

C
ur

re
nt

 P
ha

rm
ac

eu
tic

al
 D

es
ig

n

������
����	
�
����

�������������	�
������������
	��

�������
�������

���

Kristy A. Carpenter and Xudong Huang*

Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School,
Charlestown, MA 02129, USA

 Abstract: Background: Virtual Screening (VS) has emerged as an important tool in the drug development pro-
cess, as it conducts efficient in silico searches over millions of compounds, ultimately increasing yields of poten-
tial drug leads. As a subset of Artificial Intelligence (AI), Machine Learning (ML) is a powerful way of conduct-
ing VS for drug leads. ML for VS generally involves assembling a filtered training set of compounds, comprised
of known actives and inactives. After training the model, it is validated and, if sufficiently accurate, used on pre-
viously unseen databases to screen for novel compounds with desired drug target binding activity.

Objective: The study aims to review ML-based methods used for VS and applications to Alzheimer’s Disease
(AD) drug discovery.

Methods: To update the current knowledge on ML for VS, we review thorough backgrounds, explanations, and
VS applications of the following ML techniques: Naïve Bayes (NB), k-Nearest Neighbors (kNN), Support Vector
Machines (SVM), Random Forests (RF), and Artificial Neural Networks (ANN).

Results: All techniques have found success in VS, but the future of VS is likely to lean more largely toward the
use of neural networks – and more specifically, Convolutional Neural Networks (CNN), which are a subset of
ANN that utilize convolution. We additionally conceptualize a work flow for conducting ML-based VS for poten-
tial therapeutics for AD, a complex neurodegenerative disease with no known cure and prevention. This both
serves as an example of how to apply the concepts introduced earlier in the review and as a potential workflow
for future implementation.

Conclusion: Different ML techniques are powerful tools for VS, and they have advantages and disadvantages
albeit. ML-based VS can be applied to AD drug development.

A R T I C L E H I S T O R Y

Received: April 24, 2018
Accepted: June 1, 2018

DOI:

10.2174/1381612824666180607124038�

Keywords: Artificial intelligence, machine learning, drug discovery, virtual screening, k-nearest neighbors, support vector machines, naïve
bayes, random forests, artificial neural networks, convolutional neural networks, Alzheimer’s disease.

1. INTRODUCTION

 Today, drug development is a very time-consuming and capital-
intensive process. A 2014 study found that the cost of developing a
prescription drug is on average $2.87 billion [1], and has likely
since increased. Getting a potential drug through development stag-
es and clinical trial phases takes years to complete, and often com-
pounds fail before ever reaching the market. One of the more prob-
lematic processes in the drug development pipeline is the early
stage of identifying potential drug leads among thousands to mil-
lions of candidate compounds. High-throughput Screening (HTS)
of compounds is very time- and resource-heavy, especially when
considering the low number of hits it produces. In an attempt to
remedy this, many researchers choose to supplement the in vitro
HTS with Virtual Screening (VS). This in silico process is a faster
and cheaper way of searching for potential leads and can be utilized
to reduce the number of compounds put through HTS, thereby
greatly increasing HTS’s yield. Like all computational biology
processes, it is important to note that VS is not a replacement for
HTS, because any sort of simulation or computer approximation is
never guaranteed to be accurate – rather, it is a tool to aid and be
used in conjunction with experiments.

*Address correspondence to this author at the Neurochemistry Laboratory,
Department of Psychiatry, Massachusetts General Hospital and Harvard
Medical School, Charlestown, MA, USA; Tel: 001-617-724-9778;
Fax: 001-617-726-4078; E-mail: Huang.Xudong@mgh.harvard.edu

1.1. Virtual Screening

 The first step in VS is the assembly of a compound database on
which to conduct the screening. This may begin with pulling mass
quantities from publicly available chemogenomics libraries such as
ChEMBL [2], PubChem [3], or ZINC [4], each include tens of
millions of compounds annotated with information about their
structure, known targets, and in the case of ZINC, purchasability. It
is also common for pharmaceutical companies to use their own, in-
house compound databases – which may have come from drugs that
did not pass all clinical trials – to conduct VS. Whether the initial
dataset is queried from the internet or not, it must go through fur-
ther filtering in order to discard infeasible compounds and lower the
number of false positives. It is common for researchers to exclude
compounds that are much larger than the binding site of their target,
or ones that are not available for purchase within the desired
timeframe. Most datasets also get filtered according to Lipinski’s
Rule of Five [5] or standard metrics for lead-likeness [6], which
remove compounds that are unlikely to be good drugs or leads,
respectively. This is a particularly important step because VS is not
done in isolation, but rather for the purpose of developing a drug for
production. Finding a compound that can bind to the target but
cannot be properly physiologically absorbed (or in the case of a
lead, modified to be properly physiologically absorbed) does not
accomplish this goal. Likewise, it is important to take precautionary
measures to reduce the number of false positives, which take up
time and resources in the hit-to-lead development and clinical trial
phases only to ultimately fail. This can be done by removing com-
pounds deemed to be pan-assay interference compounds (PAINS)
[7].

18'3-4286/18 $58.00+.00 © 2018 Bentham Science Publishers

Send Orders for Reprints to reprints@benthamscience.ae

 Current Pharmaceutical Design, 2018, 24, 3347-3358

3347

REVIEW ARTICLE

Machine Learning-based Virtual Screening and Its Applications to Alzheimer’s Drug
Discovery: A Review

3348 Current Pharmaceutical Design, 2018, Vol. 24, No. 28 Carpenter and Huang

 Once the dataset has been assembled, the next step is to perform
the actual screening. This can be done in a structure-based or lig-
and-based manner, or with a combination of the two. Structure-
Based Virtual Screening (SBVS) involves examination of the struc-
tures of the ligand and target binding site and evaluation of the
likelihood that the ligand will bind. This is most often done with
docking, which involves “placing” compounds in the binding site of
the target and scoring how likely they are to bind given a predeter-
mined metric [8]. This method relies upon knowledge of each com-
pound’s structure, as well as the structure of the target. Ligand-
Based Virtual Screening (LBVS) does not require structure infor-
mation, but rather the molecular and chemical properties of known
actives and the tested compounds [9]. The idea behind LBVS is that
undiscovered actives will share some chemical features with the
known ones. While it seems counterintuitive to use a drug discov-
ery method that requires already knowing viable compounds, it is
possible that the preexisting compounds cause undesirable side
effects, do not treat all stages of the disease, or target something
that has developed resistance to them.

