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We previously demonstrated marked lung-protective properties of the H2S donor sodium
thiosulfate (Na2S2O3, STS) in a blinded, randomized, controlled, long-term, resuscitated
porcine model of swine with coronary artery disease, i.e., with decreased expression of
the H2S-producing enzyme cystathionine-g-lyase (CSE). We confirmed these beneficial
effects of STS by attenuation of lung, liver and kidney injury in mice with genetic CSE
deletion (CSE-ko) undergoing trauma-and-hemorrhage and subsequent intensive care-
based resuscitation. However, we had previously also shown that any possible efficacy of
a therapeutic intervention in shock states depends both on the severity of shock as well as
on the presence or absence of chronic underlying co-morbidity. Therefore, this
prospective, randomized, controlled, blinded experimental study investigated the effects
of the STS in cardiovascular healthy swine. After anesthesia and surgical instrumentation,
17 adult Bretoncelles-Meishan-Willebrand pigs were subjected to 3 hours of hemorrhage
by removal of 30% of the blood volume and titration of the mean arterial pressure (MAP) ≈
40 ± 5 mmHg. Afterwards, the animals received standardized resuscitation including re-
transfusion of shed blood, fluids, and, if needed, continuous i.v. noradrenaline to maintain
MAP at pre-shock values. Animals were randomly allocated to either receive Na2S2O3 or
vehicle control starting 2 hours after initiation of shock until 24 hours of resuscitation. The
administration of Na2S2O3 did not alter survival during the observation period of 68 hours
after the initiation of shock. No differences in cardio-circulatory functions were noted
org June 2022 | Volume 13 | Article 9010051
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despite a significantly higher cardiac output, which coincided with significantly more
pronounced lactic acidosis at 24 hours of resuscitation in the Na2S2O3 group. Parameters
of liver, lung, and kidney function and injury were similar in both groups. However, urine
output was significantly higher in the Na2S2O3 group at 24 hours of treatment. Taken
together, this study reports no beneficial effect of Na2S2O3 in a clinically relevant model of
hemorrhagic shock-and-resuscitation in animals without underlying chronic
cardiovascular co-morbidity.
Keywords: physical injuries, hemorrhage, systemic inflammation, hydrogen sulfide, animal model,
gaseous mediator
INTRODUCTION

Sodium thiosulfate, Na2S2O3, (STS) is an H2S donor with
minimal side effects and clinically approved for the treatment
of calciphylaxis, cis-Pt toxicity, and cyanide poisoning (1). Along
with its sulfide releasing properties it is a known antioxidant.
Moreover, STS was shown to be organ-protective in rodent
models of acute liver injury (2), endotoxemia (3, 4), bacterial
sepsis (3, 5, 6), and, in particular, ischemia/reperfusion (I/R)
injury of the brain (7), heart (8–13), and the kidney (14, 15).
Organ protective properties had also been demonstrated in larger
species, i.e., canine tourniquet-induced limb ischemia and
myocardial infarction induced by ligation of the left anterior
descending coronary (16). However, none of these models
integrated standard intensive care measures into the
experimental design, and, moreover, STS was mostly
administered as a pre-treatment or virtually simultaneously
with the initiation of ischemia.

Hemorrhagic shock and subsequent resuscitation trigger a
systemic inflammatory response due to the tissue oxygen deficit
and reperfusion (17–21). Therefore, we have recently tested the
therapeutic potential of STS using a post-treatment approach in a
blinded, randomized, controlled, long-term, resuscitated porcine
model of swine with coronary artery disease (22). STS treatment
showed marked lung-protective properties, whereas no effects
were observed in other organs. We confirmed these beneficial
effects of post-treatment STS by attenuation of lung, liver and
kidney injury in mice with genetic CSE deletion (CSE-ko)
undergoing trauma-and-hemorrhage and subsequent intensive
care-based resuscitation (23). However, we had previously
shown that any possible efficacy of a therapeutic intervention
in shock states not only depends on the severity of shock per se
(24, 25), but also on the presence or absence of chronic
underlying co-morbidity, e.g., atherosclerosis (26, 27), COPD
(28), or metabolic derangements (29). In fact, the above-
mentioned porcine study on organ-protective effects of STS in
porcine hemorrhage-and-resuscitation (22) investigated swine
with coronary artery disease, and, hence, decreased expression of
the H2S-producing enzyme cystathionine-g-lyase (CSE) (30), i.e.
an “H2S-poor condition” that might render exogenous, STS-
derived H2S supplementation particularly promising (31). Based
on these considerations, the aim of this study was to investigate
the impact of STS on organ function in a randomized, controlled,
org 2
blinded trial using a long-term, resuscitated model of
hemorrhage-and-resuscitation in pigs without preexisting
diseases, i.e., without underlying chronic cardiovascular
co-morbidity.
METHODS

