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 Abstract: Background: Virtual Screening (VS) has emerged as an important tool in the drug development pro-
cess, as it conducts efficient in silico searches over millions of compounds, ultimately increasing yields of poten-
tial drug leads. As a subset of Artificial Intelligence (AI), Machine Learning (ML) is a powerful way of conduct-
ing VS for drug leads. ML for VS generally involves assembling a filtered training set of compounds, comprised 
of known actives and inactives. After training the model, it is validated and, if sufficiently accurate, used on pre-
viously unseen databases to screen for novel compounds with desired drug target binding activity. 

Objective: The study aims to review ML-based methods used for VS and applications to Alzheimer’s Disease 
(AD) drug discovery. 

Methods: To update the current knowledge on ML for VS, we review thorough backgrounds, explanations, and 
VS applications of the following ML techniques: Naïve Bayes (NB), k-Nearest Neighbors (kNN), Support Vector 
Machines (SVM), Random Forests (RF), and Artificial Neural Networks (ANN).  

Results: All techniques have found success in VS, but the future of VS is likely to lean more largely toward the 
use of neural networks – and more specifically, Convolutional Neural Networks (CNN), which are a subset of 
ANN that utilize convolution. We additionally conceptualize a work flow for conducting ML-based VS for poten-
tial therapeutics for AD, a complex neurodegenerative disease with no known cure and prevention. This both 
serves as an example of how to apply the concepts introduced earlier in the review and as a potential workflow 
for future implementation. 

Conclusion: Different ML techniques are powerful tools for VS, and they have advantages and disadvantages 
albeit. ML-based VS can be applied to AD drug development. 
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1. INTRODUCTION 

 Today, drug development is a very time-consuming and capital-
intensive process. A 2014 study found that the cost of developing a 
prescription drug is on average $2.87 billion [1], and has likely 
since increased. Getting a potential drug through development stag-
es and clinical trial phases takes years to complete, and often com-
pounds fail before ever reaching the market. One of the more prob-
lematic processes in the drug development pipeline is the early 
stage of identifying potential drug leads among thousands to mil-
lions of candidate compounds. High-throughput Screening (HTS) 
of compounds is very time- and resource-heavy, especially when 
considering the low number of hits it produces. In an attempt to 
remedy this, many researchers choose to supplement the in vitro 
HTS with Virtual Screening (VS). This in silico process is a faster 
and cheaper way of searching for potential leads and can be utilized 
to reduce the number of compounds put through HTS, thereby 
greatly increasing HTS’s yield. Like all computational biology 
processes, it is important to note that VS is not a replacement for 
HTS, because any sort of simulation or computer approximation is 
never guaranteed to be accurate – rather, it is a tool to aid and be 
used in conjunction with experiments. 
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1.1. Virtual Screening 

 The first step in VS is the assembly of a compound database on 
which to conduct the screening. This may begin with pulling mass 
quantities from publicly available chemogenomics libraries such as 
ChEMBL [2], PubChem [3], or ZINC [4],  each include tens of 
millions of compounds annotated with information about their 
structure, known targets, and in the case of ZINC, purchasability. It 
is also common for pharmaceutical companies to use their own, in-
house compound databases – which may have come from drugs that 
did not pass all clinical trials – to conduct VS. Whether the initial 
dataset is queried from the internet or not, it must go through fur-
ther filtering in order to discard infeasible compounds and lower the 
number of false positives. It is common for researchers to exclude 
compounds that are much larger than the binding site of their target, 
or ones that are not available for purchase within the desired 
timeframe. Most datasets also get filtered according to Lipinski’s 
Rule of Five [5] or standard metrics for lead-likeness [6], which 
remove compounds that are unlikely to be good drugs or leads, 
respectively. This is a particularly important step because VS is not 
done in isolation, but rather for the purpose of developing a drug for 
production. Finding a compound that can bind to the target but 
cannot be properly physiologically absorbed (or in the case of a 
lead, modified to be properly physiologically absorbed) does not 
accomplish this goal. Likewise, it is important to take precautionary 
measures to reduce the number of false positives, which take up 
time and resources in the hit-to-lead development and clinical trial 
phases only to ultimately fail. This can be done by removing com-
pounds deemed to be pan-assay interference compounds (PAINS) 
[7]. 
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 Once the dataset has been assembled, the next step is to perform 
the actual screening. This can be done in a structure-based or lig-
and-based manner, or with a combination of the two. Structure-
Based Virtual Screening (SBVS) involves examination of the struc-
tures of the ligand and target binding site and evaluation of the 
likelihood that the ligand will bind. This is most often done with 
docking, which involves “placing” compounds in the binding site of 
the target and scoring how likely they are to bind given a predeter-
mined metric [8]. This method relies upon knowledge of each com-
pound’s structure, as well as the structure of the target. Ligand-
Based Virtual Screening (LBVS) does not require structure infor-
mation, but rather the molecular and chemical properties of known 
actives and the tested compounds [9]. The idea behind LBVS is that 
undiscovered actives will share some chemical features with the 
known ones. While it seems counterintuitive to use a drug discov-
ery method that requires already knowing viable compounds, it is 
possible that the preexisting compounds cause undesirable side 
effects, do not treat all stages of the disease, or target something 
that has developed resistance to them.  

 There are advantages and disadvantages to both screening tech-
niques. SBVS has the potential to discover actives with novel scaf-
folds, while LBVS is restricted to finding actives that share a lim-
ited number of predetermined chemical descriptors with known 
ligands. Additionally, if a target has no known actives, it is only 
possible to conduct SBVS. However, SBVS varies widely in accu-
racy due to approximations in physics, thermodynamics, and mo-
lecular positioning, and is dependent upon the use of a very accu-
rate scoring function [10]. In this way, LBVS is more dependable. 
It is therefore up to the researchers to decide which screen is more 
appropriate to their experiment – or how to combine the hits pro-
duced by using both screens on the same data. 

 After obtaining hits from the VS, it is imperative to validate the 
results in vitro. Once one or more compounds have been experi-
mentally verified as being able to bind to the desired target, they 
can undergo hit-to-lead development and clinical trials in order to 
hopefully be made into viable drugs. 

 But how does one actually perform VS? It is not an option to 
simply perform an in silico HTS simulation with molecular dynam-
ics, as this would be extremely computationally intensive and likely 
take an incredible amount of time to run. Instead, computational 
chemists are turning to ML in order to efficiently conduct VS. 

1.2. Machine Learning 

 Machine learning (ML) is a subfield of Artificial Intelligence 
(AI), and the two are the biggest buzzwords in many technological 
fields today. It has led to incredible breakthroughs in image pro-
cessing [11] and Natural Language Processing (NLP) [12], and is 
being utilized in a number of other fields including sentiment anal-
ysis [13] and autonomous vehicles [14]. This versatility comes from 
the fact that ML constitutes generalizable methods of learning that 
only require large training datasets in order to perform well. The 
upsurge in chemical data availability makes ML viable for VS. 