 There are advantages and disadvantages to both screening tech-
niques. SBVS has the potential to discover actives with novel scaf-
folds, while LBVS is restricted to finding actives that share a lim-
ited number of predetermined chemical descriptors with known
ligands. Additionally, if a target has no known actives, it is only
possible to conduct SBVS. However, SBVS varies widely in accu-
racy due to approximations in physics, thermodynamics, and mo-
lecular positioning, and is dependent upon the use of a very accu-
rate scoring function [10]. In this way, LBVS is more dependable.
It is therefore up to the researchers to decide which screen is more
appropriate to their experiment – or how to combine the hits pro-
duced by using both screens on the same data.

 After obtaining hits from the VS, it is imperative to validate the
results in vitro. Once one or more compounds have been experi-
mentally verified as being able to bind to the desired target, they
can undergo hit-to-lead development and clinical trials in order to
hopefully be made into viable drugs.

 But how does one actually perform VS? It is not an option to
simply perform an in silico HTS simulation with molecular dynam-
ics, as this would be extremely computationally intensive and likely
take an incredible amount of time to run. Instead, computational
chemists are turning to ML in order to efficiently conduct VS.

1.2. Machine Learning

 Machine learning (ML) is a subfield of Artificial Intelligence
(AI), and the two are the biggest buzzwords in many technological
fields today. It has led to incredible breakthroughs in image pro-
cessing [11] and Natural Language Processing (NLP) [12], and is
being utilized in a number of other fields including sentiment anal-
ysis [13] and autonomous vehicles [14]. This versatility comes from
the fact that ML constitutes generalizable methods of learning that
only require large training datasets in order to perform well. The
upsurge in chemical data availability makes ML viable for VS.

 Before learning about the applications of ML in VS, it is im-
portant to understand its general principles. While most computer
programs require an input and some functions to produce an output,
ML uses training inputs and outputs to generate a function, which it
can then use on test inputs to produce corresponding outputs. A
good ML implementation must follow the Structural Risk Minimi-
zation (SRM) principle: it strikes an ideal balance between being
both generalizable to unseen testing data and not overfitting the
training data. This is done by minimizing the confidence interval
(which corresponds to overfitting) and minimizing the empirical
risk (which is the average error for the training data) [15]. ML can
be supervised or unsupervised. The former involves giving inputs
already labelled with classifications and asking the computer to
determine the classification pattern; the latter uses unlabeled inputs
and requires the computer to cluster similar data points in order to

generate logical classes. Because the purpose of VS is to determine
the activity of tested compounds, only supervised learning algo-
rithms are used.

 Two important processes that are common to all forms of ML –
and particularly to ML in VS – are dataset preparation and model
validation. A good ML model learns from a thoughtfully curated
training dataset and is applied to a distinct testing set. When used
for VS, both sets must consist of compounds with labelled binding
activity – the training set requires this in order to establish patterns
that the model can learn, and the testing set requires this for evalu-
ating the model’s accuracy. Active compounds must be taken from
experimental results. Inactives may also be selected this way, but it
is not always the case that a chosen chemogenomics library will
contain enough nonbinding compounds that have been tested
against the target for which the VS is being conducted. For this
reason, many researchers opt to use decoy compounds, which are
structurally similar to actives but have very different chemical fea-
tures. The rationale behind this is that it is important to provide
inactives that physically resemble actives to prevent the VS model
from erroneously equating common structural features with
activity, and that the decoys’ chemical differences are sufficient to
assume a high unlikeliness to bind. The most common method of
obtaining decoys is through the use of directories such as DUDE
[16]. Dissimilarity between known actives and assumed inactives
can be further enforced by also calculating the Tanimoto coefficient
[17] and excluding presumed inactives that are too similar to ac-
tives.

 The Tanimoto coefficient serves another key purpose; it can
provide a measure of the dataset’s diversity. Diversity is critical for
the creation of good training and testing sets in order to make the
resulting ML model as general as possible. For this reason, it is
typical to calculate the average Tanimoto coefficient between all
compounds in the dataset to ensure that it is sufficiently diverse.

 Once the overall dataset has been assembled, it is very likely
that there will be an imbalance between the number of active and
inactive compounds. This can be problematic for some ML meth-
ods [18]. Potential ways to resolve this problem are negative-
undersampling of inactives and/or positive-oversampling of actives
[19].

 After all this preparation, the labelled dataset can be split into
training and testing data. Most often, about 70% of the data goes to
the training set and the remainder to testing [20-27], although an
80/20 split can also be used [28-30]. These splits are usually done
randomly – however, it has been shown that a temporal-based split
generally increases classifier accuracy [31]. An alternative to split-
ting is k-fold cross-validation, in which the dataset is randomly split
into k partitions of equal size. k-1 partitions are used as training
data, and the final partition is the testing data. This process is
repeated a total of k times, with each partition serving as the testing
set exactly once. The final model is chosen based on the split that
produced the lowest error. The value of k is usually chosen to be 5
or 10. The special case when k is equal to the number of samples is
called leave-one-out cross-validation.

 Regardless of how the testing set is separated from the training
set, it is used in a process called internal validation in order to
judge an ML model. This is often done by first calculating the con-
fusion matrix of the model, which consists of the intersections be-
tween predicted actives/inactives and actual actives/inactives. The
confusion matrix yields values that can help quantify the perfor-
mance of any ML model: sensitivity (Eq. 1) [32], specificity (Eq. 2)
[32], accuracy (Eq. 3) [32], and the Matthews’ Correlation Coeffi-
cient (MCC) (Eq. 4) [33]. In each of these equations, TP, FP, TN,
and FN represent the number of true positives, false positives, true
negatives, and false negatives, respectively.

