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Abstract: Hepatitis B virus (HBV) infection poses a serious health burden; bisphenol A (BPA), a
commonly used plasticizer for consumer products, is a potential immune disruptor. However,
epidemiologic studies revealing the association between BPA exposure and immunity are limited.
This study investigates the association between environmental BPA exposure and immune response
following HBV vaccination in a nationally representative sample population. Using National Health
and Nutrition Examination Survey data from six cycles, we analyzed the data of 6134 participants,
classified as susceptible to HBV infection (n = 3086) or as having vaccine-induced immunity (n = 3048).
Associations between BPA level and HBV susceptibility were assessed using multivariable logistic
regression and expressed as odds ratios (ORs) of the pooled data and data for each cycle. There
was a significant association in the pooled data after adjusting for potential confounders (adjusted
OR (aOR): 1.14, 95% confidence interval (CI): 1.05–1.23). However, the associations between BPA
concentration and HBV susceptibility were inconsistent across the survey cycles and tended to
decrease in more recent cycles. Although this study preliminarily suggests that BPA attenuates the
immune response to hepatitis B vaccination, further prospective studies are warranted to elucidate
the discrepancies observed.

Keywords: BPA; vaccine-induced immunity; HBV; NHANES; immune response; cross-sectional analysis

1. Introduction

Bisphenol A (BPA; CAS 80-05-7; IUPAC name: 4,4′-(propane-2,2-diyl)diphenol)), a
phenolic compound with the chemical formula C15H16O2, is a plasticizer mainly used
for manufacture of polycarbonate plastics or epoxy resins. As one of the most widely
produced chemicals worldwide, BPA is found in various items, such as plastic containers,
food packaging materials, toys, office supplies, and dental sealants; thus, BPA exposure
can occur via multiple sources [1,2].

When BPA is absorbed into the human body, it binds to several hormone receptors,
including the estrogen receptor (ER) [3–5]. As an endocrine-disrupting chemical, BPA is
known to increase the risk of reproductive toxicity, developmental disorders, immunotoxic-
ity, and several endocrine diseases, such as diabetes, breast cancer, and obesity [6].

Approximately 257 million individuals worldwide are infected with the hepatitis B
virus (HBV) [7], which can progress to liver cirrhosis or liver cancer in approximately
15–40% of the carriers if not treated [8]; hence, it remains a serious public health concern,
as HBV is a major cause of liver cancer, which accounts for the third highest cancer
deaths [9,10].
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Hepatitis B vaccination is recommended as a preventive measure; however, in some
cases, sufficient immunity against HBV cannot be produced as antibodies are not generated
because of a decline in immune response even after vaccination [11]. Several studies have
provided direct and indirect evidence that BPA modulates the immune response [12,13].
In particular, it has been reported that exposure to BPA causes apoptosis, or necrosis,
of immune cells [14,15], decreased antigen presentation [16] and suppression of adaptive
immunity [17,18], which can ultimately decline overall immunity. Since antibody formation
post vaccination is achieved via a series of both innate and adaptive immune responses [19],
exposure to BPA may decrease antibody formation following HBV vaccination.

However, the effect of BPA on the immune response following hepatitis B vaccination
has not yet been investigated. Thus, in this study, we investigate the association between
BPA exposure and the immune response following hepatitis B vaccination using nationally
representative National Health and Nutrition Examination Survey (NHANES) data.

2. Materials and Methods
2.1. Study Population

Data from six cycles (2003–2004, 2005–2006, 2007–2008, 2009–2010, 2011–2012, and
2013–2014) of the NHANES, a stratified random sample survey designed to be representa-
tive of the US population, were pooled. The selection of study participants is summarized
in Figure 1. Of the 61,087 NHANES respondents, we excluded the following: those who
tested positive for HIV (n = 116) and were likely to be immunocompromised, those who
had not received at least three doses of hepatitis B vaccine (n = 26,091), and those whose
vaccination status was unknown (n = 5757). We also excluded those with unclear serologic
results for hepatitis B (n = 9795) or those with serologic results suggestive of past or present
HBV infection (n = 452). Finally, after excluding those with no BPA concentration data
(n = 12,670) or with missing potential covariate data (n = 72), the data of 6134 participants
were analyzed.

2.2. Ethics Statement

Informed consent was obtained from all participants of the 2003–2014 NHANES, and
the study protocol was approved by the Ethics Review Committee of the National Center
for Health Statistics under the Centers for Disease Control and Prevention (CDC) prior
to carrying out the research [20]. Because NHANES is a publicly available dataset, this
study was deemed exempt from review by the institutional review board of the Catholic
University of Korea.