Animals
Ethical approval was obtained by the local Animal Care
Committee of Ulm University and the Federal Authorities
(Tuebingen, Germany) for Animal Research (#1341). The
experimental protocol was conducted in close adherence to the
European Union Directive 2010/63/EU on the protection of
animals used for scientific purposes. 18 adult pigs (range body
weight 50-78 kg, range age 0.9-1.4 years) were purchased from
the Hôpital Lariboisière, Paris, France. Pigs were of the
Bretoncelles-Meishan-Willebrand strain. This strain has
reduced activity of the von Willebrand Factor (vWF), thereby
mimicking the human coagulation system (24, 25, 32, 33), in
contrast to the hypercoagulatory state in domestic swine strains
(34). Animals were sheltered at Oberberghof, Ulm, Germany,
until further use with an acclimatization period of at least two
weeks. Animals were kept at a cycle of 12/12 hr light/darkness
and were at least monitored daily. Housing was acclimatized at
21-22°C with a humidity of 50-60% The pigs were treated with
Ivermectine twice a year. The main outcome variables were 1)
kidney function as assessed by creatinine clearance and 2) the
noradrenaline infusion rate needed to maintain mean arterial
pressure (MAP) at baseline levels. Based on our previous
experiments (22, 24, 26), a case number estimation (power 0.8,
a = 0.05) had yielded a group size of n = 16 (15 animals + 1
reserve animal) with a preset interim analysis after 8 animals.
Because that interim analysis suggested futility, the trial was
terminated prematurely in accordance with the 3R principles.
Instrumentation and Anesthesia
Prior to instrumentation, animals were sedated by intramuscular
injection of 5 mg/kg azaperone and 1-2 mg/kg midazolam
followed by an insertion of an intravenous catheter into an ear
vein. After pre-oxygenation, total intravenous anesthesia was
induced with 1-2 mg/kg propofol and 1-2 mg/kg ketamine
June 2022 | Volume 13 | Article 901005
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followed by endotracheal intubation and placement of a gastric
tube for stomach decompression. Anesthesia was maintained
with 6-12 mg/kg/h pentobarbitone and 30 µg/kg buprenorphine
with repeated doses of 10-20 µg/kg prior to instrumentation,
prior to the initiation of hemorrhagic shock as well as every 8
hours or by signs of additional demand, such as tachycardia and/
or an increase in mean arterial blood pressure. Continuous i.v.
pancuronium (0.15 mg/kg/h) was used for muscle relaxation.
During instrumentation and hemorrhagic shock, animals were
ventilated with the following parameters: fraction of inspired O2

(FIO2) 0.21, positive end-expiratory pressure (PEEP) 0 cmH2O,
tidal volume 8 ml/kg, respiratory rate 10 to 12 breaths/min
adjusted to maintain arterial PCO2 = 35 to 40 mmHg, inspiratory
(I)/expiratory (E) ratio 1:2. Animals received 10 ml/kg/h Ringer’s
lactate to maintain fluid balance. A central venous catheter was
inserted in the jugular vein to measure central venous pressure
(CVP). A thermistor-tipped pulse contour analysis catheter was
placed in the femoral artery for mean arterial blood pressure
(MAP) recording and trans-pulmonary single indicator
thermodilution-cardiac output (CO) measurement. In the
contralateral femoral artery, a 10F catheter was inserted for
rapid passive blood removal to induce hemorrhagic shock.
Urine was collected by a suprapubic catheter. Body
temperature was assessed by a rectal probe. Animals were kept
at a temperature of 37-38°C.
Frontiers in Immunology | www.frontiersin.org 3
Porcine Hemorrhagic Shock and
Thiosulfate Regimen
The experimental procedure and treatment regimen is
summarized in Figure 1A and closely mimics previously
described experiments (22, 24, 32, 35). Prior to the initiation of
hemorrhagic shock after the instrumentation (1-2 h) and a
resting period (total of 4 h), baseline data was collected (−0.5 h
in Figure 1). Hemorrhagic shock was initiated by passive blood
removal of 30% of the calculated total blood volume (calculated
as bodyweight × 8.8%) with a target mean arterial pressure of 40
± 5 mmHg for 3 h. Removal of the calculated blood volume was
achieved within 30 min in all pigs. Every 15 min, 50 ml of blood
were removed or retransfused to maintain target MAP.