Machine Learning for Virtual Drug Screening Current Pharmaceutical Design, 2018, Vol. 24, No. 28 3349

�� � �
��

�� � ��
� �

�� � �
��

�� � ��
� �

� �
�� � ��

�� � �� � �� � ��
� �

��� � ��
����� � �����

�� � �� �� � �� �� � �� �� � ��

� �

 The MCC is usually used to compare the performance of differ-
ent models, with a perfect model having a score of 1. It is also very
common to measure accuracy by way of the area under the receiver
operating characteristic curve (AUC), which plots SP against 1 -
SE. Again, the closer this value is to 1, the better. An AUC of 0.5
indicates performance equivalent to random classification. ML for
VS also often uses the Boltzmann-enhanced discrimination of re-
ceiver operating characteristic (BEDROC) [34], an accuracy metric
specifically designed to compare VS ranking methods.

 Now that we have reviewed the general workflows of both VS
and ML, we can dive into specific ML techniques. There are many
types of ML, and we will describe them below in turn, along with
how to specifically use them for VS and an overview of how recent
VS research has achieved so far.

2. MACHINE LEARNING METHODS FOR VIRTUAL
SCREENING

2.1. Naïve Bayes

 One of the simpler ML techniques is the Naïve Bayesian (NB)
classifier. This classifier is based on Bayes’ Theorem [35], which
relates conditional probabilities (Eq. 5).

�� � � � ��
�� � � � �� �

�� �
� � �

 In general, A is some class, and B is a feature of the data. The
equation above shows that it is possible to find the probability that
an input with some feature belongs to a certain class given three
quantities that can be obtained from the training set: the probability
that a member of the class has a certain attribute, the probability
that an arbitrary data point belongs to that class (called the “prior
probability”), and the probability that an arbitrary data point has
that feature (the “marginal probability”) [30].

 NB classifiers are best applied for LBVS. The classes must be
active and inactive compounds. The attributes can be molecular
descriptors, which are properties of the molecule such as molecular
weight or AlogP that are usually calculated with software such as
MOE [36], PaDel [37], or Discovery Studio [38]. Molecular finger-
prints [39] also can serve as attributes. These are binary strings that
represent structural information and can be used to measure molec-
ular similarity in non-ML contexts.

 The direct application of Bayes’ Theorem may give probabili-
ties that are erroneously large – or zero – if some attribute is under-
sampled in the training set and becomes incorrectly associated with
exclusively one class. In order to combat this, multiple studies [9,
30] utilized a Laplace estimator (Eq. 6).

��
���

� � �
�� � � � ����� � �

�� � � �� � ��
� �

 While some studies have found that NB performs poorly in
comparison to other ML methods [20, 26], it does have the ad-
vantage of not being susceptible to the “curse of dimensionality”
[40]. This phenomenon causes ML methods based on clustering

(such as k-Nearest Neighbors and Support Vector Machines, both
described below) to lose accuracy when the number of samples
does not increase exponentially with the number of dimensions.
Because effective LBVS will occur in a high-dimensional space,
non-clustering methods like NB become more manageable due to
their reasonably-sized datasets. NB is also able to extract important
attributes from the data, instead of acting like a black box. Knowing
which specific features highly correlate to membership of either the
active or inactive class allows for discovery of “privileged frag-
ments” or “unprivileged fragments,” respectively [9, 21, 23, 26,
41]. These fragments can greatly aid in scaffold design for com-
pounds that are likely to bind to the desired target.

 Several VS experiments have found success with NB classifi-
ers. Yu et al. used one in conjunction with 3D Quantitative Struc-
ture-Activity Relationship (QSAR) pharmacophore hypothesis
modeling to find prospective inhibitors of PI3Kα, a key target pro-
tein for many cancers; in vitro assays confirmed the discovery of
some novel inhibitors [22]. Wang et al. chose an NB classifier from
over 800 ML models that utilized four distinct techniques because it
performed the best on external testing and gave favorable frag-
ments. When using this classifier on a novel compound database,
56 hits were found after filtering, and in vitro assays deemed 12 of
them as significantly active [42]. Jang et al used an NB classifier as
a crucial step in their drug discovery workflow, which produced
new and structurally diverse hits for mGlu1 receptor inhibitors [21].
Lian et al. combined NB models together with Support Vector Ma-
chines (described below) to create an enhanced ensemble model
that produced 9 potent Influenza A neuraminidase inhibitors [43].

2.2. k-Nearest Neighbors

 The k-Nearest Neighbors (kNN) classification method [44] is
another simple ML method. The idea behind kNN is even more
intuitive than that of NB: when projecting data into a feature space,
the class of a given point is most likely going to be the same as its
nearest neighbors. In its most basic implementation, kNN performs
classification by assigning a point to the class that is most prevalent
out of the k points closest to it. The k parameter can either be prede-
termined or chosen from a given range (usually between 1 and 5,
though can go as far as the number of compounds screened [45])
based on internal validation scores. Usually, an odd k is used in
order to prevent ties. The most common way of measuring distance
between points is Euclidean distance, though other metrics such as
Manhattan distance can also be used. If some features have much
greater ranges than others, often a normalization process will occur
before measuring distance in order to avoid erroneously ignoring
variability in small-scale features.

 Since the feature vectors used in VS are often based on QSAR
[46] information, there are too many descriptors for all to be pro-
jected into a feature space in a computationally efficient manner. In
order to allow for high-volume data analysis, a subset of features
must be chosen, but there is no way of initially knowing which are
important for binding activity to the desired target. This can be
discovered through variable selection [45], in which randomness
and statistical mechanics help refine a QSAR topography that is
suitable for use in the kNN model.

 Variable selection optimizes k, n (the number of features cho-
sen), and the features used in the topography. The workflow begins
by choosing k and n values, each within a given range. Then n ran-
dom features are chosen. The predictive power (q2) of the current
model is calculated through leave-one-out cross-validation over all
the compounds in the dataset. In the q2 equation (Eq. 7), m repre-
sents the number of compounds, yi represents activity of the ith
compound, ŷi represents the predicted activity of the ith compound,
and ȳ represents the average activity of all compounds.

�� � � �
�� � ��

��
���

�� � �
��

���

� �

3350 Current Pharmaceutical Design, 2018, Vol. 24, No. 28 Carpenter and Huang

 Because trying all possible combinations of features would not
be accomplishable in a reasonable amount of time, a process called
simulated annealing [45, 47] – modeled after statistical mechanics
– tweaks the model by random perturbation and adoption of a new
set of features if the predictive power improves. After completing
the variable selection process, a kNN-QSAR model using a subset
of all introduced QSAR features is obtained that can be used for
binding activity predictions.