 Before learning about the applications of ML in VS, it is im-
portant to understand its general principles. While most computer 
programs require an input and some functions to produce an output, 
ML uses training inputs and outputs to generate a function, which it 
can then use on test inputs to produce corresponding outputs. A 
good ML implementation must follow the Structural Risk Minimi-
zation (SRM) principle: it strikes an ideal balance between being 
both generalizable to unseen testing data and not overfitting the 
training data. This is done by minimizing the confidence interval 
(which corresponds to overfitting) and minimizing the empirical 
risk (which is the average error for the training data) [15]. ML can 
be supervised or unsupervised. The former involves giving inputs 
already labelled with classifications and asking the computer to 
determine the classification pattern; the latter uses unlabeled inputs 
and requires the computer to cluster similar data points in order to 

generate logical classes. Because the purpose of VS is to determine 
the activity of tested compounds, only supervised learning algo-
rithms are used. 

 Two important processes that are common to all forms of ML – 
and particularly to ML in VS – are dataset preparation and model 
validation. A good ML model learns from a thoughtfully curated 
training dataset and is applied to a distinct testing set. When used 
for VS, both sets must consist of compounds with labelled binding 
activity – the training set requires this in order to establish patterns 
that the model can learn, and the testing set requires this for evalu-
ating the model’s accuracy. Active compounds must be taken from 
experimental results. Inactives may also be selected this way, but it 
is not always the case that a chosen chemogenomics library will 
contain enough nonbinding compounds that have been tested 
against the target for which the VS is being conducted. For this 
reason, many researchers opt to use decoy compounds, which are 
structurally similar to actives but have very different chemical fea-
tures. The rationale behind this is that it is important to provide 
inactives that physically resemble actives to prevent the VS model 
from erroneously equating common structural features with 
activity, and that the decoys’ chemical differences are sufficient to 
assume a high unlikeliness to bind. The most common method of 
obtaining decoys is through the use of directories such as DUDE 
[16]. Dissimilarity between known actives and assumed inactives 
can be further enforced by also calculating the Tanimoto coefficient 
[17] and excluding presumed inactives that are too similar to ac-
tives. 

 The Tanimoto coefficient serves another key purpose; it can 
provide a measure of the dataset’s diversity. Diversity is critical for 
the creation of good training and testing sets in order to make the 
resulting ML model as general as possible. For this reason, it is 
typical to calculate the average Tanimoto coefficient between all 
compounds in the dataset to ensure that it is sufficiently diverse. 

 Once the overall dataset has been assembled, it is very likely 
that there will be an imbalance between the number of active and 
inactive compounds. This can be problematic for some ML meth-
ods [18]. Potential ways to resolve this problem are negative-
undersampling of inactives and/or positive-oversampling of actives 
[19]. 

 After all this preparation, the labelled dataset can be split into 
training and testing data. Most often, about 70% of the data goes to 
the training set and the remainder to testing [20-27], although an 
80/20 split can also be used [28-30]. These splits are usually done 
randomly – however, it has been shown that a temporal-based split 
generally increases classifier accuracy [31]. An alternative to split-
ting is k-fold cross-validation, in which the dataset is randomly split 
into k partitions of equal size. k-1 partitions are used as training 
data, and the final partition is the testing data. This process is 
repeated a total of k times, with each partition serving as the testing 
set exactly once. The final model is chosen based on the split that 
produced the lowest error. The value of k is usually chosen to be 5 
or 10. The special case when k is equal to the number of samples is 
called leave-one-out cross-validation. 

 Regardless of how the testing set is separated from the training 
set, it is used in a process called internal validation in order to 
judge an ML model. This is often done by first calculating the con-
fusion matrix of the model, which consists of the intersections be-
tween predicted actives/inactives and actual actives/inactives. The 
confusion matrix yields values that can help quantify the perfor-
mance of any ML model: sensitivity (Eq. 1) [32], specificity (Eq. 2) 
[32], accuracy (Eq. 3) [32], and the Matthews’ Correlation Coeffi-
cient (MCC) (Eq. 4) [33]. In each of these equations, TP, FP, TN, 
and FN represent the number of true positives, false positives, true 
negatives, and false negatives, respectively. 
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 The MCC is usually used to compare the performance of differ-
ent models, with a perfect model having a score of 1. It is also very 
common to measure accuracy by way of the area under the receiver 
operating characteristic curve (AUC), which plots SP against 1 - 
SE. Again, the closer this value is to 1, the better. An AUC of 0.5 
indicates performance equivalent to random classification. ML for 
VS also often uses the Boltzmann-enhanced discrimination of re-
ceiver operating characteristic (BEDROC) [34], an accuracy metric 
specifically designed to compare VS ranking methods.  

 Now that we have reviewed the general workflows of both VS 
and ML, we can dive into specific ML techniques. There are many 
types of ML, and we will describe them below in turn, along with 
how to specifically use them for VS and an overview of how recent 
VS research has achieved so far. 

2. MACHINE LEARNING METHODS FOR VIRTUAL 
SCREENING 

2.1. Naïve Bayes 

 One of the simpler ML techniques is the Naïve Bayesian (NB) 
classifier. This classifier is based on Bayes’ Theorem [35], which 
relates conditional probabilities (Eq. 5). 
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 In general, A is some class, and B is a feature of the data. The 
equation above shows that it is possible to find the probability that 
an input with some feature belongs to a certain class given three 
quantities that can be obtained from the training set: the probability 
that a member of the class has a certain attribute, the probability 
that an arbitrary data point belongs to that class (called the “prior 
probability”), and the probability that an arbitrary data point has 
that feature (the “marginal probability”) [30].   

 NB classifiers are best applied for LBVS. The classes must be 
active and inactive compounds. The attributes can be molecular 
descriptors, which are properties of the molecule such as molecular 
weight or AlogP that are usually calculated with software such as 
MOE [36], PaDel [37], or Discovery Studio [38]. Molecular finger-
prints [39] also can serve as attributes. These are binary strings that 
represent structural information and can be used to measure molec-
ular similarity in non-ML contexts. 

 The direct application of Bayes’ Theorem may give probabili-
ties that are erroneously large – or zero – if some attribute is under-
sampled in the training set and becomes incorrectly associated with 
exclusively one class. In order to combat this, multiple studies [9, 
30] utilized a Laplace estimator (Eq. 6). 
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 While some studies have found that NB performs poorly in 
comparison to other ML methods [20, 26], it does have the ad-
vantage of not being susceptible to the “curse of dimensionality” 
[40]. This phenomenon causes ML methods based on clustering 

(such as k-Nearest Neighbors and Support Vector Machines, both 
described below) to lose accuracy when the number of samples 
does not increase exponentially with the number of dimensions. 
Because effective LBVS will occur in a high-dimensional space, 
non-clustering methods like NB become more manageable due to 
their reasonably-sized datasets. NB is also able to extract important 
attributes from the data, instead of acting like a black box. Knowing 
which specific features highly correlate to membership of either the 
active or inactive class allows for discovery of “privileged frag-
ments” or “unprivileged fragments,” respectively [9, 21, 23, 26, 
41]. These fragments can greatly aid in scaffold design for com-
pounds that are likely to bind to the desired target. 

