see
[12].

4. Data Analysis and Results Evaluation

In this section, first, the proposed scheme is applied in dataset
1 and dataset 2 to confirm its efficiency in conventional
BCI tasks, and then it is applied to dataset 3 to evaluate its
performance in hybrid BCI tasks.

4.1. Individual MI and SSVEP Task Classification. For each
epoch in dataset 1, as described above, a three-way tensor
was generated inmultimodes of channel, time, and frequency.
The frequency range was set to 5Hz–30Hz with 1Hz spectral
resolution and the time range was set to 1–4 s with 0.25 s
temporal resolution. The assembled tensor for each MI task
was calculated as described in Section 2. Figures 2 and 3 show
visualization examples of the assembled tensors for right
and left hand MI tasks by illustrating spectrograms at each
channel, respectively. The power enhancements within 𝛼 and
𝛽 rhythms on the left/right motor cortex, especially at C3/C4
channels, can be seen when the subject began to execute the
left/right hand MI tasks. The characteristics of the assembled
tensors for MI tasks are exactly consistent with the ERD/ERS
with imagined movements.

Figure 4 shows the multimodes of channel, time, and
frequency of the two selected nonredundant rank one tensor
components, namely, the discriminative multimodal pat-
terns.The spatial, spectral patterns of two components match
well with the difference of ERD/ERS for different hand
MI tasks in the time-frequency domain. Furthermore, the
temporal patterns show the amplitude of the two components
increases rapidly after 2 s, which exactlymatches with the fact
that the MI task began at 2 s. It can be concluded that the
proposed scheme reveals the changes in the dynamics of brain
oscillations for MI tasks.

For SSVEP task classification, the continuous data in
dataset 2 were segmented into 2 seconds’ epochs. For each
epoch, similarly, a three-way tensor was generated in mul-
timodes of channel, time, and frequency. The frequency
range was set to 5Hz–30Hz with 1Hz spectral resolution
and the time range was set to 1-2 s with 0.25 s temporal
resolution. Then the assembled tensor for each SSVEP task
was calculated. Figures 5, 6, 7, and 8 show visualization
examples of the assembled tensors for each SSVEP task
(focusing on the stimulus flickering at 7Hz, 8Hz, 9Hz, and
11Hz, resp.) by illustrating spectrograms at each channel.
As can be seen in those figures, there are clear power
enhancements at frequencies of 7Hz, 8Hz, 9Hz, and 11Hz
and some corresponding second harmonics and at the chan-
nels on the occipital cortex, especially at Oz channel. The
characteristics of the assembled tensors for SSVEP tasks are
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Figure 6: A visualization example of the assembled tensor for a SSVEP task (focusing on the 8Hz stimulus). The spectrograms are shown
at each channel according to channels distribution over scalp, with time ranging from 0 to 2 s and frequency ranging from 5 to 30Hz. The
spectrograms at C3, Oz, and C4 channels are enlarged in the bottom.

Table 1: Classification results (%) for conventional BCI tasks.

Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Sub. 6 Sub. 7 Sub. 8 Sub. 9 Avg.
CSP for MI 79.2 69.2 100.0 100.0 50.8 41.7 91.7 88.7 67.5 76.5
TbMMS for MI 72.1 73.0 99.1 98.7 50.0 51.0 95.0 83.6 64.2 76.3
CCA for SSVEP 94.2 57.5 98.3 93.8 87.6 96.7 95.0 90.4 78.8 88.0
TbMMS for SSVEP 92.1 62.1 97.4 94.7 89.0 94.0 94.3 89.8 77.3 87.9
TbMMS denotes the proposed tensor based multiclass multimodal analysis scheme.

exactly consistent with the characteristics of corresponding
SSVEP.

Figure 9 shows the multimodes of channel, time, and fre-
quency of the four selected rank one tensors by the proposed
scheme. The corresponding spectral patterns match well the
characteristics of corresponding SSVEP in the frequency
domain.They show four evident peaks at frequencies of 7Hz,
8Hz, 9Hz, and 11Hz, respectively. Furthermore, the spatial
patterns show the channels on the occipital cortex, especially
Oz channel, possess the highest weight for SSVEP tasks. It
can also be concluded that the proposed scheme reveals the
changes in the dynamics of brain oscillations for SSVEP tasks.

The classification results in those two different types of
datasets were compared with two other algorithms in BCIs,
that is, CSP and CCA. CSP and CCA are highly successful
in classifying MI and SSVEP tasks, respectively, and they are

also the most commonly used methods in hybrid MI and
SSVEP BCIs [12, 14, 18, 19]. For the CSP method, channels
FC3, FC4, C5, Cz, C3, C1, C2, C4, C6, CP3, and CP4 on the
motor cortex were chosen, while the channels POz, O1, O2,
and Oz, on the occipital cortex were selected for the CCA
method.