 Many recent VS studies further enhance kNN-QSAR models by
also implementing Multi-Task Learning (MTL) [48, 49]. MTL
involves modeling multiple related tasks in parallel, rather than
trying to do each in isolation. Its driving idea is that it is easier to
learn several related complex tasks together than it is to do so sepa-
rately because of inductive bias – the preference given to hypothe-
ses/methods that aid in accomplishing more than one task. For ex-
ample, in VS it is helpful to model binding activity to many differ-
ent targets concurrently because although no target has the same
binding site, the laws of chemistry are uniform. If two targets are
closely related, it is very likely that they will interact in similar
manners with a given compound. Therefore, it is useful to consider
interactions with both targets when constructing an ML model for
their binding in general. In the kNN approach, this means parallel-
izing variable selection so that the optimal kNN-QSAR topographic
model (and related parameters, k and n) is built by taking many
targets into account. While there is a general consensus that MTL
on related tasks outperforms Single-Task Learning (STL), it is im-
portant to note that some improvements are simply due to the fact
that kNN-QSAR performance is closely related to the size of the
dataset used [26, 50].

 Luo et al. found that kNN-QSAR with variable selection out-
performed LBVS approaches that do not use ML in searching for
ligands of G-Protein Coupled Receptors [47]. However, when com-
paring kNN with other ML methods, its performance often falls
somewhere in the middle [26, 41, 42]. Because of this, kNN is not
used quite as often as the more popular ML methods described
below. Nevertheless, kNN has still been successfully employed for
VS: for example, in the screening for Estrogen Receptor-mediated
endocrine disruptors [50].

2.3. Support Vector Machines

 Support Vector Machines (SVMs) were first introduced by
Vapnik et al. [15, 51]. They function by representing input data as
feature vectors and plotting them in a space with the same dimen-
sionality. The SVM will then construct an optimal hyperplane that
divides the data points into two categories. Because SVM is most
often used in supervised learning, these categories are usually pre-

determined. It has been shown that SVM can be used for unsuper-
vised learning [52]; however, for the purposes of VS, supervised
learning is more desirable because this guarantees that the classifier
will assign a compound as either an active or an inactive.

 An ideal dataset would be perfectly linearly separable – that is,
it would be possible to draw a hyperplane in the feature space that
has all the points of one class on one side, and all the points of an-
other class on the other. In this case, there are many hyperplanes
that will separate the classes of the training data with zero empirical
risk. The optimal hyperplane is the one which minimizes the confi-
dence interval by maximizing the margin of separation (the mini-
mum distances between the hyperplane and the points closest to it)
(Fig. 1). This means that the selection of the optimal hyperplane is
dependent upon the positions of the points closest to it. If and only
if these points were to move, the optimal hyperplane would change.
These important points are called support vectors. It can be shown
that, regardless of the dimensionality of the hyperspace, if there are
fewer support vectors, there will be a tighter bound on the expected
error of the classifier (Equation 8) [15].

�� �� ����� �
�� �������������������������

�������������������������� � �
� �

The minimization of margin of separation can be calculated
with Lagrange multipliers, and is described in detail by Vapnik
[15].
 Obviously not all datasets are ideal. If the points in a given
dataset are not perfectly linearly separable in their initial hyper-
space, one can use a kernel function to transform them into a hyper-
space in which they are. Linear, polynomial, and radial basis func-
tion (RBF) kernels are often the kernels of choice. If there does not
exist a kernel which can transform the datapoints into a hyperspace
in which they are perfectly linearly separable, then a kernel and
optimal hyperplane must be chosen that minimize the number of
misclassified training points. In this case, the SVM is said to have a
“soft margin” and requires a cost parameter (C) that dictates how
much cushion there is for training set misclassification; a small C
gives large empirical risk for the sake of generality, whereas a large
C risks overfitting in order to have a “harder” boundary [51].

 Most implementations of VS that use SVM do so with
LIBSVM [53] and an RBF kernel [20, 21, 26, 28, 42, 43]. In order
to set the metaparameters C and gamma (which is an input to the
RBF), LIBSVM has a “grid” function which uses five-fold cross-
validation to search for the optimal configuration.

 SVMs are generally among the top performers in ML for VS
comparison studies [26, 28, 41], and have been used successfully to

Fig. (1). An illustration of the optimal hyperplane that maximizes the margin between two classes, represented by x’s and o’s. The support vectors are bolded
and lie on the margin lines.

Machine Learning for Virtual Drug Screening Current Pharmaceutical Design, 2018, Vol. 24, No. 28 3351

identify novel drugs. Chandra et al. constructed several ML models
to find PTP1B inhibitors in hopes of finding a potential treatment
for Type-2 Diabetes; the best model used SVM and was run on an
external database to choose five potential inhibitory compounds. In
vitro experiments validated two of these as significantly active [41].
Similarly, Deshmukh et al. found that their SVM model could both
identify nearly half of the known FEN1 inhibitors in a test set and
discover previously unknown inhibitors from the Maybridge small
molecule database, which were subsequently experimentally veri-
fied [28]. Baba et al. found that SVM models with regression gen-
erally outperformed Random Forests for predicting the ability of a
given compound to permeate skin, which is important in the devel-
opment of cosmetics and topical medicines [24].