 Several VS experiments have found success with NB classifi-
ers. Yu et al. used one in conjunction with 3D Quantitative Struc-
ture-Activity Relationship (QSAR) pharmacophore hypothesis 
modeling to find prospective inhibitors of PI3Kα, a key target pro-
tein for many cancers; in vitro assays confirmed the discovery of 
some novel inhibitors [22]. Wang et al. chose an NB classifier from 
over 800 ML models that utilized four distinct techniques because it 
performed the best on external testing and gave favorable frag-
ments. When using this classifier on a novel compound database, 
56 hits were found after filtering, and in vitro assays deemed 12 of 
them as significantly active [42]. Jang et al used an NB classifier as 
a crucial step in their drug discovery workflow, which produced 
new and structurally diverse hits for mGlu1 receptor inhibitors [21]. 
Lian et al. combined NB models together with Support Vector Ma-
chines (described below) to create an enhanced ensemble model 
that produced 9 potent Influenza A neuraminidase inhibitors [43]. 

2.2. k-Nearest Neighbors 

 The k-Nearest Neighbors (kNN) classification method [44] is 
another simple ML method. The idea behind kNN is even more 
intuitive than that of NB: when projecting data into a feature space, 
the class of a given point is most likely going to be the same as its 
nearest neighbors. In its most basic implementation, kNN performs 
classification by assigning a point to the class that is most prevalent 
out of the k points closest to it. The k parameter can either be prede-
termined or chosen from a given range (usually between 1 and 5, 
though can go as far as the number of compounds screened [45]) 
based on internal validation scores. Usually, an odd k is used in 
order to prevent ties. The most common way of measuring distance 
between points is Euclidean distance, though other metrics such as 
Manhattan distance can also be used. If some features have much 
greater ranges than others, often a normalization process will occur 
before measuring distance in order to avoid erroneously ignoring 
variability in small-scale features. 

 Since the feature vectors used in VS are often based on QSAR 
[46] information, there are too many descriptors for all to be pro-
jected into a feature space in a computationally efficient manner. In 
order to allow for high-volume data analysis, a subset of features 
must be chosen, but there is no way of initially knowing which are 
important for binding activity to the desired target. This can be 
discovered through variable selection [45], in which randomness 
and statistical mechanics help refine a QSAR topography that is 
suitable for use in the kNN model.  

 Variable selection optimizes k, n (the number of features cho-
sen), and the features used in the topography. The workflow begins 
by choosing k and n values, each within a given range. Then n ran-
dom features are chosen. The predictive power (q2) of the current 
model is calculated through leave-one-out cross-validation over all 
the compounds in the dataset. In the q2 equation (Eq. 7), m repre-
sents the number of compounds, yi represents activity of the ith 
compound, ŷi represents the predicted activity of the ith compound, 
and ȳ represents the average activity of all compounds. 
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 Because trying all possible combinations of features would not 
be accomplishable in a reasonable amount of time, a process called 
simulated annealing [45, 47] – modeled after statistical mechanics 
– tweaks the model by random perturbation and adoption of a new 
set of features if the predictive power improves. After completing 
the variable selection process, a kNN-QSAR model using a subset 
of all introduced QSAR features is obtained that can be used for 
binding activity predictions.   

 Many recent VS studies further enhance kNN-QSAR models by 
also implementing Multi-Task Learning (MTL) [48, 49]. MTL 
involves modeling multiple related tasks in parallel, rather than 
trying to do each in isolation. Its driving idea is that it is easier to 
learn several related complex tasks together than it is to do so sepa-
rately because of inductive bias – the preference given to hypothe-
ses/methods that aid in accomplishing more than one task. For ex-
ample, in VS it is helpful to model binding activity to many differ-
ent targets concurrently because although no target has the same 
binding site, the laws of chemistry are uniform. If two targets are 
closely related, it is very likely that they will interact in similar 
manners with a given compound. Therefore, it is useful to consider 
interactions with both targets when constructing an ML model for 
their binding in general. In the kNN approach, this means parallel-
izing variable selection so that the optimal kNN-QSAR topographic 
model (and related parameters, k and n) is built by taking many 
targets into account. While there is a general consensus that MTL 
on related tasks outperforms Single-Task Learning (STL), it is im-
portant to note that some improvements are simply due to the fact 
that kNN-QSAR performance is closely related to the size of the 
dataset used [26, 50]. 

 Luo et al. found that kNN-QSAR with variable selection out-
performed LBVS approaches that do not use ML in searching for 
ligands of G-Protein Coupled Receptors [47]. However, when com-
paring kNN with other ML methods, its performance often falls 
somewhere in the middle [26, 41, 42]. Because of this, kNN is not 
used quite as often as the more popular ML methods described 
below. Nevertheless, kNN has still been successfully employed for 
VS: for example, in the screening for Estrogen Receptor-mediated 
endocrine disruptors [50]. 

2.3. Support Vector Machines 

 Support Vector Machines (SVMs) were first introduced by 
Vapnik et al. [15, 51]. They function by representing input data as 
feature vectors and plotting them in a space with the same dimen-
sionality. The SVM will then construct an optimal hyperplane that 
divides the data points into two categories. Because SVM is most 
often used in supervised learning, these categories are usually pre-

determined. It has been shown that SVM can be used for unsuper-
vised learning [52]; however, for the purposes of VS, supervised 
learning is more desirable because this guarantees that the classifier 
will assign a compound as either an active or an inactive. 

 An ideal dataset would be perfectly linearly separable – that is, 
it would be possible to draw a hyperplane in the feature space that 
has all the points of one class on one side, and all the points of an-
other class on the other. In this case, there are many hyperplanes 
that will separate the classes of the training data with zero empirical 
risk. The optimal hyperplane is the one which minimizes the confi-
dence interval by maximizing the margin of separation (the mini-
mum distances between the hyperplane and the points closest to it) 
(Fig. 1). This means that the selection of the optimal hyperplane is 
dependent upon the positions of the points closest to it. If and only 
if these points were to move, the optimal hyperplane would change. 
These important points are called support vectors. It can be shown 
that, regardless of the dimensionality of the hyperspace, if there are 
fewer support vectors, there will be a tighter bound on the expected 
error of the classifier (Equation 8) [15]. 
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The minimization of margin of separation can be calculated 
with Lagrange multipliers, and is described in detail by Vapnik 
[15]. 
 Obviously not all datasets are ideal. If the points in a given 
dataset are not perfectly linearly separable in their initial hyper-
space, one can use a kernel function to transform them into a hyper-
space in which they are. Linear, polynomial, and radial basis func-
tion (RBF) kernels are often the kernels of choice. If there does not 
exist a kernel which can transform the datapoints into a hyperspace 
in which they are perfectly linearly separable, then a kernel and 
optimal hyperplane must be chosen that minimize the number of 
misclassified training points. In this case, the SVM is said to have a 
“soft margin” and requires a cost parameter (C) that dictates how 
much cushion there is for training set misclassification; a small C 
gives large empirical risk for the sake of generality, whereas a large 
C risks overfitting in order to have a “harder” boundary [51]. 