Table 1 summarizes the classification results of CSP, CCA
and the proposed scheme for MI tasks and SSVEP tasks in
conventional BCI. For each type of BCI task, the classification
accuracies achieved by the proposed scheme are very close
to those of CSP and CCA. For different types of tasks,
with multimodal analysis, the proposed scheme performs
as efficiently as CSP and SSVEP. Paired-sample 𝑡-tests show
there is no significant difference between the proposed
scheme and CSP (𝑃 = 0.8926) and proposed scheme and
CCA (𝑃 = 0.8158). The results suggest the proposed scheme



Computational Intelligence and Neuroscience 9

FC3 FC4

C5 C3 C1 Cz C2 C4 C6

CP3 CP4

POz

O1
Oz

C5 C3 C1 Cz C2 C4 C6

CP3 CP4

POz

O1
Oz

O2

OzC3 C4

1 1.5 20.5
(s)

30

25

20

15

10

5

(H
z)

30

25

20

15

10

5

(H
z)

1 1.5 20.5
(s)

1 1.5 20.5
(s)

30

25

20

15

10

5

(H
z)

0

1

2.5
×10

−5

Figure 7: A visualization example of the assembled tensor of a SSVEP task (focusing on the 9Hz stimulus). The spectrograms are shown
at each channel according to channels distribution over scalp, with time ranging from 0 to 2 s and frequency ranging from 5 to 30Hz. The
spectrograms at C3, Oz, and C4 channels are enlarged in the bottom.
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Figure 8: A visualization example of the assembled tensor of a SSVEP task (focusing on the 11Hz stimulus). The spectrograms are shown
at each channel according to channels distribution over scalp, with time ranging from 0 to 2 s and frequency ranging from 5 to 30Hz. The
spectrograms at C3, Oz, and C4 channels are enlarged in the bottom.
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Figure 9: The multimodes of channel, time, and frequency of the four selected nonredundant rank one tensor components for SSVEP tasks.

can identify different characteristic changes in the dynamics
of brain oscillations, such as ERD/ERS and SSVEP, induced
by different types of tasks in conventional BCIs.

4.2. Hybrid MI and SSVEP Task Classification. Above results
confirm that the multiway tensor representation in multido-
main of time, frequency, and channel can identify different
characteristic changes for different types of tasks, such asMI-
based ERD and SSVEP. Moreover, the proposed scheme is
efficient in extracting multimodal discriminative patterns for
different types of conventional BCI tasks. To investigate its
performance in hybrid task classification, we further apply
the proposed scheme to dataset 3.

Dataset 3 contains EEG data collected in hybrid MI
and SSVEP tasks. For each epoch, a three-way tensor was
generated in the previous manner. The frequency range was
set to 5Hz–30Hz with 1Hz spectral resolution and the time

range was set to 1–4 s with 0.25 s temporal resolution. The
assembled tensor for each class of hybrid task was calculated
according to the method described in Section 2.

Figure 10 shows a visualization example of the assembled
tensor for a hybrid task (imagining left hand movements
and focusing on the 7Hz stimulus simultaneously). Figure 11
presents the multimodes of channel, time, and frequency
of the two selected nonredundant rank one tensor com-
ponents. As illustrated in Figure 10, the power on the left
brain hemisphere increases from 2 s when the left hand
MI task began to be executed, especially from 15Hz to
30Hz, at channel C3, and at the same time, the high power
appears at channels on the occipital cortex, especially Oz,
at 7Hz and 14Hz. Here, although the SSVEP should have
the same frequency at fundamental frequency (7Hz) and
second harmonics frequency (14Hz), considering that the
assembled tensor presents the high power at 7Hz before 2 s
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Figure 10: A visualization example of the assembled tensor for a hybrid of MI and SSVEP task (imagining left handmovements and focusing
on the 7Hz stimulus simultaneously). The spectrograms are shown at each channel according to channels distribution over scalp, with time
ranging from 0 to 4 s and frequency ranging from 5 to 30Hz. The spectrograms at C3, Oz, and C4 channels are enlarged in the bottom.
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Figure 11: The multimodes of channel, time, and frequency of the two selected nonredundant rank one tensor components for the hybrid of
MI and SSVEP task (imagining left hand and focusing on the 7Hz stimulus simultaneously).
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Figure 12: A visualization example of the assembled tensor for a hybrid of MI and SSVEP task (imagining left handmovements and focusing
on the 8Hz stimulus simultaneously). The spectrograms are shown at each channel according to channels distribution over scalp, with time
ranging from 0 to 4 s and frequency ranging from 5 to 30Hz. The spectrograms at C3, Oz, and C4 channels are enlarged in the bottom.

(in the noncontrol state), the power change at 14Hz should
be more significant for the SSVEP identification than 7Hz
in the hybrid tasks. The extracted discriminative patterns in
Figure 11 match those spectral-temporal characteristics very
well. Furthermore, because the left hand movement imagery
was executing at the same time, which would induce the ERD
on the contralateral hemisphere, that is, the power decrease
within 𝛼 and 𝛽 rhythms on the right brain hemisphere,
the power at 7Hz and 14Hz (within 𝛼 and 𝛽 rhythms)
should decrease more greatly at channel C4 (on the right
brain hemisphere) than C3 (on the left brain hemisphere).
Compared to the discriminative patterns for individual 7Hz
SSVEP task (shown in Figure 9, the multimodes of the first
rank one tensor), this spatial pattern (shown in Figure 11,
the multimodes of the second rank one tensor) shows great
imbalanced weights at the channels C3 and C4, which clearly
reflects the interactive effects on discriminative patterns
when those two different types of tasks were performed
simultaneously in hybrid BCI.