2.4. Random Forests

 Before one can properly understand Random Forests (RF) or
Random Decision Forests, they must first understand their constitu-
ent element: the Decision Tree (DT). DTs are tree graphs which are
used to partition data into different classes, first used prominently
for ML by Quinlan in 1986 [54]. Every node in a DT can be
thought of as a question about aspects of the data, and every out-
going edge from a particular node is an answer to its question.
There are three types of “questions” that a node can employ
(Fig. 2). The first, and perhaps easiest to conceptualize, is the axis-
parallel linear split. This evaluates a Boolean expression, often
checking if some feature is above or below a given threshold. If the
set of points is visualized in a feature space, the split created by this
node can be represented by a line parallel to one of the axes. Alter-
nately, an oblique linear split can be used – this is visualized as a
hyperplane in the feature space, much like as if it were an SVM.
The oblique linear split could truly act like an SVM by choosing the
“optimal” hyperplane: first, it determines which two classes have
means that are farthest apart; then, it reclassifies all other points
according to which of the two means they are closer to; finally, it
uses the methods described in the SVM section to find the hyper-
plane to produce the split. A second method of oblique linear split-
ting is through central axis projection. This type of splitting only
considers the points belonging to the two farthest-apart classes, and
picks the hyperplane that is perpendicular to the line connecting
their means which minimizes misclassification between the two
classes. The third type of split is the piecewise linear split, which is
similar to kNN in that it classifies points according to which cluster
they belong to in a Voronoi tessellation.

 Regardless of splitting mechanism, each successive node will
partition the data until each leaf contains only a single class. Doing
this effectively requires each partition to become purer than its
ancestors. The separation question at each node must minimize the
weighted average of its children’s impurities (Eq. 9). Here, k repre-
sents the number of children, |Ej| is the size of the jth child, |E| is
the size of the node, and I(Ej) is the impurity of the jth child.

��

�
� �����

�

���

� �

 Partition impurity can be calculated with entropy or the Gini
index. Quinlan describes how to use entropy to find the split that
gives the highest information gain (i.e. lowest impurity) [54]. Gen-
erally, the entropy of a partition is given by Eq. 10, where m is the
number of classes and pi is the fraction of the ith class in the parti-
tion). The higher the entropy, the higher the impurity.

� �� ��� ��

�

���

�� ��

 The Gini index was first described in 1912 [55] and is often
used to calculate wealth distribution (Eq. 11). Models based on
Breiman’s CART algorithm [56] generally prefer the Gini index as
the splitting criterion.

� � ��
�

�

���

� ��

 A major drawback of using DTs is their tendency to overfit to
the training data. “Early stopping” can help prevent this – if the
information gain (i.e. the difference between the entropy of the
parent’s data and the weighted average of the entropies of the chil-
dren’s data) does not exceed a predetermined threshold, splitting
will be terminated. However, this can lead to a loss of accuracy on
the training data, which also does not bode well for future classifi-
cations to be accurate.

 The proposed solution to this is to use an ensemble of DTs,
which is called a Random Forest [57]. An RF is made up of a varie-
ty of slightly different DTs, and suggests a classification for an
input based on the most common output among all its constituent
DTs. There are multiple ways to build an RF, but all involve grow-
ing each random tree using all the training data and some random
vector. An example of this is the random subspace method [58, 59].
This method is based upon the idea of creating DTs using a subset
of the full feature space. Each feature is randomly chosen to be
included or excluded, and then a DT is built using one of the split-
ting techniques described above. Because the entire training set is
used, there is no empirical risk, but each tree will generalize differ-
ently based on which features are excluded.

 Another RF construction method is bagging [60]. The term
“bagging” is a portmanteau of “bootstrap” and “aggregating,” and
the process it refers to involves growing an ensemble of DTs from
bootstrap samples of the training set. Bootstrapping improves accu-
racy because, unlike methods such as kNN, DTs are unstable –
meaning that small changes to the training set can result in large
changes in their structures.

Fig. (2). The three types of node splits for a Decision Tree.

3352 Current Pharmaceutical Design, 2018, Vol. 24, No. 28 Carpenter and Huang

 Thirdly, RFs can grow with boosting [61]. Boosting’s underly-
ing principle is that the repeated use of weak decision rules can
eventually lead to an aggregated strong decision rule that will accu-
rately classify the data. New decision rules are created by weighting
previously misclassified training data more heavily. Perhaps the
best boosting algorithm is Freund and Schapire’s AdaBoost [62],
which becomes more accurate as any weak decision rule improves
(rather than just the least accurate decision rule, as in other boosting
algorithms), making its decrease in error exponential.

 RFs classify an input by running it through each of its DTs and
assigning it to the most commonly outputted class. As the number
of trees in the RF increases, so does its classification accuracy [59].
And not only are RFs more accurate than single DTs, but they also
do not overfit the training data. This can be proven using the Strong
Law of Large Numbers [57].

 RFs can be easily trained in parallel, with different DTs running
on different GPUs. This leads to a shorter training time at the cost
of requiring more GPUs and the ability to parallelize the code.

 As in NB classifiers, it is possible to extract some information
about influential features from an RF. This can be done by compar-
ing misclassification rates when noising each feature (i.e. setting its
value randomly) in turn, or when noising all features but one [57].
This tentatively shows which features are most important in deter-
mining classification. Quinlan’s C4.5 program [63] provides anoth-
er way of doing this via production rules, which give the user an
intuitive interpretation of the splits critical to classification in the
DT.

 Unsurprisingly, all the above reasons make DT/RF a popular
type of ML, and it has been used widely in computational biology.
For example, RFs have been implemented in order to identify SSL
mutations [64] and predict domain-based protein-protein interac-
tions [65]. They also are used for VS.

 When implementing DT/RF for VS, the input data is often ex-
pressed in terms of QSAR, and the screen conducted is therefore
ligand-based. This means that each node queries different QSAR
properties, which can be taken from molecular descriptors or fin-
gerprints. Interestingly, some VS studies choose to use single DTs
(which in this context are often called Recursive Partitioning classi-
fiers, or RPs) rather than RFs, and those that use RFs often choose
bagging over AdaBoost. It remains to be seen if VS will catch up to
the most recent advancements in RF, or if RP is sufficient for its
purposes.

 While RF-QSAR setups vary, there are some commonalities
among studies. Most use Discovery Studio 3.5 [38] for their im-
plementations. The number of DTs in a forest can range from 100
to 1000, and their depths can range from 2 to 30 (or have no speci-
fied threshold). When RFs are used, they are often pruned to com-
bat their tendency to overfit [9, 42].