Blood was stored in acid-citrate-dextrose solution until re-
transfusion. 2 h after the initiation of hemorrhagic shock,
animals were randomly allocated to either receive sodium STS
(0.025 g/kg/h for two hours followed by 0.1 g/kg/h for 23 h) or
the respective vehicle control. The lower initial infusion rate was
chosen in order to take into account the reduced volume of
distribution during and immediately after the hemorrhage phase.
The higher infusion rate during the rest of the treatment phase
was used in accordance with our previous study (22). During
hemorrhagic shock, maintenance fluid was reduced to 100 ml/h.
After the 3 h period, animals were treated by re-transfusion of
shed blood, 10 ml/kg/h Ringer’s lactate, and continuous i.v.
A

B

FIGURE 1 | (A) Experimental setup and (B) survival analysis Log-rank Kaplan-Meyer survival analysis of animals receiving sodium thiosulfate (Na2S2O3, n = 9) or
vehicle control (Ctrl, n = 8) for the experiment (p = 0.66, Mantel-Cox test). Red indicates the phase of hemorrhagic shock, blue indicates the phase of treatment with
Na2S2O3 (STS, 0.025 g/kg/h for two hours followed by 0.1 g/kg/h for 23 h) or vehicle control. Instrumentation and resting period was during −4 h and 0 h,
hemorrhagic shock with a target mean arterial pressure of 40 ± 5 mmHg during 0 h and 3 h (red), treatment with sodium thiosulfate or vehicle control during 2 h and
25 h (blue) with a total duration of observation and intensive care therapy of 68 h.
June 2022 | Volume 13 | Article 901005
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noradrenaline if necessary to achieve a mean arterial pressure
with a target of 90-100% of the baseline. After hemorrhagic
shock, ventilator settings were adjusted as follows: fraction of
inspired O2 (FIO2) 0.35, positive end-expiratory pressure (PEEP)
10 cmH2O, tidal volume 8 ml/kg, respiratory rate 10 to 12
breaths/min adjusted to maintain arterial PCO2 = 35 to 40
mmHg, inspiratory (I)/expiratory, (E) ratio 1:1.5, peak airway
pressure <40 cmH2O, and modified to I/E ratio 1:1 and PEEP 12
or 15 cmH2O, respectively, if the ratio of arterial O2 partial
pressure (PaO2)/FiO2 was <300 or <200. The STS group
consisted of 4/5 male-castrated/female pigs (62 kg; 54-71 kg),
the vehicle control groups of 3/5 male-castrated/female animals
(61 kg; 56-64 kg). The difference in sample size is explained by a
drop out prior to the induction of hemorrhagic shock.

After the treatment and observation period (68 h after the
induction of hemorrhagic shock), anesthesia was deepened and
animals were sacrificed by an injection of potassium chloride. At
the end of the experiment, immediate postmortem tissue
sampling of lung and kidney was performed. The trial was
terminated earlier if one of the following criteria were fulfilled:
A) mean arterial pressure less than < 65 mmHg despite
vasopressors (dosing limited to a heart rate of ≥ 160/min in
order to prevent tachycardia-induced myocardial infarction); B)
failure to sustain arterial PO2 > 60 mmHg and/or arterial Hb
saturation > 90% despite maximum invasive ventilation (acute
respiratory distress syndrome, ARDS); and C) acute anuric
kidney failure with consecutive hyperkalemia (blood potassium
> 6 mmol/L) and cardiac arrhythmia.