 Most implementations of VS that use SVM do so with 
LIBSVM [53] and an RBF kernel [20, 21, 26, 28, 42, 43]. In order 
to set the metaparameters C and gamma (which is an input to the 
RBF), LIBSVM has a “grid” function which uses five-fold cross-
validation to search for the optimal configuration. 

 SVMs are generally among the top performers in ML for VS 
comparison studies [26, 28, 41], and have been used successfully to 

 

Fig. (1). An illustration of the optimal hyperplane that maximizes the margin between two classes, represented by x’s and o’s. The support vectors are bolded 
and lie on the margin lines.  
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identify novel drugs. Chandra et al. constructed several ML models 
to find PTP1B inhibitors in hopes of finding a potential treatment 
for Type-2 Diabetes; the best model used SVM and was run on an 
external database to choose five potential inhibitory compounds. In 
vitro experiments validated two of these as significantly active [41]. 
Similarly, Deshmukh et al. found that their SVM model could both 
identify nearly half of the known FEN1 inhibitors in a test set and 
discover previously unknown inhibitors from the Maybridge small 
molecule database, which were subsequently experimentally veri-
fied [28]. Baba et al. found that SVM models with regression gen-
erally outperformed Random Forests for predicting the ability of a 
given compound to permeate skin, which is important in the devel-
opment of cosmetics and topical medicines [24]. 

2.4. Random Forests 

 Before one can properly understand Random Forests (RF) or 
Random Decision Forests, they must first understand their constitu-
ent element: the Decision Tree (DT). DTs are tree graphs which are 
used to partition data into different classes, first used prominently 
for ML by Quinlan in 1986 [54]. Every node in a DT can be 
thought of as a question about aspects of the data, and every out-
going edge from a particular node is an answer to its question. 
There are three types of “questions” that a node can employ  
(Fig. 2). The first, and perhaps easiest to conceptualize, is the axis-
parallel linear split. This evaluates a Boolean expression, often 
checking if some feature is above or below a given threshold. If the 
set of points is visualized in a feature space, the split created by this 
node can be represented by a line parallel to one of the axes. Alter-
nately, an oblique linear split can be used – this is visualized as a 
hyperplane in the feature space, much like as if it were an SVM. 
The oblique linear split could truly act like an SVM by choosing the 
“optimal” hyperplane: first, it determines which two classes have 
means that are farthest apart; then, it reclassifies all other points 
according to which of the two means they are closer to; finally, it 
uses the methods described in the SVM section to find the hyper-
plane to produce the split. A second method of oblique linear split-
ting is through central axis projection. This type of splitting only 
considers the points belonging to the two farthest-apart classes, and 
picks the hyperplane that is perpendicular to the line connecting 
their means which minimizes misclassification between the two 
classes. The third type of split is the piecewise linear split, which is 
similar to kNN in that it classifies points according to which cluster 
they belong to in a Voronoi tessellation. 

 Regardless of splitting mechanism, each successive node will 
partition the data until each leaf contains only a single class. Doing 
this effectively requires each partition to become purer than its 
ancestors. The separation question at each node must minimize the 
weighted average of its children’s impurities (Eq. 9). Here, k repre-
sents the number of children, |Ej| is the size of the jth child, |E| is 
the size of the node, and I(Ej) is the impurity of the jth child. 
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 Partition impurity can be calculated with entropy or the Gini 
index. Quinlan describes how to use entropy to find the split that 
gives the highest information gain (i.e. lowest impurity) [54]. Gen-
erally, the entropy of a partition is given by Eq. 10, where m is the 
number of classes and pi is the fraction of the ith class in the parti-
tion). The higher the entropy, the higher the impurity. 
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 The Gini index was first described in 1912 [55] and is often 
used to calculate wealth distribution (Eq. 11). Models based on 
Breiman’s CART algorithm [56] generally prefer the Gini index as 
the splitting criterion. 
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 A major drawback of using DTs is their tendency to overfit to 
the training data. “Early stopping” can help prevent this – if the 
information gain (i.e. the difference between the entropy of the 
parent’s data and the weighted average of the entropies of the chil-
dren’s data) does not exceed a predetermined threshold, splitting 
will be terminated. However, this can lead to a loss of accuracy on 
the training data, which also does not bode well for future classifi-
cations to be accurate.

 The proposed solution to this is to use an ensemble of DTs, 
which is called a Random Forest [57]. An RF is made up of a varie-
ty of slightly different DTs, and suggests a classification for an 
input based on the most common output among all its constituent 
DTs. There are multiple ways to build an RF, but all involve grow-
ing each random tree using all the training data and some random 
vector. An example of this is the random subspace method [58, 59]. 
This method is based upon the idea of creating DTs using a subset 
of the full feature space. Each feature is randomly chosen to be 
included or excluded, and then a DT is built using one of the split-
ting techniques described above. Because the entire training set is 
used, there is no empirical risk, but each tree will generalize differ-
ently based on which features are excluded.  

 Another RF construction method is bagging [60]. The term 
“bagging” is a portmanteau of “bootstrap” and “aggregating,” and 
the process it refers to involves growing an ensemble of DTs from 
bootstrap samples of the training set. Bootstrapping improves accu-
racy because, unlike methods such as kNN, DTs are unstable –
meaning that small changes to the training set can result in large 
changes in their structures. 

 

 

Fig. (2). The three types of node splits for a Decision Tree. 
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 Thirdly, RFs can grow with boosting [61]. Boosting’s underly-
ing principle is that the repeated use of weak decision rules can 
eventually lead to an aggregated strong decision rule that will accu-
rately classify the data. New decision rules are created by weighting 
previously misclassified training data more heavily. Perhaps the 
best boosting algorithm is Freund and Schapire’s AdaBoost [62], 
which becomes more accurate as any weak decision rule improves 
(rather than just the least accurate decision rule, as in other boosting 
algorithms), making its decrease in error exponential.  

  RFs classify an input by running it through each of its DTs and 
assigning it to the most commonly outputted class. As the number 
of trees in the RF increases, so does its classification accuracy [59]. 
And not only are RFs more accurate than single DTs, but they also 
do not overfit the training data. This can be proven using the Strong 
Law of Large Numbers [57]. 