2.3. Exposure Variable

Urinary BPA concentrations of single spot urine samples collected from one-third of a
subset of randomly selected participants from each NHANES cycle were measured by the
Division of Environmental Health Laboratory Sciences (National Center for Environmental
Health, CDC). For accurate quantification, the conjugated form was converted to free
BPA by hydrolysis before subjecting to on-line solid-phase extraction isotope dilution
high-performance liquid chromatography-tandem mass spectrometry.

The lower limit of detection (LLOD) of urinary BPA was 0.36, 0.4, and 0.2 ng/mL from
2003–2004, 2005–2012, and 2013–2014, respectively. The respective ratio of the LLOD to
the number of participants in each cycle was 6.5%, 7.1%, 6.3%, 8.0%, 10.3%, and 4.0% in
2003–2004, 2005–2006, 2007–2008, 2009–2010, 2011–2012, and 2013–2014. If urinary BPA
concentration < LLOD, the LLOD was substituted with the value divided by the square
root of 2 [21]. Because the LLOD values for 2003–2004 and 2012–2014 were smaller than
those for 2005–2011, the LLOD (0.4 ng/mL) in 2005–2011 divided by the square root of
2 (0.28) was applied as the LLOD in 2003–2004 and 2012–2014 to match the LLOD in all
cycles as previously described [22,23].
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2.4. Outcome Variables

Serum tests for the HBV were performed in the CDC’s Division of Viral Hepatitis after
intravenous blood samples were collected from participants aged ≥ 6 years. The hepati-
tis B surface antibody (anti-HBs) level was measured using the solid-phase competitive
enzyme immunoassay (Ausab, Abbott Laboratories), and the hepatitis B core antibody
(anti-HBc) level was measured using the quantitative enzyme-linked immunosorbent assay
(Vitros, anti-HBc ELISA). When the sample tested positive for anti-HBc, a test for the
hepatitis B surface antigen (HBsAg) (Auszyme, Abbott Laboratories) was additionally
performed. Otherwise, when the sample tested negative for anti-HBc, HBsAg status was
also considered negative.

These three serological indicators were recorded qualitatively (positive or negative)
and indicated the immune status against the HBV. When a sample tested negative for
anti-HBs, anti-HBc, and HBsAg, it was classified as “susceptible to HBV.” When it tested
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negative for only HBsAg, it was classified as “past HBV infection.” When it tested positive
for anti-HBs and negative for both anti-HBc and HBsAg, it was classified as “vaccine-
induced immunity to HBV infection.” Lastly, when it tested negative for only anti-HBs, it
was classified as “present HBV infection” [24,25]. As those with serum results suggesting
past or current HBV infection were excluded from this study, participants were mainly
divided into “susceptible to HBV” group (n = 3086) and “vaccine-induced immunity to
HBV infection” group (n = 3048).

2.5. Covariates

As a priori literature review revealed that immune response to HBV vaccine was
independently associated with age, sex, country of birth, smoking status, and body mass
index (BMI) [11,26,27], and that BPA concentration was independently associated with age,
sex, race/ethnicity, household income, and smoking status [28–30], these variables were
selected as covariates. Age, sex, race/ethnicity, country of birth, and family income data
were collected based on the information filled out in the self-report questionnaire. Prior
to the analysis, the study participants were stratified by age into the following groups:
6–19, 20–39, and ≥40 years. They were also stratified by sex (male or female). Regarding
race/ethnicity, the participants were classified as Non-Hispanic White, Non-Hispanic Black,
Hispanic, or Other race/Multi-racial. Based on the birth country, they were classified as
“born in the US” or “born elsewhere.” Participants were stratified by family income based on
the family-income-to-poverty ratio (FIPR), with FIPR ≤ 1.3 as low income, 1.3 < FIPR < 3.5
as middle income, and FIPR > 3.5 as high income [31]. Smoking status was classified
based on the serum cotinine concentration, with a serum cotinine concentration <10 ng/mL
indicating nonsmoker status, and ≥10 ng/mL indicating smoker status [32].