Blood and Plasma Measurements
Hemodynamics, gas exchange (calorimetric O2 uptake and CO2

production), arterial blood gas tensions, acid-base status, glucose,
lactate, creatinine, neutrophil gelatinase-associated lipocalin
(NGAL), aspartate transaminase (AST), alanine transaminase
(ALT), 8-Isoprostane, bilirubin, and troponin were determined
as described previously (32, 35–37). In brief, blood gas analysis,
glucose, and lactate levels were measured using a standard blood
gas analyzer (ABL 800 Flex, Radiometer GmbH, Krefeld,
Germany). Creatinine (#KIT044, BioPorto, Hellerup,
Denmark), AST (#AS 1204, Randox, Crumlin, Northern
Ireland), ALT (#AL 1205, Randox), 8-Isoprostane (#516351,
Cayman Chemical, Ann Arbor, USA), bilirubin (#BR 2361,
Randox), and troponin (#2010-4-HSP, Life Diagnostics, West
Chester, USA), tumor necrosis factor (TNF, #PTA00, R&D
Systems, Minneapolis, USA), interleukin 6 (IL6, #P6000B,
R&D Systems), interleukin 10 (IL10, #P1000, R&D Systems),
and super oxide dismutase (SOD, #S311, Dojindo Molecular
Technologies , Rockvil le , USA) were determined as
recommended by the manufacturer.

Western Blot
Immediately after ending the experiment, postmortem heart,
kidney, liver, and lung specimen were analyzed for Caspase-3
(#9661, Cell Signaling Technology, Danvers, USA), inducible
nitric oxide synthase (iNOS, PA1-039, Thermo Fisher Scientific,
Waltham, USA), heme oxygenase 1 (HO-1, #ADI-OSA-111,
Enzo Life Sciences, Farmingdale, USA), nuclear factor of kappa
Frontiers in Immunology | www.frontiersin.org 4
light polypeptide gene enhancer in B-cells inhibitor, alpha (IkBa,
#9242, Cell Signaling Technology), cystathionine-b-synthase
(CBS, #14782, Cell Signaling Technology), Cystathionine-g-
lyase (CSE, #12217-1-AP, Rosemont), and glucocorticoid
receptor (GCR, #3660, Cell Signaling Technology) as described
previously (24, 26). Secondary antibodies were anti-rabbit
(#7074, Cell Signaling Technology) and anti-mouse (#7076,
Cell Signaling Technology) IgG, respectively. Anti-Actin (#sc-
1615, Santa Cruz Biotechnology, Dallas, USA) and anti-Vinculin
(#sc-73614, Santa Cruz Biotechnology) antibodies were used as
loading controls. For quantitative analysis, the mean value of the
individual gels from at least two gels for each animal was used.
Expression of proteins was normalized to signals from two pigs
(both female, 85 and 89 kg) of the same strains without
further instrumentation.

Data Analysis
Survival was analyzed using a Kaplan-Meyer-graph followed by
Log-rank (Mantel-Cox) Test. Experimental data were considered
to be non-parametric. The comparison of treatment and vehicle
group was conducted by means of Mann-Whitney U test. Data is
graphed in boxplots with median, 25th and 75th quantiles.
Whiskers indicate upper and lower extremes, respectively. In
the manuscript, data is reported as median in conjunction with
25th quantile and 75th quantile. Statistical analysis was conducted
with GraphPad Prism9 (GraphPad Software, Inc., San Diego,
California, USA). Because of non-paired testing and similar
survival, missing data due to premature deaths does not largely
affect the statistical analysis. We chose intentionally to not
extrapolate missing data since the distance of measurement
time points precluded to reliable the biological course of
the variables.
RESULTS

Survival
Survival did not significantly differ between the two groups
(Figure 1B). In the STS group, two experiments had to be
terminated early: one after 51 h due to refractory respiratory
failure (ARDS) and another one after 64 h due to a sudden drop
in MAP unresponsive to vasopressors infusion. In the vehicle
control group, one animal had to be euthanized after 24 h due
to ARDS.