 RFs can be easily trained in parallel, with different DTs running 
on different GPUs. This leads to a shorter training time at the cost 
of requiring more GPUs and the ability to parallelize the code. 

 As in NB classifiers, it is possible to extract some information 
about influential features from an RF. This can be done by compar-
ing misclassification rates when noising each feature (i.e. setting its 
value randomly) in turn, or when noising all features but one [57]. 
This tentatively shows which features are most important in deter-
mining classification. Quinlan’s C4.5 program [63] provides anoth-
er way of doing this via production rules, which give the user an 
intuitive interpretation of the splits critical to classification in the 
DT. 

 Unsurprisingly, all the above reasons make DT/RF a popular 
type of ML, and it has been used widely in computational biology. 
For example, RFs have been implemented in order to identify SSL 
mutations [64] and predict domain-based protein-protein interac-
tions [65]. They also are used for VS. 

 When implementing DT/RF for VS, the input data is often ex-
pressed in terms of QSAR, and the screen conducted is therefore 
ligand-based. This means that each node queries different QSAR 
properties, which can be taken from molecular descriptors or fin-
gerprints. Interestingly, some VS studies choose to use single DTs 
(which in this context are often called Recursive Partitioning classi-
fiers, or RPs) rather than RFs, and those that use RFs often choose 
bagging over AdaBoost. It remains to be seen if VS will catch up to 
the most recent advancements in RF, or if RP is sufficient for its 
purposes. 

 While RF-QSAR setups vary, there are some commonalities 
among studies. Most use Discovery Studio 3.5 [38] for their im-
plementations. The number of DTs in a forest can range from 100 
to 1000, and their depths can range from 2 to 30 (or have no speci-
fied threshold). When RFs are used, they are often pruned to com-
bat their tendency to overfit [9, 42]. 

 Herrera-Acevedo et al. paired RF-QSAR with docking to 
search for alternative antichagasic drugs that work well in the 
chronic phase and do not have as many adverse side effects [29]. 
They used a CART-based RF model that was tweaked in order to 
have as low of a FP rate as possible. This approach proved to be 
successful, having been verified against known actives, and pro-
duced several candidate drugs for further analysis. Deshmukh et al. 
also found their RF model to have a low number of false positives, 
and for this reason paired it with the more-accurate SVM model in 
their final inhibitor search [28]. Lee et al. used RF-QSAR to study 
the polypharmacology of compounds, ultimately creating a target-
fishing server which can be used to discover potential targets for a 
given compound [19]. Their approach used bagged RFs and ob-
tained an overall AUC score of 0.97, in addition to outperforming 
NB-based methods on external testing. 

 

 

2.5. Artificial Neural Networks 

 The Artificial Neural Network (ANN) is one of the original ML 
algorithms, with its original rough implementation being Rosen-
blatt’s Perceptron in 1958 [66]. ANNs loosely imitate how learning 
occurs in human brains, which have real networks of neurons, 
though as their usage in ML has progressed they have become more 
distant from attempted accurate neurological models. 

 While SVMs follow the SRM principle by fixing empirical risk 
and minimizing the confidence interval, ANNs do so by fixing the 
confidence interval and minimizing empirical risk [15]. This is 
accomplished by their architecture. ANNs are made up of sequen-
tial connected layers of neurons. The first layer takes in the input 
and is followed by some number of hidden layers, which process 
the data until it is eventually fed into an output layer that gives a 
classification (or a set of probabilities for different possible classifi-
cations). This data processing occurs in each individual neuron. A 
neuron in some layer receives multiple inputs (either from the input 
layer, or from neurons in the previous layer). It transforms these 
inputs with an activation function, and takes the sum of these plus a 
bias term in order to produce an output to the next layer of the net-
work. Sigmoid functions are the standard activation function. These 
are characterized by being both differentiable and real-valued over 
the domain of all real numbers, having exclusively nonnegative 
derivatives, and being bounded (often between -1 and 1, or between 
0 and 1). Commonly used sigmoid functions are the logistic func-
tion (Eq. 12) and the hyperbolic tangent function (Eq. 13). In recent 
years, Rectified Linear Units (ReLUs) (Eq. 14) have emerged as 
another useful activation function [67]. Because ReLUs do not have 
an upper bound, they are called “non-saturating.” It has been shown 
that ANNs can be trained faster with ReLUs than with sigmoidals 
[11], and that ReLUs on average lead to more accurate models [68].  
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 The hidden layers of an ANN get their name from the fact that 
they are not directly indicated by the training data’s output; it is up 
to the network to “decide” how to best utilize them in order to min-
imize empirical risk. This minimization occurs by a process called 
back-propagation [69], which involves proceeding backward 
through the ANN (i.e. from the output layer back to the input layer) 
and for some training input/output, calculating the objective func-
tion. The objective function measures the difference between the 
predicted output and the real output – in other words, the empirical 
risk for some datapoints. The next step is to determine how to 
change the weight of each neuron in order to decrease the objective 
function the most. This process is called gradient descent. 

 Back-propagation must occur repeatedly in order to properly 
refine the weights of hidden neurons. However, undergoing back-
propagation for every datapoint in the training set is unwieldy and 
time-consuming. For this reason, it usually happens over small sets 
of examples, which are called mini-batches. Training an ANN typi-
cally involves conducting back-propagation over the same mini-
batches multiple times – each iteration over a specific set of data is 
called a training epoch. The fact that the training process does not 
equally involve all training data introduces some amount of noise 
into the setting of weights, and this is noted by specifying that the 
ANN has undergone stochastic gradient descent. 

 While the general idea of ANNs has been around for a long 
time, they have only recently had a resurgence in the ML commu- 
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nity. This is because the initial ANN implementation described 
above is very susceptible to over-fitting and often did not perform 
as well as other types of ML. Recent developments in ANN con-
struction have changed this, leading to a much more widespread use 
of the structure. In 2006, Hinton and Osindero introduced the con-
cept of unsupervised pre-training, which occurs before stochastic 
gradient descent and initializes neuron weights so as to be more 
generalizable and closer to the objective function minimum [70]. 
Four years later, Martens showed that ANNs with 2nd order Hessi-
an-free optimization outperform those with pre-training [71]. This 
was bested by Sutskever et al.’s implementation with momentum in 
2013 [72]. Yet another important advancement in ANNs came a 
year later with the concept of dropout [73], which introduces a pa-
rameter that gives every neuron some probability of having no out-
put. This essentially “drops” it from the network for some number 
of runs. Dropout leads to an increase in accuracy and combats over-
fitting because it penalizes heavily weighting individual neurons 
(i.e. discourages the fate of classification unduly resting on a single 
neuron). It also simulates the averaging of many similar ANNs 
which are each made up of strict subsets of the neurons contained in 
the actual ANN, which leads to more generalizability. 