BMI was calculated by dividing the measured weight (kg) by the square of the mea-
sured height (m2), and adults aged > 20 years were classified into the following categories
based on BMI: underweight (<18.5), normal weight (18.5–24.9), overweight (25–29.9), or
obese (≥30). Participants aged < 20 years were classified based on the CDC growth chart
for cut-offs by age and sex, with those in the top 5% as obese, those in the top 5–15% as
overweight, those in the top 15–95% as normal weight, and those in the bottom 5% as
underweight [33,34]. Urinary creatinine concentration was initially measured using the
Jaffe reaction (Beckman CX3) method; however, the enzymatic method (Roche ModP), an
improved method, was introduced in 2007 to address potential interference associated with
the Jaffe reaction. Therefore, to compare the urinary creatinine concentration measured by
different methods before and after 2007, data from 2003–2006 were adjusted based on the
following equations according to the NHANES analysis guidelines [35]:

If urinary creatinine level < 75, Y = [1.02 ×
√

(X) − 0.36]2.
If 75 < urinary creatinine level < 250, Y = [1.05 ×

√
(X) − 0.74]2.

If urinary creatinine level ≥ 250, Y = [1.01 ×
√

(X) − 0.10]2.
where Y is the adjusted creatinine level (mg/dL), and X is the unadjusted creatinine

level (mg/dL).

2.6. Statistical Analysis

SAS statistical software (version 9.4; SAS Institute Inc.; Cary, NC, USA) was used
to perform all statistical analyses. Statistical significance was set at p < 0.05 (two-tailed
test). Descriptive statistical analysis was used, considering all primary sampling units,
stratification variables (strata), and environmental sampling weights of the six cycles.
Categorical variables are presented as an unweighted count and a weighted percentage,
and trends over time were analyzed using univariate logistic regression with the survey
cycle as an independent variable. As urinary creatinine and urinary BPA concentrations,
which are continuous variables, exhibited a right-skewed distribution, they are presented
as the weighted arithmetic mean and standard error after transformation into natural
logarithms for normalization, and trends over time were analyzed using univariate linear
regression with the survey cycle as an independent variable.
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We determined whether there were significant differences between the two groups
according to anti-HBs positivity after the administration of at least three doses of HBV
vaccination. Categorical variables are presented as the unweighted number of participants
and weighted percentages, and differences between groups were analyzed using the Rao–
Scott chi-squared test. Continuous variables are presented as the weighted arithmetic mean
and standard error, and the differences between groups were analyzed by Student’s t-test.

To analyze the association between the urinary BPA concentration and the prevalence
of HBV susceptibility, the odds ratios (ORs) and 95% confidence interval (CI) for the pooled
data and those from each cycle were calculated using multivariate logistic regression.
Then, the trends of ORs over cycle were analyzed. The analysis model was established by
adjusting the covariates selected a priori as follows.

Model 1: Natural log-transformed urinary creatinine was adjusted. (For pooled data,
the survey cycle was additionally adjusted).

Model 2: Age and sex were adjusted, in addition to the covariates included in Model 1.
Model 3: Race/ethnicity, country of birth, family income, smoking status, and BMI

were adjusted, in addition to the covariates included in Model 2.
To determine whether the logistic regression model had a good fit with the relationship

between the natural log-transformed BPA (ln(uBPA)) and the log-odds of “susceptible to
HBV” satisfying linearity, we performed restricted cubic spline (RCS) regression analysis
with four degrees of freedom (knots at 10th, 50th, and 90th percentiles) by adjusting the
covariates included in Model 3 using SAS Macro (%RCS_Reg, V1.50) [36]. As the log-odds
of “susceptible to HBV” increased linearly according to the ln(uBPA) concentration in
the spline curve (p for non-linearity = 0.87) (Figure S1), the ln(uBPA) concentration was
designated as an exposure variable in the final regression model. The shape of the dose–
response curve of “susceptible to HBV” according to the urinary BPA concentration was
also examined using the RCS graph. Finally, subgroup analysis was performed to examine
the effect modification of the association between urinary BPA and “susceptibility to HBV”
by age, sex, race/ethnicity, country of birth, family income, smoking status, and BMI.

3. Results

Table 1 shows the general characteristics of the study participants based on the pooled
data and the data for each cycle. Variables, such as age, race/ethnicity, household income,
BMI, and urinary BPA concentration, showed significant trends in each cycle. In terms
of age, participants aged 6–19 years showed a decreasing trend (p < 0.001), whereas
those aged ≥ 40 years showed an increasing trend (p = 0.035). Other race/multi-racial
groups showed an increasing trend (p = 0.006). Regarding family income, the low-income
group showed an increasing trend (p < 0.001), whereas the high-income group showed
a decreasing trend (p = 0.008). The normal BMI group showed a significantly decreasing
trend (p = 0.018), and urinary BPA concentration also showed a decreasing trend (p < 0.001).
However, sex, country of birth, smoking status, and urinary creatinine level did not show
significant trends in any cycle (Table 1).