Parameters of Hemodynamics, Gas
Exchange, Acid-Base Status,
and Metabolism
Neither the amount of blood removed to induced hemorrhagic
shock (fraction of the calculated total blood volume 39% (38; 46)
vs. 32% (28; 44) in the vehicle control and STS groups,
respectively, p = 0.13, Mann-Whitney U test), nor the
noradrenaline infusion rates needed to achieve hemodynamic
targets (0.8 µg/kg/min (0.1; 1.8) vs. 0.9 µg/kg/min (0.5; 1.1), in
the vehicle control and STS groups, respectively, p = 0.81, Mann-
Whitney U test) differed between the STS and vehicle group.
June 2022 | Volume 13 | Article 901005
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Tables 1, 2 as well as Figure 2 summarize the parameters of
hemodynamics, gas exchange, acid-base status, and metabolism.
There was a small but significant difference in baseline heart rate
between the two groups (Figure 2). MAP, stroke volume, stroke
volume variance, heart rate, and arterial pH did not show any
Frontiers in Immunology | www.frontiersin.org 5
significant intergroup difference, whereas cardiac output and
arterial lactate levels were significantly higher and arterial base
excess significantly lower in the STS group at 24 hours after
shock. Of note, the peak increase of lactate within the first 24
hours after resuscitation in comparison to baseline levels
TABLE 1 | Systemic and respiratory parameters before (pre) and after 3 h of hemorrhagic shock (post) as well as 24 h, 48 h, and 68 h after resuscitation.

Parameter pre post 24 h 48 h 68 h

Body Temperature (°C) C 36.0
(35.3; 36.4)

36.6
(35.7; 37.1)

37.9
(37.5; 38.2)

37.9
(37.9; 38.3)

38.1
(37.6; 38.4)

T 35.8
(35.4; 37.0)

35.9
(35.0; 36.7)

38.2
(37.7; 38.4)

38.5
(37.8; 39.2)

38.3
(37.9; 38.6)

Central Venous Pressure (mmHg) C 3
(1; 4)

−4
(−7; −2)

12
(9; 13)

11
(9; 17)

10
(8; 14)

T 3
(1; 4)

−3
(−5; 1)

10
(8; 14)

11
(5; 14)

8
(4; 11)

Positive end-expiratory pressure (cmH2O) C 0
(0; 0)

0
(0; 0)

10
(10; 10)

10
(10; 10)

10
(10; 12)

T 0
(0; 0)

0
(0; 0)

10
(10; 10)

10
(10; 13)

11
(10; 13)

Respiratory Minute Volume (l × min−1) C 5.0
(4.3; 5.2)

4.9
(4.3; 5.4)

6.0
(5.2; 6.3)

5.9
(4.8; 6.0)

5.8
(5.3; 7.0)

T 4.8
(3.9; 5.4)

4.7
(3.9; 5.6)

5.7
(5.1; 6.6)

5.6
(4.7; 6.4)

6.6
(4.5; 7.3)

Arterial PO2 (mmHg) C 75
(62; 88)

81
(71; 86)

127
(98; 133)

104
(89; 110)

101
(90; 119)

T 82
(70; 89)

85
(69; 92)

124
(105; 128)

105
(75; 121)

116
(66; 125)

PaO2/FIO2 ratio (mmHg) C 357
(292; 419)

387
(340; 408)

422
(326; 442)

347
(297; 367)

337
(300; 397)

T 390
(335; 424)

404
(327; 438)

413
(340; 425)

350
(228; 402)

317
(216; 396)

Arterial PCO2 (mmHg) C 37
(36; 39)

39
(34; 39)

37
(36; 40)

39
(36; 44)

37
(36; 38)

T 35.5
(32.7; 39.9)

38.2
(31.3; 39.7)

36.4
(35.2; 40.9)

38.9
(38.1; 43.3)

37.7
(35.4; 39.2)

Oxygen Consumption (ml × min−1) C 209
(197; 257)

200
(175; 236)

310
(300; 339)

308
(286; 339)

327
(284; 380)

T 206
(188; 222)

185
(153; 227)

327
(276; 372)

361
(291; 398)

380
(301; 470)

Carbon Dioxide Elimination (ml × min−1) C 159
(138; 205)

142
(139; 183)

190
(163; 221)

176
(160; 191)

184
(149; 218)

T 145
(114; 175)

121
(108; 186)

206
(171; 225)

208
(164; 251)