 Herrera-Acevedo et al. paired RF-QSAR with docking to
search for alternative antichagasic drugs that work well in the
chronic phase and do not have as many adverse side effects [29].
They used a CART-based RF model that was tweaked in order to
have as low of a FP rate as possible. This approach proved to be
successful, having been verified against known actives, and pro-
duced several candidate drugs for further analysis. Deshmukh et al.
also found their RF model to have a low number of false positives,
and for this reason paired it with the more-accurate SVM model in
their final inhibitor search [28]. Lee et al. used RF-QSAR to study
the polypharmacology of compounds, ultimately creating a target-
fishing server which can be used to discover potential targets for a
given compound [19]. Their approach used bagged RFs and ob-
tained an overall AUC score of 0.97, in addition to outperforming
NB-based methods on external testing.

2.5. Artificial Neural Networks

 The Artificial Neural Network (ANN) is one of the original ML
algorithms, with its original rough implementation being Rosen-
blatt’s Perceptron in 1958 [66]. ANNs loosely imitate how learning
occurs in human brains, which have real networks of neurons,
though as their usage in ML has progressed they have become more
distant from attempted accurate neurological models.

 While SVMs follow the SRM principle by fixing empirical risk
and minimizing the confidence interval, ANNs do so by fixing the
confidence interval and minimizing empirical risk [15]. This is
accomplished by their architecture. ANNs are made up of sequen-
tial connected layers of neurons. The first layer takes in the input
and is followed by some number of hidden layers, which process
the data until it is eventually fed into an output layer that gives a
classification (or a set of probabilities for different possible classifi-
cations). This data processing occurs in each individual neuron. A
neuron in some layer receives multiple inputs (either from the input
layer, or from neurons in the previous layer). It transforms these
inputs with an activation function, and takes the sum of these plus a
bias term in order to produce an output to the next layer of the net-
work. Sigmoid functions are the standard activation function. These
are characterized by being both differentiable and real-valued over
the domain of all real numbers, having exclusively nonnegative
derivatives, and being bounded (often between -1 and 1, or between
0 and 1). Commonly used sigmoid functions are the logistic func-
tion (Eq. 12) and the hyperbolic tangent function (Eq. 13). In recent
years, Rectified Linear Units (ReLUs) (Eq. 14) have emerged as
another useful activation function [67]. Because ReLUs do not have
an upper bound, they are called “non-saturating.” It has been shown
that ANNs can be trained faster with ReLUs than with sigmoidals
[11], and that ReLUs on average lead to more accurate models [68].

� � � �
�

����� ����
� ��

� � � ���� � �
�� � ���

�� � ���
� ��

� � � ��� �� � � ��

 The hidden layers of an ANN get their name from the fact that
they are not directly indicated by the training data’s output; it is up
to the network to “decide” how to best utilize them in order to min-
imize empirical risk. This minimization occurs by a process called
back-propagation [69], which involves proceeding backward
through the ANN (i.e. from the output layer back to the input layer)
and for some training input/output, calculating the objective func-
tion. The objective function measures the difference between the
predicted output and the real output – in other words, the empirical
risk for some datapoints. The next step is to determine how to
change the weight of each neuron in order to decrease the objective
function the most. This process is called gradient descent.

 Back-propagation must occur repeatedly in order to properly
refine the weights of hidden neurons. However, undergoing back-
propagation for every datapoint in the training set is unwieldy and
time-consuming. For this reason, it usually happens over small sets
of examples, which are called mini-batches. Training an ANN typi-
cally involves conducting back-propagation over the same mini-
batches multiple times – each iteration over a specific set of data is
called a training epoch. The fact that the training process does not
equally involve all training data introduces some amount of noise
into the setting of weights, and this is noted by specifying that the
ANN has undergone stochastic gradient descent.

 While the general idea of ANNs has been around for a long
time, they have only recently had a resurgence in the ML commu-

Machine Learning for Virtual Drug Screening Current Pharmaceutical Design, 2018, Vol. 24, No. 28 3353

nity. This is because the initial ANN implementation described
above is very susceptible to over-fitting and often did not perform
as well as other types of ML. Recent developments in ANN con-
struction have changed this, leading to a much more widespread use
of the structure. In 2006, Hinton and Osindero introduced the con-
cept of unsupervised pre-training, which occurs before stochastic
gradient descent and initializes neuron weights so as to be more
generalizable and closer to the objective function minimum [70].
Four years later, Martens showed that ANNs with 2nd order Hessi-
an-free optimization outperform those with pre-training [71]. This
was bested by Sutskever et al.’s implementation with momentum in
2013 [72]. Yet another important advancement in ANNs came a
year later with the concept of dropout [73], which introduces a pa-
rameter that gives every neuron some probability of having no out-
put. This essentially “drops” it from the network for some number
of runs. Dropout leads to an increase in accuracy and combats over-
fitting because it penalizes heavily weighting individual neurons
(i.e. discourages the fate of classification unduly resting on a single
neuron). It also simulates the averaging of many similar ANNs
which are each made up of strict subsets of the neurons contained in
the actual ANN, which leads to more generalizability.

 In addition to repeated breakthroughs in software architecture,
advances in hardware have also bolstered the usability of ANNs.
GPUs can process computations much faster than their predeces-
sors, especially when combined with parallelization. This enables
training of very wide and deep ANNs to occur over the course of
several hours, rather than days or weeks.

 Of course, all the new nuances in ANN construction come at a
cost: an increase in the number of meta-parameters. Employing a
highly accurate ANN with several wide layers that uses the tech-
niques described above requires many decisions about construction:
number of layers, number of neurons in each layer, type of activa-
tion function, dropout probability, mini-batch size, number of
epochs, momentum strength, etc. The sheer number of possible
settings can be daunting, especially when knowing that some pa-
rameter choices will lead to much more accurate results than others.
There are a few ways to handle this. Many researchers opt to train
several ANNs with different parameter settings and using internal
validation to determine which is optimal for testing. The settings
may be chosen based on studies comparing the accuracy of models
with small changes in parameters for the purpose of suggesting
optimal combinations, as done by Ma et al. [68]. An alternative is
to eliminate the need to hand-pick parameters by using Bayesian
optimization to automate the selection process [25].

 There are two general classifications of ANNs: feed-forward
and recurrent. Recurrent ANNs (RNNs) include feedback connec-
tions between the outputs of some neuron and itself or neurons in
previous layers. These are well-suited for sequential input and are
often used for tasks like sentence generation or translation. While
they have been employed for de novo drug discovery through a
study attempting to iteratively generate SMILES strings of com-
pounds that would bind to a particular target [74], RNNs are not the
right choice for VS. For this reason, the remainder of this section
will exclusively discuss feed-forward ANNs, which are character-
ized by their lack of feedback connections.