Urinary BPA concentration was significantly higher in the “susceptible to HBV” group
than in the “vaccine-induced immunity to HBV infection” group (p = 0.007). In terms of age
and sex, the “vaccine-induced immunity to HBV infection” group showed a significantly
lower age distribution than the “susceptible to HBV” group (p < 0.001), with a higher
proportion of women (p = 0.004). The proportions of Non-Hispanic White and Other race
participants were significantly higher in the “vaccine-induced immunity to HBV infection”
group, whereas those of Non-Hispanic Black and Hispanic participants were significantly
higher in the “susceptible to HBV” group (p < 0.001). Family income was significantly
higher in the “vaccine-induced immunity to HBV infection” group (p < 0.001). The pro-
portions of obese participants and smokers were significantly higher in the “susceptible
to HBV” group (p < 0.001 and p = 0.002, respectively). There was no significant difference
between the two groups in terms of country of birth and urinary creatinine level (Table 2).
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Table 1. Characteristics of selected participants (n = 6134) by survey cycle from NHANES (2003–2014).

NHANES Survey Cycle
p-Trend a

Characteristics Pooled 2003–2004 2005–2006 2007–2008 2009–2010 2011–2012 2013–2014

N 6134 970 1075 948 1037 971 1133

Age (years)
6–19 3785 (41.9) 709 (47.9) 749 (44.0) 576 (45.3) 588 (40.7) 536 (38.1) 627 (37.8) <0.001
20–39 1375 (33.5) 155 (30.7) 220 (34.9) 185 (28.4) 275 (35.3) 262 (34.4) 278 (36.3) 0.074
≥40 974 (24.5) 106 (21.4) 106 (21.1) 187 (26.3) 174 (24.0) 173 (27.5) 228 (25.9) 0.035

Sex
Female 3216 (53.1) 507 (53.8) 559 (52.7) 488 (52.8) 548 (55.2) 511 (53.0) 603 (51.5) 0.539

Race/Ethnicity
Non-Hispanic White 2089 (63.4) 316 (65.9) 366 (66.3) 334 (65.8) 395 (62.4) 307 (61.9) 371 (59.6) 0.169
Non-Hispanic Black 1587 (13.0) 326 (14.5) 306 (13.7) 231 (12.9) 204 (12.7) 246 (11.9) 274 (13.1) 0.532
Hispanic 1886 (15.9) 285 (13.6) 343 (14.0) 344 (15.8) 358 (16.3) 242 (17.3) 314 (17.8) 0.233
Other

race/multi-racial 572 (7.6) 43 (6.0) 60 (6.0) 39 (5.5) 80 (8.6) 176 (8.9) 174 (9.5) 0.007

Country of Birth
Born in the US 5261 (88.7) 865 (92.2) 933 (87.3) 812 (89.9) 894 (88.6) 789 (86.4) 968 (88.9) 0.223

Family-Income-to-Poverty Ratio
Low (<1.3) 2682 (30.6) 377 (25.0) 392 (22.9) 406 (29.4) 479 (31.8) 467 (35.0) 561 (36.9) <0.001
Middle (1.3–3.5) 2021 (33.9) 349 (35.0) 407 (38.1) 325 (32.3) 332 (33.7) 289 (32.5) 319 (32.3) 0.223
High (>3.5) 1431 (35.5) 244 (40.0) 276 (39.0) 217 (38.3) 226 (34.5) 215 (32.5) 253 (30.8) 0.008

BMI Categories (kg/m2) b

Underweight 157 (2.5) 19 (1.9) 31 (3.4) 26 (2.3) 21 (1.7) 35 (3.7) 25 (1.9) 0.986
Normal weight 2947 (44.4) 511 (47.7) 556 (47.8) 438 (46.2) 477 (43.1) 446 (42.6) 519 (40.4) 0.018
Overweight 1383 (25.4) 194 (23.3) 231 (23.6) 213 (23.9) 252 (28.5) 230 (27.0) 263 (25.6) 0.163
Obese 1647 (27.7) 246 (27.0) 257 (25.2) 271 (27.6) 287 (26.7) 260 (26.6) 326 (32.1) 0.080