202
(164; 251)
June 2
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n = 8/9 before shock, 8/9 after shock, 8/9 at 24 h, 7/9 at 48 h, and 7/8 at 68 h animals per group for vehicle control (yellow, C) and thiosulfate (purple, T), respectively. Table reports median
and interquartile range.
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measured in a 2 hour interval was 4.0 mmol/l (0.9; 4.3) in the
vehicle control group and 2.8 mmol/l (1.9; 7.7) in the STS group
(p > 0.99). In parallel, there was a decrease in base excess in
comparison to baseline levels of −10.7 mmol/l (−16.4; 3.5) in the
vehicle control group and −7.0 mmol/l (−13.0; −4.7) in the STS
group (p = 0.96). Animals receiving STS had similar PaO2/FIO2

ratios and required ventilator settings to maintain target PO2 and
PCO2 levels. Likewise, O2 uptake and CO2 production were
similar in the two groups. Glucose levels were not affected by STS
treatment either (Table 2).

Parameters of Heart, Kidney, and Liver
Function and Organ Injury
There were no significant intergroup differences in troponin,
AST, ALT, and bilirubin (Figure 3). Of note, baseline bilirubin
concentrations were slightly, but significantly higher in the
vehicle group, which coincided with a non-significant trend
towards higher AST levels in these animals. While urine
output was significantly higher in the STS group at 24 h of
resuscitation, parameters of kidney (dys)function (NGAL,
creatinine) did not differ between the two groups.

Inflammation
Last, the impact of STS treatment on inflammation was assessed
during and after hemorrhagic shock. Animals receiving STS had
significant higher leukocyte counts 24 h after hemorrhagic shock
(Table 2). In contrast, systemic levels of TNF, IL6, IL10, 8-
isoprostanes, and SOD activity were comparable in the two
groups (Figure 4). Of note, there was a significant increase in
Frontiers in Immunology | www.frontiersin.org 6
catalase activity 24 h after shock, likely due to the pre-existing,
non-significant difference already at baseline.

To further characterize the impact of STS on protein levels in
kidney and lung, western blot analysis was conducted (Figure 5).
Nosignificantalterations for caspase3, iNOS,HO-1, IkBa, CBSand
CSE (the last two only analyzed in the kidney due to technical
reasons)were detected.However, therewas a significant decrease in
GCR protein levels in the STS group. The original western blot
captures are presented in Supplementary Figures 1, 2.
DISCUSSION

Usinga long-term, resuscitated,porcinemodelofhemorrhage-and-
resuscitation, the present randomized, controlled, blinded trial was
to test the hypothesis whether STS would attenuate organ
dysfunction in adult animals with normal CSE expression, and,
consequently, well-maintained endogenous H2S availability. This
study therefore expands the knowledge on STS as therapeutic
option in systemic inflammation in addition to “H2S-poor
conditions”, e.g. as a result of underlying coronary artery disease
(22, 30) or even genetic CSE deletion (CSE-ko) (23) that might
enhance STS efficacy (31). The main findings were that i) STS did
not beneficially affect any variable measured of hemodynamics,
lung mechanics and gas exchange, or organ (dys)function and
injury, nor ii) any of the parameters of systemic and organ
inflammation or oxidative and nitrosative stress.

Possible organ-protective effects of STS have been referred to
attenuated activation of nuclear transcription factor-kB, hyper-
TABLE 2 | Blood glucose, hemoglobin, thrombocyte and leukocyte cell count before (pre) and after 3 h of hemorrhagic shock (post) as well as 24 h, 48 h, and 68 h
after resuscitation.

Parameter pre post 24 h 48 h 68 h

Arterial Glucose
(mmol × l−1)

C 98
(91; 108)

109
(98; 118)

94
(72; 135)

67
(60; 83)

69
(58; 64)

T 109
(89; 115)

108
(99; 132)

98
(83; 125)

71
(67; 84)

70
(56; 75)

Hemoglobin (g × l−1) C 79
(69; 81)

93
(83; 100)

95
(84; 99)

73
(69; 92)

84
(71; 91)

T 83
(78; 88)

93
(82; 102)

107 *
(101; 116)

97 *
(92; 109)

90
(82; 95)

Thrombocytes
(×109 × l−1)

C 235
(193; 271)

226
(211; 269)

221
(170; 268)

268
(129; 315)