 A concept that arises often when discussing feed-forward
ANNs is that of “deepness.” The term Deep Neural Network
(DNN) is nearly as much of a buzzword as ML or AI. However,
there is some disagreement on what exactly a DNN entails. Some
sources say that all neural networks are deep, since they are based
on the concept of Deep Learning (DL) – the idea that ML best oc-
curs when expressing a complex input in terms of many simpler
representations, like a composition of many mathematical functions
[75]. However, others claim that an ANN is only “deep” when it
has many hidden layers. Today, any number of layers greater than
two is likely to be considered “deep,” though this threshold may
increase in the future. Since most ANNs applied to problems such

as VS use multiple hidden layers in order to break a very complex
input down into multiple simple representations, we believe it is
accurate to call them DNNs.
 An ANN can also be called a Convolutional Neural Network
(CNN or ConvNet) if at least one of its hidden layers utilizes con-
volution. Broadly speaking, convolution is a deep learning process
that discovers clusters of related values located throughout a multi-
dimensional input (Fig. 3). This is accomplished with a combina-
tion of convolutional layers and pooling layers [76]. Convolution
uses filters that pass through input in order to detect similar features
throughout a tensor. These filters can vary in size, and this size is
usually an odd number to facilitate their application to the input (the
middle weight in the filter is applied to each node, with the rest of
the filter lining up with the adjacent nodes). Padding of extra zeroes
can be used to maintain the size of the input tensor. Pooling layers
reduce noise by only passing on the maximum value in a given
stretch of nodes. For example, a max pooling layer of size 3 will
output the highest value of every group of three adjacent input
nodes. After one or more convolutional/pooling layers, CNNs usu-
ally contain at least one fully connected layer with a typical activa-
tion function such as ReLU.

 Because CNNs are best suited for processing complex data that
comes in multiple arrays and contains repeated features, they cur-
rently most widely used in image processing. The first break-
through CNN for this purpose was introduced by Krizhevsky,
Sutskever, and Hinton in 2012, who presented it as a solution to the
ImageNet classification challenge [11]. The convolutional and
pooling layers of their CNN was able to identify image features,
such as edges and pixel motifs. Their CNN also utilized general
ANN-enhancing techniques, such as the ReLU activation function,
dropout, and momentum. This all led to unprecedented success: it
won the ImageNet LSVRC-2012 competition with a top-5 test error
rate of 15.3%, and classified images from the 2010 equivalent with
a top-5 error rate of 17.0%. Since then, a multitude of other CNNs
have emerged in the field of computer vision [77-79].

 CNNs also pair very well with QSAR representations of com-
pounds, meaning that they are applicable for VS. One of the first
CNNs used for VS was AtomNet™, developed by the company
Atomwise, Inc. [80]. Unlike the majority of ML-based VS, Atom-
Net™ runs an SBVS, which works well with convolution’s ability
of extracting local feature clusters from multidimensional input.
This gives AtomNet™ the advantage of being able to make predic-
tions for targets without requiring knowledge about any of their
actives and without predetermining which molecular properties are
possible to check. AtomNet™’s architecture consists of an input
layer, 4 convolutional layers, 2 fully-connected (i.e. non-
convolutional) layers, and a final logistic-cost layer that determines
output probabilities. When examining the filters that were devel-
oped in the convolutional layers, it was found that they correspond-
ed to chemical functions. For example, one filter in the first convo-
lutional layer became specialized to detect sulfonyls/sulfonamides.
This makes sense, since chemical features are roughly the molecu-
lar compound equivalent of the edges in an image. With this ad-
vancement, ANNs in VS are no longer black boxes. Rather, they
gain the ability to identify features which aid binding – something
which was previously unique to NB and RF classifiers. And in ad-
dition to feature identification, AtomNet™ is also incredibly accu-
rate, consistently achieving AUC scores greater than 0.74 on a vari-
ety of compound benchmark datasets and outperforming many
previous docking models.

 In addition to convolution, multi-task learning is another useful
tool for ANN-QSAR. As discussed in the kNN section, MTL has
proved to be useful in VS due to its ability to extract general rules
about chemistry and the interactions between functional groups that
are common to many compounds. MTL is able to be implemented
with ANNs by using a common hidden architecture to produce
multiple outputs (each related to some task – e.g. a specific target in

3354 Current Pharmaceutical Design, 2018, Vol. 24, No. 28 Carpenter and Huang

the case of VS) for one input. Because the weights of the hidden
neurons are determined by mini-batches from multiple QSAR tar-
gets, the network is not overly specialized toward one particular
target. It also increases the likelihood of neurons encoding for gen-
eral QSAR features which, as illustrated with AtomNet™, can be
chemically interpreted. This was observed by Unterthiner et al.,
who found that their multi-task DNN used for toxicology VS ended
up with feature maps corresponding to chemical functional groups
as well as toxicophore clusters [81].

It should be apparent that ANN has recently become one of the
more dominant forms of ML in general, and the field of VS is cer-
tainly no exception to this. There are numerous examples of ANN
models to conduct VS. Fjell et al. used QSAR and ANNs to screen
for peptides that are likely to have antibiotic properties. They
showed the applicability of their models by doing in vitro testing of
hits, some of which showed significant antibiotic activity against a
variety of drug-resistant bacterial strains [82]. Additionally, Durrant
and McCammon developed NNScore, a program which uses a deep
ANN with regression to predict the binding activity of compounds.
NNScore has proven to be faster than existing docking programs
that do not utilize ML, making it a better candidate for conducting
SBVS [83].