Smoking Status c

Smoker 859 (18.0) 117 (16.8) 146 (19.3) 124 (17.4) 152 (17.0) 137 (17.7) 183 (19.1) 0.728

HBV Serology
Susceptible to HBV 3086 (50.5) 381 (45.7) 433 (43.6) 490 (49.0) 549 (49.8) 541 (53.4) 692 (58.9) <0.001
Ln (uCr) (mg/dL) 4.61 ± 0.01 4.64 ± 0.03 4.63 ± 0.04 4.66 ± 0.03 4.58 ± 0.03 4.51 ± 0.04 4.64 ± 0.03 0.153
Ln (uBPA) (µg/L) 0.66 ± 0.02 1.09 ±0.08 0.73 ±0.05 0.85 ±0.07 0.62 ± 0.04 0.48 ± 0.04 0.34 ±0.05 <0.001

Values are expressed as unweighted count and weighted percentage N (%) for categorical variables and as
weighted mean ± standard error for continuous variables. a Calculated by survey-weighted logistic regression for
each subgroup of categorical variables and survey-weighted linear regression for continuous variables. b BMI
categories: underweight (<18.5 kg/m2), normal weight (18.5–24.9 kg/m2), overweight (25–29.9 kg/m2), and obese
(≥30 kg/m2) for participants ≥ 20 years of age. BMI under the age of 20 was categorized based on Centers for
Disease Control and Prevention (CDC) growth charts. c Smoking status: Nonsmoker (serum cotinine < 10 ng/mL)
and smoker (serum cotinine ≥ 10 ng/mL). Abbreviations—BMI: body mass index; NHANES: National Health
and Nutrition Examination Survey; HBV: hepatitis B virus; uBPA: urinary bisphenol A; uCr: urinary creatinine.

Table 2. Characteristics of selected participants (n = 6134) from 2003–2014 NHANES with serology
indicating susceptible to HBV or acquired immunity from HBV vaccination.

Characteristics Susceptible to HBV
(n = 3086)

Immunity from HBV
Vaccination (n = 3048) p-Value a

Age (years) <0.001
6–19 1802 (41.5) 1983 (42.4)
20–39 659 (29.6) 716 (37.5)
≥40 625 (28.9) 349 (20.1)

Sex 0.004
Male 1535 (49.5) 1383 (44.2)
Female 1551 (50.5) 1665 (55.8)

Race/Ethnicity <0.001
Non-Hispanic White 1063 (62.1) 1026 (64.8)
Non-Hispanic Black 792 (13.7) 795 (12.4)
Hispanic 965 (17.6) 921 (14.2)
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Table 2. Cont.

Characteristics Susceptible to HBV
(n = 3086)

Immunity from HBV
Vaccination (n = 3048) p-Value a

Other race/multi-racial 266 (6.6) 306 (8.6)
Country of Birth 0.813
Born in the US 2672 (88.9) 2589 (88.6)
Born elsewhere 414 (11.1) 459 (11.4)

Family Income Poverty Ratio <0.001
Low (<1.3) 1432 (32.8) 1250 (28.3)
Middle (1.3–3.5) 1012 (35.3) 1009 (32.4)
High (>3.5) 642 (31.9) 789 (39.3)

BMI Categories (kg/m2) b <0.001
Underweight 67 (2.3) 90 (2.7)
Normal weight 1354 (40.2) 1593 (48.7)
Overweight 717 (25.3) 666 (25.5)
Obese 948 (32.1) 699 (23.1)

Smoking Status c 0.002
Nonsmoker 2610 (80.2) 2665 (84.0)
Smoker 476 (19.8) 383 (16.0)
Ln (uCr) (mg/dL) 4.63 ± 0.02 4.59 ± 0.02 0.078
Ln (uBPA) (µg/L) 0.71 ± 0.03 0.61 ± 0.03 0.007

Values are expressed as unweighted count and weighted percentage N (%) for categorical variables and as
weighted mean± standard error for continuous variables. a calculated by Rao–Scott chi-squared test for categorical
variables and Student’s t-test for continuous variables. b BMI categories: underweight (<18.5 kg/m2), normal
weight (18.5–24.9 kg/m2), overweight (25–29.9 kg/m2), and obese (≥30 kg/m2) for participants ≥ 20 years of age.
BMI under the age of 20 was categorized based on Centers for Disease Control and Prevention (CDC) growth
charts. c Smoking status: nonsmoker (serum cotinine < 10 ng/mL) and smoker (serum cotinine ≥ 10 ng/mL).
Abbreviations—BMI: body mass index; NHANES: National Health and Nutrition Examination Survey; HBV:
hepatitis B virus; uBPA: urinary bisphenol A; uCr: urinary creatinine.