Figure 12 corresponds to a visualization example of the
assembled tensor for another hybrid task (imagining left hand
movements and focusing on the 8Hz stimulus simultane-
ously). As previously reported, much high power appears
at 7Hz before 2 s (in the noncontrol state). However, the
frequency of the high power is shown to change from 7Hz
to 8Hz, especially at channels on the occipital cortex when

the 8Hz SSVEP task began. Meanwhile, the power at 7Hz
(within 𝛼 rhythm) should also decrease at the channels on the
right brain hemisphere due to the ERD produced by left hand
movement imagery. The multimodes of the three selected
rank one tensors are illustrated in Figure 13, and it is easy to
find that the first and third rank one tensors correspond to the
MI and SSVEP task identification, respectively. Particularly,
the second rank one tensor reveals the power change at 7Hz
both on the right motor cortex and occipital cortex induced
by the simultaneous SSVEP and MI tasks.

Those results show that there are some interactive effects
when the different types of tasks are executed simultaneously
and the proposed scheme could extract those patterns prop-
erly.

Table 2 summarizes the classification results for the
hybrid tasks with the proposed scheme, CSP, and CCA.
It should be pointed out that the proposed scheme was
applied for hybrid task classification directly, which means it
classified the MI and SSVEP in hybrid tasks simultaneously,
while CSP can only be used for MI and CCA only for
SSVEP. As can be seen, for more than half of subjects,
the proposed scheme can obtain higher accuracies than the
separate analysis method, that is, CSP and the CCA, and its
average accuracies are better. It should be noticed that CSP
and CCA performances drop dramatically for some of the
subjects (e.g., CSP for sub. 8 and sub. 9; CCA for sub. 1,
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Figure 13: The multimodes of channel, time, and frequency of the three selected nonredundant rank one tensor components for the hybrid
of MI and SSVEP task (imagining left hand and focusing on the 8Hz stimulus simultaneously).

Table 2: Classification results (%) for the hybrid BCI tasks.

Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Sub. 6 Sub. 7 Sub. 8 Sub. 9 Avg.
CSP for MI 77.1 75.0 100.0 98.3 58.3 53.3 96.7 69.1 53.2 75.7
TbMMS for MI 73.1 80.4 100.0 99.7 60.0 51.0 98.0 85.3 73.3 80.1
CCA for SSVEP 82.0 60.1 97.5 90.3 90.0 94.2 98.0 81.3 63.9 84.1
TbMMS for SSVEP 90.1 58.0 98.1 94.7 91.4 94.0 99.0 89.3 75.2 87.8
TbMMS denotes the proposed tensor based multiclass multimodal analysis scheme.

sub. 8, and sub. 9), while the proposed scheme can achieve
much better results. We conducted 𝐹-tests to compare the
performance differences in conventional task and hybrid
tasks between the proposed scheme and the CSP method
and the proposed scheme and the CCA method. 𝑃 value
= 0.0136 and 𝑃 value = 0.0146 were obtained, respectively,
which suggest their performance differences in conventional
task and hybrid tasks are statistically significant. It can be
concluded that the interactive effects of simultaneous tasks
identified by the proposed scheme are helpful to the EEG
classification in hybrid tasks.

5. Conclusion

In this paper, we propose an improved tensor basedmulticlass
multimodal scheme especially for EEG analysis in hybrid

BCI. Compared to current signal analysis methods for hybrid
BCI, EEG data need not to be divided into individual groups
and fed into the separate processing procedures. In this
scheme, owing to tensor representation on multimodes of
channel, time, and frequency, different characteristics of
EEG signals can be presented simultaneously. Moreover, a
nonredundant rank one tensor decomposition algorithm is
proposed to obtain nonredundant rank one tensor compo-
nents, and a weighted Fisher criterion is designed to select
multimodal discriminative patterns among hybrid tasks
without ignoring the interactive effects of the simultaneous
tasks. Finally, SVM is extended to multiclass classification for
hybrid tasks. Applications in three datasets suggest that the
proposed scheme can not only identify the different changes
in the dynamics of brain oscillations induced by different
types of tasks, but also capture the interactive effects of
simultaneous tasks.
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6. Discussion

Thiswork presents a novelmethod of EEG analysis for hybrid
BCI by considering the interactive effect of the simultaneous
tasks and demonstrates that it is helpful to improve the
classification results for hybrid tasks. Although the proposed
scheme is not suitable for online BCI because tensor gen-
eration and decomposition are very time-consuming, it is
still very useful for developing hybrid BCI. It could help to
learn the difference when two or more tasks are executed
simultaneously rather than individually and obtain themulti-
modal information of the difference, including channel, time,
and frequency. Taking advantage of the revealed multimodal
information, some simple methods for online BCI could be
improved and acquire better results. Therefore, the proposed
scheme is a potential efficient tool in EEG analysis for hybrid
BCI.
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