 In addition to repeated breakthroughs in software architecture, 
advances in hardware have also bolstered the usability of ANNs. 
GPUs can process computations much faster than their predeces-
sors, especially when combined with parallelization. This enables 
training of very wide and deep ANNs to occur over the course of 
several hours, rather than days or weeks. 

 Of course, all the new nuances in ANN construction come at a 
cost: an increase in the number of meta-parameters. Employing a 
highly accurate ANN with several wide layers that uses the tech-
niques described above requires many decisions about construction: 
number of layers, number of neurons in each layer, type of activa-
tion function, dropout probability, mini-batch size, number of 
epochs, momentum strength, etc. The sheer number of possible 
settings can be daunting, especially when knowing that some pa-
rameter choices will lead to much more accurate results than others. 
There are a few ways to handle this. Many researchers opt to train 
several ANNs with different parameter settings and using internal 
validation to determine which is optimal for testing. The settings 
may be chosen based on studies comparing the accuracy of models 
with small changes in parameters for the purpose of suggesting 
optimal combinations, as done by Ma et al. [68]. An alternative is 
to eliminate the need to hand-pick parameters by using Bayesian 
optimization to automate the selection process [25]. 

 There are two general classifications of ANNs: feed-forward 
and recurrent. Recurrent ANNs (RNNs) include feedback connec-
tions between the outputs of some neuron and itself or neurons in 
previous layers. These are well-suited for sequential input and are 
often used for tasks like sentence generation or translation. While 
they have been employed for de novo drug discovery through a 
study attempting to iteratively generate SMILES strings of com-
pounds that would bind to a particular target [74], RNNs are not the 
right choice for VS. For this reason, the remainder of this section 
will exclusively discuss feed-forward ANNs, which are character-
ized by their lack of feedback connections. 

 A concept that arises often when discussing feed-forward 
ANNs is that of “deepness.” The term Deep Neural Network 
(DNN) is nearly as much of a buzzword as ML or AI. However, 
there is some disagreement on what exactly a DNN entails. Some 
sources say that all neural networks are deep, since they are based 
on the concept of Deep Learning (DL) – the idea that ML best oc-
curs when expressing a complex input in terms of many simpler 
representations, like a composition of many mathematical functions 
[75]. However, others claim that an ANN is only “deep” when it 
has many hidden layers. Today, any number of layers greater than 
two is likely to be considered “deep,” though this threshold may 
increase in the future. Since most ANNs applied to problems such 

as VS use multiple hidden layers in order to break a very complex 
input down into multiple simple representations, we believe it is 
accurate to call them DNNs. 
 An ANN can also be called a Convolutional Neural Network 
(CNN or ConvNet) if at least one of its hidden layers utilizes con-
volution. Broadly speaking, convolution is a deep learning process 
that discovers clusters of related values located throughout a multi-
dimensional input (Fig. 3). This is accomplished with a combina-
tion of convolutional layers and pooling layers [76]. Convolution 
uses filters that pass through input in order to detect similar features 
throughout a tensor. These filters can vary in size, and this size is 
usually an odd number to facilitate their application to the input (the 
middle weight in the filter is applied to each node, with the rest of 
the filter lining up with the adjacent nodes). Padding of extra zeroes 
can be used to maintain the size of the input tensor. Pooling layers 
reduce noise by only passing on the maximum value in a given 
stretch of nodes. For example, a max pooling layer of size 3 will 
output the highest value of every group of three adjacent input 
nodes. After one or more convolutional/pooling layers, CNNs usu-
ally contain at least one fully connected layer with a typical activa-
tion function such as ReLU.  

 Because CNNs are best suited for processing complex data that 
comes in multiple arrays and contains repeated features, they cur-
rently most widely used in image processing. The first break-
through CNN for this purpose was introduced by Krizhevsky, 
Sutskever, and Hinton in 2012, who presented it as a solution to the 
ImageNet classification challenge [11]. The convolutional and 
pooling layers of their CNN was able to identify image features, 
such as edges and pixel motifs. Their CNN also utilized general 
ANN-enhancing techniques, such as the ReLU activation function, 
dropout, and momentum. This all led to unprecedented success: it 
won the ImageNet LSVRC-2012 competition with a top-5 test error 
rate of 15.3%, and classified images from the 2010 equivalent with 
a top-5 error rate of 17.0%. Since then, a multitude of other CNNs 
have emerged in the field of computer vision [77-79]. 

 CNNs also pair very well with QSAR representations of com-
pounds, meaning that they are applicable for VS. One of the first 
CNNs used for VS was AtomNet™, developed by the company 
Atomwise, Inc. [80]. Unlike the majority of ML-based VS, Atom-
Net™ runs an SBVS, which works well with convolution’s ability 
of extracting local feature clusters from multidimensional input. 
This gives AtomNet™ the advantage of being able to make predic-
tions for targets without requiring knowledge about any of their 
actives and without predetermining which molecular properties are 
possible to check. AtomNet™’s architecture consists of an input 
layer, 4 convolutional layers, 2 fully-connected (i.e. non-
convolutional) layers, and a final logistic-cost layer that determines 
output probabilities. When examining the filters that were devel-
oped in the convolutional layers, it was found that they correspond-
ed to chemical functions. For example, one filter in the first convo-
lutional layer became specialized to detect sulfonyls/sulfonamides. 
This makes sense, since chemical features are roughly the molecu-
lar compound equivalent of the edges in an image. With this ad-
vancement, ANNs in VS are no longer black boxes. Rather, they 
gain the ability to identify features which aid binding – something 
which was previously unique to NB and RF classifiers. And in ad-
dition to feature identification, AtomNet™ is also incredibly accu-
rate, consistently achieving AUC scores greater than 0.74 on a vari-
ety of compound benchmark datasets and outperforming many 
previous docking models.  

 In addition to convolution, multi-task learning is another useful 
tool for ANN-QSAR. As discussed in the kNN section, MTL has 
proved to be useful in VS due to its ability to extract general rules 
about chemistry and the interactions between functional groups that 
are common to many compounds. MTL is able to be implemented 
with ANNs by using a common hidden architecture to produce 
multiple outputs (each related to some task – e.g. a specific target in 
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the case of VS) for one input. Because the weights of the hidden 
neurons are determined by mini-batches from multiple QSAR tar-
gets, the network is not overly specialized toward one particular 
target. It also increases the likelihood of neurons encoding for gen-
eral QSAR features which, as illustrated with AtomNet™, can be 
chemically interpreted. This was observed by Unterthiner et al., 
who found that their multi-task DNN used for toxicology VS ended 
up with feature maps corresponding to chemical functional groups 
as well as toxicophore clusters [81]. 