Table 3 shows the association between the urine BPA concentration and the prevalence
of HBV susceptibility based on the pooled data for all cycles and the data for each cycle.
After adjusting for all covariates included in model 3, the association in the pooled data
was significant (adjusted OR (aOR): 1.14, 95% confidence interval (CI): 1.05–1.23). As
for the individual cycles, significant association was observed in three consecutive cycles
from 2003–2004 to 2007–2008 (aOR: 1.35, 95% CI: 1.13–1.61; aOR: 1.43, 95% CI: 1.16–1.78;
and aOR: 1.27, 95% CI: 1.03–1.57 in NHANES 2003–2004, 2005–2006, and 2007–2008 cycles,
respectively); however, no significant association was observed in the remaining three cycles
from 2009–2010 to 2013–2014 (aOR: 1.11, 95% CI: 0.96–1.30; aOR: 1.13, 95% CI: 0.92–1.39;
and aOR: 0.87, 95% CI: 0.70–1.07 in NHANES 2009–2010, 2011–2012, and 2013–2014 cycles,
respectively). Reduced association was observed in more recent cycles (p-trend = 0.028 in
model 1, p-trend = 0.017 in model 2, and p-trend = 0.036 in model 3) (Table 3).

Table 3. ORs of the association between Ln(uBPA) levels and serology indicating not acquired
immunity against HBV for NHANES participants who self-reported at least three doses of hepatitis B
vaccination (n = 6134) (by cycle).

Pooled NHANES Survey Cycle

2003–2004 2005–2006 2007–2008 2009–2010 2011–2012 2013–2014 p-Trend

Model 1 a 1.15 (1.06–1.25) 1.23 (1.05–1.45) 1.33 (1.05–1.69) 1.23 (1.04–1.46) 1.12 (0.95–1.32) 1.19 (0.95–1.49) 0.89 (0.73–1.08) 0.028
Model 2 b 1.17 (1.08–1.27) 1.39 (1.19–1.63) 1.42 (1.13–1.78) 1.32 (1.10–1.59) 1.13 (0.97–1.32) 1.16 (0.95–1.40) 0.89 (0.73–1.09) 0.017
Model 3 c 1.14 (1.05–1.24) 1.35 (1.13–1.61) 1.43 (1.16–1.78) 1.27 (1.03–1.57) 1.11 (0.96–1.30) 1.13 (0.92–1.39) 0.87 (0.70–1.07) 0.036

a Model 1 is a logistic regression model adjusted for natural log-transformed urinary creatinine and survey cycle
for pooled data. b Model 2 is a logistic regression model adjusted for age (6–19, 20–39, or >40), sex (male or
female) in addition to model 1 covariates. c Model 3 is a logistic regression model adjusted for race/ethnicity
(Mexican American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black, or Other race/Multi-racial),
country of birth (born in the US or elsewhere), family income poverty ratio (≤1.3, 1.3–3.5, or >3.5), BMI categories
(underweight, normal weight, overweight, or obese), and smoking status (nonsmoker or smoker) in addition to
model 2 covariates. Abbreviations: NHANES: National Health and Nutrition Examination Survey; uBPA: urinary
Bisphenol A; HBV: hepatitis B virus; OR: odds ratio.
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The spline curve of the dose–response relationship of the “susceptible to HBV” group
according to the urinary BPA concentration is shown in Figure 2. A monotonic increase
in the OR for “susceptible to HBV” was observed with an increase in the urinary BPA
concentration (Figure 2).
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According to the subgroup analysis results, no effect modification was noted for age,
sex, race, family income, smoking status, and BMI (Figure S2).

4. Discussion

Using a large multi-racial sample representative of the US population, this study inves-
tigated the association between urinary BPA concentrations and immune responses after
HBV vaccination. We observed an increase in the odds for susceptibility to HBV infection
with an increase in urinary BPA concentration in the pooled analysis, which suggests that
an increase in urinary BPA concentration is associated with a decrease in the effectiveness
of HBV vaccination. In other words, exposure to BPA may induce susceptibility to hepatitis
B even after vaccination; hence reduction of products made of BPA may contribute to the
prevention of the spread of hepatitis B.