250
(83; 330)

T 238
(169; 340)

251
(215; 316)

248
(181; 311)

169
(112; 267)

157
(76; 222)

Leukocytes (×1012 × l−1) C 15.8
(8.3; 18.6)

14.4
(12.4; 18.5)

14.9
(9.0; 16.0)

11.1
(7.6; 14.4)

11.6
(4.8; 18.2)

T 13.7
(11.8; 17.2)

18.7
(14.4; 19.7)

20.5 **
(16.2; 28.4)

12.7
(11.1; 13.3)

10.2
(9.1; 16.3)
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n = 8/9 before shock, 8/9 after shock, 8/9 at 24 h, 7/9 at 48 h, and 7/8 at 68 h animals per group for vehicle control (yellow, C) and thiosulfate (purple, T), respectively. * = p < 0.05,
** = p < 0.01, Mann-Whitney U test. Table reports median and interquartile range.
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inflammation and oxidative stress (2, 3) and reduced apoptosis (9–
11, 13). In addition, we had demonstrated that the marked lung-
protective effect of STS in swine with coronary artery disease and,
hence, reduced CSE expression coincided with significantly higher
tissue glucocorticoid receptor (GR) expression. We had confirmed
this finding otherwise healthy, CSE-ko mice receiving STS in
addition to standard ICU care during resuscitation from
trauma-and-hemorrhage (23). In sharp contrast to these
previous results, lung tissue GR expression was even
Frontiers in Immunology | www.frontiersin.org 7
significantly lower in the STS-treated swine than in the vehicle
group in the present study. We can only speculate regarding this
different result, but the reduced activity of the von Willebrand
Factor (vWF) in our Bretoncelles-Meishan-Willebrand pigs may
assume importance in this context. We studied heterozygous
individuals of this swine strain, because they closely mimic the
human coagulation system (24, 25, 32, 33), in contrast to the
hypercoagulatory state in other domestic swine strains (34). We
cannot exclude, however, that this “vWF-disease”, albeit not
A B

D

E F

G H

C

FIGURE 2 | Cardiocirculatory parameters before (pre) and after 3 h of hemorrhagic shock (post) as well as 24 h, 48 h, and 68 h after resuscitation. (A) mean arterial
pressure, (B) cardiac output, (C) stroke volume, (D) stroke volume variance, (E) heart rate, (F) blood pH, (G) blood lactate, and (H) blood base excess. n = 8/9
before shock, 8/9 after shock, 8/9 at 24 h, 7/9 at 48 h, and 7/8 at 68 h animals per group for vehicle control (yellow, C) and thiosulfate (purple, T), respectively.
* = p < 0.05, ** = p < 0.01, Mann-Whitney U test. Box plots report median, interquartile range, minimum, and maximum.
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presenting with any clinically relevant bleeding disorder, may have
altered the STS effect on the GR expression: ACTH secreting
bronchial carcinoid cells were shown to present with significant
glucocorticoid receptor expression (38), and high glucocorticoid
levels due to Cushing’s disease are associated with increased vWF-
activity (39). Exogenous glucocorticoid administration produced
less consistent results: in healthy subjects, oral steroids also
increased vWF activity (40), while under hyper-inflammatory
conditions the opposite effect was reported (41). To the best of
our knowledge, however, no data are available on the reverse
Frontiers in Immunology | www.frontiersin.org 8
relation, i.e. on the effect of reduced vWF activity per se on cortisol
concentrations and/or GR expression.

At the end of the treatment phase, i.e., at 24 h of resuscitation,
STS was associated with statistically significantly lower arterial
base excess levels (STS 1.3 mmol/l (0.3; 2.6) vs. vehicle control 4.4
mmol/l (2.6; 5.3), p < 0.01, Mann-Whitney U test). This
difference in the acid-base status disappeared until the end of
the experiment. The lower base excess is well in line with case
reports on i.v. STS (42, 43) as well as in our previous study in
swine with coronary artery disease (22). Of note, the arterial base
A B