It should be apparent that ANN has recently become one of the 
more dominant forms of ML in general, and the field of VS is cer-
tainly no exception to this. There are numerous examples of ANN 
models to conduct VS. Fjell et al. used QSAR and ANNs to screen 
for peptides that are likely to have antibiotic properties. They 
showed the applicability of their models by doing in vitro testing of 
hits, some of which showed significant antibiotic activity against a 
variety of drug-resistant bacterial strains [82]. Additionally, Durrant 
and McCammon developed NNScore, a program which uses a deep 
ANN with regression to predict the binding activity of compounds. 
NNScore has proven to be faster than existing docking programs 
that do not utilize ML, making it a better candidate for conducting 
SBVS [83]. 

 Not only has there been an increase in VS studies using ANN, 
but comparison studies have also found that it consistently outper-
forms other types of ML. Lenselink et al. constructed a variety of 
ML models for testing the binding activity of different drugs in the 
ChEMBL library with the intent of directly comparing them against 
each other. Their DNNs had varying architectures – using one to 
three hidden layers, different levels of dropout, and some MTL –
and generally had a statistically significant increase in accuracy 
(measured by BEDROC and MCC) over models based on RF, 
SVM, and NB [20]. Likewise, Dahl et al. compared multi-task and 
single-task ANNs with RFs and boosted RFs, and found that in the 
majority of assays, the best ANNs outperformed the best RFs. Ad-
ditionally, the MTL models generally outperformed the STL ones 
[25]. In developing their DrugMiner web tool for finding viable 
drug targets, Jamali et al. compared the accuracies of a variety of 
common ML methods on their training and testing sets. They found 
that their ANN outperformed NB, kNN, RF, SVM, and DT in terms 
of classification accuracy, and subsequently chose that model for 
their launched software [84]. For these reasons, it is very likely that 
the future of VS will be dominated by the use of ANNs and CNNs. 

2.6. Ensemble Methods 

 Instead of using only one type of classifiers, many studies that 
use ML opt to combine the results of an ensemble of models in 
hopes of increasing performance. This follows the same logic that 
underlies Random Forests – many similar but distinct models will 
make better predictions than one model. We have already men-
tioned some studies which utilized ensemble learning [28, 43]. In 
addition to these, MLViS is a tool that combines NB, NN, kNN, 
DT, SVM, and RF to produce predictions of whether given com-
pounds will be druglike or not. MLViS is unusual in the sheer scope 
of models it used in training, as it was initially tested with 23 com-
mon classifiers and launched with 10 resulting algorithms for clas-
sification [85]. 

In a similar vein, some VS programs available online do not 
directly combine results to produce one classification, but rather 
present the user with several ML model options from which to pick. 
An example of this is MolClass, which is a toolkit that runs an up-
loaded dataset through RF, NB, SVM, and kNN models. The user 
can choose which models to pull their results from and view the 
overall activity profiles generated by MolClass [86].

3. APPLICATION: ALZHEIMER’S DISEASE

 As described above, ML has proven to be incredibly useful for 
in silico drug screening. In this section, we conceptualize a work-
flow for applying ML-based VS to the search for potential thera-
peutic agents for Alzheimer’s disease (AD). 

 AD is a neurodegenerative disease with no known cure and 
prevention. According to Alzheimer’s Disease International, it af-
flicts approximately 44 million people worldwide as of 2016, and 
the number of AD patients is expected to only increase as time goes 
on. Unfortunately, AD and other neurological diseases are notori-
ously difficult to treat. Efforts to produce a drug capable of slowing 
neurodegeneration have been fruitless, and the most recent AD-
related drug to pass clinical trials, Memantine, did so in 2003 [87]. 
The AD drugs currently available only alleviate symptoms, rather 
than reversing the course of the disease [88-90]. It is imperative to 
keep searching for a cure, and VS with ML is a promising method 
for AD drug discovery.  

 The first step in any VS is the identification of a target protein. 
As AD is a polygenic and multifactorial disease with complex ori-

 

Fig. (3). Example section of a typical CNN architecture. Weighted connections between nodes are represented by gray lines. On the left is an input that gets 
convolved with a size 3 filter and has padding of 1, followed by max pooling with size 2. The output of this is fed into a fully-connected layer which will usu-
ally utilize a ReLU activation function. Ellipses indicate the presence of other layers before and after the depicted nodes. 
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gins, there is not an obvious target to choose. AD is characterized 
by aggregations of amyloid-beta (Aβ) plaques and neurofibrillary 
tangles (NFT) comprised of hyperphosphorylated tau protein [91, 
92]. AD-affected brains also show a significantly reduced concen-
tration of the neurotransmitter acetylcholine (ACh) [93, 94]. These 
two facts have sparked the main hypotheses around which AD 
treatments are based: the amyloid cascade hypothesis (the idea that 
the cognitive decline present in AD is caused by Aβ plaques) and 
the cholinergic hypothesis (the idea that it is caused by ACh loss). 
Early attempts to design an AD drug focused on the cholinergic 
hypothesis. Because of this, most existing AD treatments are cho-
linesterase inhibitors. However, since these drugs are all palliative 
and do not stop neurodegeneration, AD drug design going forward 
is paying more attention to the amyloid cascade hypothesis. 

 Many of the proposed Aβ-related targets are involved in the 
generation of Aβ. This process begins with beta-site amyloid pre-
cursor protein cleaving enzyme 1 (BACE1) cleaving the Amyloid 
Precursor Protein (APP), followed by γ-secretase making a second 
cut to produce Aβ [95]. A different enzyme, α-secretase, can cut 
APP in a different location, preventing creation of Aβ. With all this 
in mind, there is consensus that inhibitors of BACE1 or γ-secretase 
would make good AD drugs. Muscarinic ACh receptor (mAChR) 
agonists are also attractive due to the observation that mAChR 
stimulation increases the activity of α-secretase [96] – in addition to 
possibly degrading BACE1 [97]. Other potential targets are glyco-
gen synthase kinase-3 beta (GSK-3β) and cyclin-dependent kinase 
5 (CDK5), both of which are implicated in tau phosphorylation [98-
100].  

 When choosing a target, it is imperative to consider potential 
side effects of its inhibition – especially when considering neuro-
logical processes. For example, numerous problematic phenotypes 
have arisen when breeding mice with the BACE1 gene knocked out 
[101-104]. While some of these results may not occur when inhibit-
ing BACE1 late in life (rather than never having it from the begin-
ning of development), these conclusions certainly raise a need for 
caution. Likewise, inhibition of γ-secretase may lead to complica-
tions in its associated Notch pathway and even a paradoxical de-
crease in cognition [105, 106].  