Immunomodulation induced by BPA exposure involves complex cell signaling path-
ways initiated by the binding of BPA with nuclear receptor families [12]. Thus, vari-
ous effects related to immunity have been reported depending on the model organisms
and the BPA concentrations [13]. Although data regarding the mechanism underlying
vaccine-induced immune response remains limited, several studies have proposed possible
mechanisms, as follows:

First, dendritic cells are representative antigen-presenting cells that mediate innate and
adaptive immunity [37] and induce differentiation of naïve CD4+ T lymphocytes into helper
T lymphocytes by presenting HBsAg in the early stage of the immune response to the HBV
vaccine [19]. These dendritic cells are differentiated from monocytes [38]. A previous study
has reported that apoptosis and necrosis of human monocytes increase with an increase in
the BPA concentration, resulting in decreased cell viability [14]. Thus, an increase in the



Int. J. Environ. Res. Public Health 2022, 19, 1103 9 of 13

BPA concentration may decrease the number of monocytes and a consequent decrease in
that of dendritic cells. Moreover, antigen presentation must be preceded by antigen capture
through the endocytosis of dendritic cells [39]. An in vitro study showed that exposure
to BPA decreases the endocytic capacity of human dendritic cells [16]. Therefore, BPA is
expected to reduce antigen capture in dendritic cells, ultimately reducing the efficiency of
antigen presentation of the HBV vaccine antigen.

In terms of adaptive immunity, the immunoglobulin G (IgG) subclass of anti-HBs
generated after HBV vaccination is mainly type 1 (IgG1) [40–42]. Both type 1 and 2 helper T
lymphocytes (Th1 and Th2, respectively) are involved in the production of IgG1 [43–45]. In
line with this theory, some studies have revealed that high responders to the HBV vaccine
have significantly higher levels of Th1 cytokines, Il-2 and IFN-γ, and Th2 cytokines, Il-10
and Il-13, than did non-responders [46,47]. A recent study on participants vaccinated
with HBV vaccines also reported that the levels of IFN-γ, a Th1 cytokine, and Il-13, a Th2
cytokine, are positively correlated with the anti-HBs titer [48]. Hence, the decrease in
the levels of IFN-γ [17], Il-10, and Il-13 [18] observed upon the BPA treatment of human
peripheral blood mononuclear cells indicate that BPA suppresses both Th1- and Th2-type
immune responses for antibody formation, resulting in low anti-HBs titers.

Finally, a study on human B lymphocytes reported that BPA exhibited cytotoxic effects
on B lymphocytes by generating reactive oxygen species (ROS) in the body [15]. As the
number of HBsAg-specific memory B lymphocytes reflects the immune response to the
HBV vaccine [49], a decrease in the number of HBsAg-specific memory B lymphocytes
induced by ROS production due to BPA may also reduce the immune response to the
vaccine. In summary, BPA may reduce the effectiveness of hepatitis B vaccination by
suppressing the immune response.

Regarding the trends of the variables according to each cycle, urinary BPA concentra-
tion decreased over time, whereas the prevalence of HBV susceptibility increased. This
contradicts our hypothesis that BPA inhibits the immune response to vaccines. Such results
can be partially explained by previous findings of a decrease in immunity from the HBV
vaccine in NHANES cohorts of children and adolescents registered to be born between
1994 and 2003, despite an increase in HBV vaccine coverage over time [50]. The prevalence
of HBV susceptibility status might have increased over the course of this study due to the
increase in the proportion of study participants born between 1994 and 2003 in the more
recent NHANES data. In addition, as aging negatively affects the immune response to the
HBV vaccine [11,27], and as the mean age of participants tends to increase over time in this
study, the participants’ overall immune response to the HBV vaccine may have been lower
in the more recent survey cycles.

For the association between the BPA level and immune response to the HBV vaccine
in each cycle, it was only significant in three cycles (2003–2004, 2005–2006, and 2007–2008),
and the association tended to decrease in more recent cycles. Although not evident, there
are some plausible explanations for these inconsistencies.

First, in the subgroup analysis, effect modification was not observed for all the covari-
ates, including age, race, economic status, and BMI, which tended to show a significant
tendency by cycle. This suggests that the change in the OR was not caused by the changes
in the covariates in each cycle. However, the inconsistencies may be due to proportional
differences of unidentified effect modifiers across the survey cycles.