D

E F

G

C

FIGURE 3 | Organ function parameters before (pre) and after 3 h of hemorrhagic shock (post) as well as 24 h, 48 h, and 68 h after resuscitation. (A) Troponin,
(B) neutrophil gelatinase-associated lipocalin (NGAL), (C) aspartate transaminase (AST), (D) alanine transaminase (ALT), (E) bilirubin, (F) creatinine, and (G) urine
output. n = 8/9 before shock, 8/9 after shock, 8/9 at 24 h, 7/9 at 48 h, and 7/8 at 68 h animals per group for vehicle control (yellow, C) and thiosulfate (purple, T),
respectively. * = p < 0.05, Mann-Whitney U test. Box plots report median, interquartile range, minimum, and maximum.
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excess tended to be lower in the STS-treated animals at the end of
the shock-phase (STS 3.3 mmol/l (1.5; 5.1) vs. vehicle control 4.2
mmol/l (3.7; 6.8), p = 0.12, Mann-Whitney U test), most likely as
a result of the fact that the STS-infusion was already started at 2 h
Frontiers in Immunology | www.frontiersin.org 9
of hemorrhage, i.e. 1 h prior to the initiation of re-transfusion of
shed blood, fluid resuscitation, and continuous i.v.
noradrenaline. Nevertheless, the fact that this fall in base
excess was not associated with a pH < 7.4, any acidosis-related
A B

D

E F

C

FIGURE 4 | Inflammation parameters before (pre) and after 3 h of hemorrhagic shock (post) as well as 24 h, 48 h, and 68 h after resuscitation. (A) TNF, (B) IL6, (C) IL10,
(D) superoxide dismutase (SOD), (E) catalase, and (F) 8-isoprostane. n = 8/9 before shock, 8/9 after shock, 8/9 at 24 h, 7/9 at 48 h, and 7/8 at 68 h animals per group for
vehicle control (yellow, C) and thiosulfate (purple, T), respectively. * = p < 0.05, Mann-Whitney U test. Box plots report median, interquartile range, minimum, and maximum.
A B

FIGURE 5 | Western Blot analysis of kidney (A) and lung (B) at the end of the trial for n = 7/8 animals per group for vehicle control (yellow, C) and thiosulfate
(purple, T), respectively. Results are normalized to protein levels from two untreated animals. iNOS, inducible nitric oxide synthase; HO-1, heme oxygenase 1; IkBa,
nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha; CBS, cystathionine-b-synthase; CSE, Cystathionine-g-lyase; GCR, glucocorticoid
receptor. * = p < 0.05, Mann-Whitney U test. Box plots report median, interquartile range, minimum, and maximum.
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lung protection may have been prevented: acidosis-related lung-
protection in vivo was reported at pH ≈ 7.00-7.25 (44).

Limitations
We might have missed a putative therapeutic benefit due to an
unbalanced shock severity: Albeit not statistically significant, the
amount of blood removed to induced hemorrhagic shock, tended to
be higher in the vehicle group (p = 0.13, see above, “Results” section).
However, not only tended arterial base excess to be lower (see above),
but also arterial lactatemia to be slightly higher (STS 2.3mmol/l (1.9;
3.6) vs. vehicle control 2.3mmol/l (1.6; 2.5), p = 0.65,Mann-Whitney
U test) in the STS-treated animals already at the end of the shock
phase. In addition, heart rate in the STS-group had shown a
significantly higher baseline value, i.e., the relative heart increase
was more severe, possibly suggesting a more pronounced activation
of the sympathetic system. Clearly, any difference in shock severity
wasdue to chance, becauseweused ablinded, randomandcontrolled
experimental design.Another limitation is thatwemighthavemissed
a temporary effect of STS on organ function due to the distance
between measurement time points, e.g., a change in organ function
after 6hof treatment.However, basedon the similar survival between
the groups, there is no hint for such an issue.
CONCLUSION

Altogether, in contrast to our previous study in swinewith coronary
artery disease, this study reports no beneficial effect of STS using a
blinded, randomized controlled trial design in a clinically relevant,
long-term porcine model of hemorrhagic shock-and-resuscitation
in animals devoid of underlying chronic cardiovascular co-
morbidity. We cannot exclude that studying adult animals with
heterozygous “vWF” disease may have influenced this result.
Nevertheless, the current study highlights the impact of the
severity of shock per se as well as the investigation of chronic
underlying co-morbidities on the possible efficacy of therapeutic
interventions in pre-clinical shock research.
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