 Another possible cause of negative side effects is due to the 
polypharmacology of compounds. Often, a drug designed to inhibit 
one target will also be able to inhibit other proteins, leading to un-
foreseen consequences. However, polypharmacology can also have 
positive effects, particularly when attempting to treat a polygenic 
and multifactorial disease like AD, because it entails that one drug 
could have increased effectiveness by inhibiting multiple targets. 
This train of thought has led to an increase in screening for Multi-
Target Directed Ligands (MTDLs) [107]. In fact, most recent VS 
studies for AD drug screen for MTDLs that inhibit some combina-
tion of the aforementioned targets. Xie et al. performed sequential 
dockings to screen for compounds that could inhibit both GSK-3β 
and CDK5 [108], and Kumar et al. did an LBVS for MTDLs that 
inhibit BACE1 and GSK-3β [109]. One combined LBVS/SBVS did 
not choose particular targets, but rather started with the scaffold of 
a preexisting AD drug to attempt to find similar MTDLs [110]. 

 None of these VSs used ML, but an ML-based VS for AD is not 
completely unheard of. Fang et al. used NB and RP classifiers to 
conduct an LBVS for MTDLs [111]. They had a total of 25 targets 
in the screen, including BACE1, the M1 subtype of mAChR, APP, 
CDK5, and GSK-3β, and searched for compounds that bound to as 
many targets as possible. Current AD-related drugs were used to 
validate the model, which produced predicted MTDLs for further 
development. 

 It is interesting to note the absence of ANN-based VSs for AD; 
the general high performance of ANNs should make them an attrac-
tive method for this purpose. The ease of which MTL can be im-
plemented with ANNs and the clear connections between MTL and 

screens for MTDLs further rationalize the approach. Furthermore, 
the emergence of CNNs and the applications of convolution in 
QSAR modeling make CNNs such as AtomNet™ promising. We 
propose using a multi-task, deep CNN for a VS of potential MTDLs 
that inhibit a combination of AD-related targets. These targets 
should include the enzymes and receptors mentioned above, though 
it is crucial to perform additional target-fishing to ensure that any 
predicted MTDLs do not interfere with critical neurological func-
tions. Training and testing data should be pulled from some 
chemogenomics libraries, with include many examples of known 
inhibitors of each proposed target, and the dataset should be prepro-
cessed as described in the background sections before using it to 
train and internally validate the CNN. At the moment, we do not 
have recommendations for a particular CNN architecture. 

 If a model constructed in this manner is sufficiently accurate, it 
should be used on a large dataset comprised of compounds distinct 
from the initial training and testing sets. The top hits from this 
screen should be purchased and put through in vitro assays in order 
to ascertain their effectiveness. Ideally, at least one compound 
would have the desired activity and could be further developed 
from a lead into a drug suitable for clinical trials. 

CONCLUSION 

 At a time when drug development is steadily getting slower and 
costlier, it is vital to turn to cutting-edge technologies for aid. ML-
based VS enables medicinal chemists to efficiently find potential 
lead molecules among millions of compounds in chemogenomics 
libraries, greatly increasing the yield of HTS and speeding up the 
initial stages of drug development. This review described the work-
ings of Naïve Bayesian classifiers, k-Nearest Neighbors, Support 
Vector Machines, Random Forests, and Artificial Neural Networks, 
all of which are viable implementations of ML for the purposes of 
VS. While comparison studies have generally pointed to SVMs and 
ANNs as the most accurate VS models, it is important to note that 
each technique has its own advantages and disadvantages, which 
should be considered when designing a VS. For instance, NB can 
identify favorable scaffold fragments and is not susceptible to the 
Curse of Dimensionality, RFs are easily parallelizable and can be 
enhanced with boosting or bagging, and kNN is simple to imple-
ment and can utilize MTL. Of course, it is possible and perhaps 
even preferable to employ an ensemble of ML models, as this gen-
erally increases performance. 

  As illustrated in the Application section, it is very feasible to 
design an ML-based VS workflow to search for disease-specific 
drugs. While complex diseases like AD do not have absolutely 
definitive targets on which to conduct the VS, thinking about their 
underlying mechanisms and examining prior research may provide 
starting points. Coupling MTL approaches through ANN or kNN 
with the idea of screening for MTDLs has the promise of creating 
high-performing classifiers that output compounds that could poten-
tially bind to multiple targets involved in a disease phenotype. 

 The multidisciplinary nature of ML-based VS has led to part-
nerships between powerhouses in the artificial intelligence and 
pharmaceutical industries. Such collaborations benefit from the 
combination of state-of-the-art hardware and ML technologies 
combined with vast in-house chemogenomics libraries. Already, 
IBM has partnered with several pharmaceutical companies such as 
Teva Pharma, Sage Bionetworks, and Pfizer [112]; the aforemen-
tioned creator of AtomNet™- Atomwise, Inc., is collaborating with 
Merck; and GNS healthcare has paired with Genentech for oncolo-
gy drug discovery [113] – these are only a few examples, and it is 
likely that other partnerships will continue to form. 

 We expect the use of ML in VS for drug discovery to only grow 
as the scientific world realizes the power that it brings to the field. 
The joint efforts of computer science and medicinal chemistry are 
sure to make drug discovery process more efficient and less costly.  
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LIST OF ABBREVIATIONS 

Aβ = Amyloid-beta 

ACh = Acetylcholine 

AD = Alzheimer’s Disease 

ANN = Artificial Neural Network 

APP = Amyloid Precursor Protein 

AI = Artificial Intelligence 

AUC = Area Under Receiving Operator Characteristic 
Curve 

BACE1 = Beta-Site Amyloid Precursor Protein Cleaving 
Enzyme 1 

BEDROC = Boltzmann-Enhanced Discrimination of Re-
ceiving Operator Characteristic 

CDK5 = Cyclin-dependent Kinase 5 

DL = Deep Learning 

CNN = Convolutional Neural Network 

DNN = Deep Neural Network 

DT = Decision Tree 

FN = False Negative 

FP = False Positive 

GSK-3β = Glycogen Synthase Kinase-3 Beta 

HTS = High-throughput Screening 

kNN = k-nearest Neighbors 

LBVS = Ligand-based Virtual Screening 

mAChR = Muscarinic Acetylcholine Receptor 

MCC = Matthews’ Correlation Coefficient 

ML = Machine Learning 

MTDL = Multi-target Directed Ligand 

MTL = Multi-task Learning 

NB = Naïve Bayesian 

NFT = Neurofibrillary Tangle 

PAINS = Pan-assay Interference Compounds 

Q = Accuracy 

QSAR = Quantitative Structure-activity Relationship 

RBF = Radial Basis Function 

ReLU = Rectified Linear Unit 

RF = Random Forest 

RNN = Recurrent Neural Network 

RP = Recursive Partitioning 

SBVS = Structure-based Virtual Screening 

SE = Selectivity 

SP = Specificity 

SRM = Structural Risk Minimization 

STL = Single-task Learning 

SVM = Support Vector Machine 

TN = True Negative 

TP = True Positive 

VS = Virtual Screening 
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