Second, as the harmful effects of BPA have been revealed in several studies, since
the 2000s, several campaigns and policies to reduce the use of BPA have emerged [51,52].
Accordingly, the urinary BPA concentration, which reflects the exposure to BPA, showed a
decreasing trend over time. This has also been reported in studies investigating the tempo-
ral trend of BPA exposure [53]. BPA can induce changes in the immune response by binding
to the ER on the surface of immune cells [12]. An in vitro study also revealed detectable
estrogenic activity of BPA, which increased in a concentration-dependent manner [54].
Therefore, when the concentration of BPA decreases, the estrogenic activity in the immune
cells is predicted to decrease, with the negative effect on immunity almost lost when the
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concentration reaches the threshold. Interestingly, similar results were reported by a study
investigating the association between BPA exposure and pediatric obesity for each survey
cycle using the same 2003–2014 NHANES data used in this study. A significant correlation
was identified until 2008; however, no significant value was identified in subsequent cy-
cles [55]. Furthermore, a study using the 2003–2008 NHANES data reported a significant
association between BPA exposure and type 2 diabetes in the 2003–2004 cycle; however,
no significant association was noted in the two cycles after 2005 [23]. In both studies,
the urinary BPA concentration was significantly higher in the cycles with a significant
association than in those with no significant association, similar to our findings.

Similar to some studies with almost identical participants and study designs except
for the independent variables [56,57], this study performed logistic regression analysis to
examine the association between the urinary BPA concentration and the immune response
after hepatitis B vaccination. Although it is common to use logistic regression to analyze
dichotomous outcome variables in a cross-sectional analysis, the OR obtained using lo-
gistic regression is overestimated when the outcome of the study groups is common [58].
However, because the assumption of homogeneity is more tenable with the OR than with
the risk ratio (RR), previous have studies recommend using OR as an effect measure even
if the outcome is common, as long as careful attention is paid to the interpretation of re-
sults [59,60]. Several studies have been based on such recommendation [61–63]. Therefore,
when interpreting the OR as an effect measure, the study results will be valid as long as
care is taken to avoid interpreting the ORs as RRs.

To the best of our knowledge, this is the first study to investigate the association
between urinary BPA concentration and immune function after vaccination, as well as the
change in this association over time. This study analyzed the 12-year NHANES data to
examine the trend over time with larger sample size. By increasing the sample size, we
were also able to incorporate various confounding variables identified in previous studies
into the statistical model.

This study had several limitations. First, owing to the nature of the NHANES data, we
used a cross-sectional study design. Because the data for the urine BPA concentration and
the presence of antibodies after hepatitis B vaccination in the participants were collected
at the same time, it was impossible to establish a causal relationship. Furthermore, since
the NHANES data do not indicate the times of administrations of the three doses of
HBV vaccines, some participants may be categorized as “susceptible to HBV” due to the
decline in antibody titers over time, regardless of BPA exposure. Such cases, however,
should be rare since the titer is known to maintain for more than 30 years after HBV
vaccination [64]. Second, information on hepatitis B vaccination history was collected from
self-reported responses, which could cause recall bias and misclassification. To reduce this
bias, documented vaccine data should be used. Third, considering the possible fluctuations
in BPA concentration, using single spot urine samples might have led to a measurement
bias. Therefore, we suggest that spot urine samples should be collected several times to
account for the factors that may affect urinary BPA concentration, such as diet and urination.
Finally, BPA exists as free and conjugated BPA in vivo, and only free BPA has been shown
to exhibit adverse biological effects by binding to the ER [65]. However, the data used in
this study measured the urinary BPA concentration after the deconjugation of conjugated
BPA into free BPA; thus, the urinary BPA concentration data might not have accurately
reflected the correct urinary BPA concentration. Therefore, future studies should consider
measuring the free BPA concentration.

5. Conclusions

Using data representing the US population, this study identified a negative correlation
between the urinary BPA concentration and the immune response after hepatitis B vaccina-
tion. Furthermore, a decrease in this correlation over time was observed. Although this
epidemiological study provides preliminary evidence that environmental exposure to BPA
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may contribute to reduced immunity to hepatitis B vaccination, further studies based on
the prospective study design remain warranted to elucidate these discrepancies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph19031103/s1, Figure S1. Log-odds of immune response to vaccination against hepatitis B
virus according to natural log-transformed urinary bisphenol A, adjusted for natural log-transformed
urinary creatinine, survey cycle, age, sex, race/ethnicity, country of birth, household income, body
mass index, and smoking status. Figure S2. Subgroup analysis of odds ratio (OR) of susceptibility to
HBV according to urinary BPA level. All covariates included in model 3 were adjusted.
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