 Not only has there been an increase in VS studies using ANN,
but comparison studies have also found that it consistently outper-
forms other types of ML. Lenselink et al. constructed a variety of
ML models for testing the binding activity of different drugs in the
ChEMBL library with the intent of directly comparing them against
each other. Their DNNs had varying architectures – using one to
three hidden layers, different levels of dropout, and some MTL –
and generally had a statistically significant increase in accuracy
(measured by BEDROC and MCC) over models based on RF,
SVM, and NB [20]. Likewise, Dahl et al. compared multi-task and
single-task ANNs with RFs and boosted RFs, and found that in the
majority of assays, the best ANNs outperformed the best RFs. Ad-
ditionally, the MTL models generally outperformed the STL ones
[25]. In developing their DrugMiner web tool for finding viable
drug targets, Jamali et al. compared the accuracies of a variety of
common ML methods on their training and testing sets. They found
that their ANN outperformed NB, kNN, RF, SVM, and DT in terms
of classification accuracy, and subsequently chose that model for
their launched software [84]. For these reasons, it is very likely that
the future of VS will be dominated by the use of ANNs and CNNs.

2.6. Ensemble Methods

 Instead of using only one type of classifiers, many studies that
use ML opt to combine the results of an ensemble of models in
hopes of increasing performance. This follows the same logic that
underlies Random Forests – many similar but distinct models will
make better predictions than one model. We have already men-
tioned some studies which utilized ensemble learning [28, 43]. In
addition to these, MLViS is a tool that combines NB, NN, kNN,
DT, SVM, and RF to produce predictions of whether given com-
pounds will be druglike or not. MLViS is unusual in the sheer scope
of models it used in training, as it was initially tested with 23 com-
mon classifiers and launched with 10 resulting algorithms for clas-
sification [85].

In a similar vein, some VS programs available online do not
directly combine results to produce one classification, but rather
present the user with several ML model options from which to pick.
An example of this is MolClass, which is a toolkit that runs an up-
loaded dataset through RF, NB, SVM, and kNN models. The user
can choose which models to pull their results from and view the
overall activity profiles generated by MolClass [86].

3. APPLICATION: ALZHEIMER’S DISEASE

 As described above, ML has proven to be incredibly useful for
in silico drug screening. In this section, we conceptualize a work-
flow for applying ML-based VS to the search for potential thera-
peutic agents for Alzheimer’s disease (AD).

 AD is a neurodegenerative disease with no known cure and
prevention. According to Alzheimer’s Disease International, it af-
flicts approximately 44 million people worldwide as of 2016, and
the number of AD patients is expected to only increase as time goes
on. Unfortunately, AD and other neurological diseases are notori-
ously difficult to treat. Efforts to produce a drug capable of slowing
neurodegeneration have been fruitless, and the most recent AD-
related drug to pass clinical trials, Memantine, did so in 2003 [87].
The AD drugs currently available only alleviate symptoms, rather
than reversing the course of the disease [88-90]. It is imperative to
keep searching for a cure, and VS with ML is a promising method
for AD drug discovery.

 The first step in any VS is the identification of a target protein.
As AD is a polygenic and multifactorial disease with complex ori-

Fig. (3). Example section of a typical CNN architecture. Weighted connections between nodes are represented by gray lines. On the left is an input that gets
convolved with a size 3 filter and has padding of 1, followed by max pooling with size 2. The output of this is fed into a fully-connected layer which will usu-
ally utilize a ReLU activation function. Ellipses indicate the presence of other layers before and after the depicted nodes.

Machine Learning for Virtual Drug Screening Current Pharmaceutical Design, 2018, Vol. 24, No. 28 3355

gins, there is not an obvious target to choose. AD is characterized
by aggregations of amyloid-beta (Aβ) plaques and neurofibrillary
tangles (NFT) comprised of hyperphosphorylated tau protein [91,
92]. AD-affected brains also show a significantly reduced concen-
tration of the neurotransmitter acetylcholine (ACh) [93, 94]. These
two facts have sparked the main hypotheses around which AD
treatments are based: the amyloid cascade hypothesis (the idea that
the cognitive decline present in AD is caused by Aβ plaques) and
the cholinergic hypothesis (the idea that it is caused by ACh loss).
Early attempts to design an AD drug focused on the cholinergic
hypothesis. Because of this, most existing AD treatments are cho-
linesterase inhibitors. However, since these drugs are all palliative
and do not stop neurodegeneration, AD drug design going forward
is paying more attention to the amyloid cascade hypothesis.

 Many of the proposed Aβ-related targets are involved in the
generation of Aβ. This process begins with beta-site amyloid pre-
cursor protein cleaving enzyme 1 (BACE1) cleaving the Amyloid
Precursor Protein (APP), followed by γ-secretase making a second
cut to produce Aβ [95]. A different enzyme, α-secretase, can cut
APP in a different location, preventing creation of Aβ. With all this
in mind, there is consensus that inhibitors of BACE1 or γ-secretase
would make good AD drugs. Muscarinic ACh receptor (mAChR)
agonists are also attractive due to the observation that mAChR
stimulation increases the activity of α-secretase [96] – in addition to
possibly degrading BACE1 [97]. Other potential targets are glyco-
gen synthase kinase-3 beta (GSK-3β) and cyclin-dependent kinase
5 (CDK5), both of which are implicated in tau phosphorylation [98-
100].

 When choosing a target, it is imperative to consider potential
side effects of its inhibition – especially when considering neuro-
logical processes. For example, numerous problematic phenotypes
have arisen when breeding mice with the BACE1 gene knocked out
[101-104]. While some of these results may not occur when inhibit-
ing BACE1 late in life (rather than never having it from the begin-
ning of development), these conclusions certainly raise a need for
caution. Likewise, inhibition of γ-secretase may lead to complica-
tions in its associated Notch pathway and even a paradoxical de-
crease in cognition [105, 106].

 Another possible cause of negative side effects is due to the
polypharmacology of compounds. Often, a drug designed to inhibit
one target will also be able to inhibit other proteins, leading to un-
foreseen consequences. However, polypharmacology can also have
positive effects, particularly when attempting to treat a polygenic
and multifactorial disease like AD, because it entails that one drug
could have increased effectiveness by inhibiting multiple targets.
This train of thought has led to an increase in screening for Multi-
Target Directed Ligands (MTDLs) [107]. In fact, most recent VS
studies for AD drug screen for MTDLs that inhibit some combina-
tion of the aforementioned targets. Xie et al. performed sequential
dockings to screen for compounds that could inhibit both GSK-3β
and CDK5 [108], and Kumar et al. did an LBVS for MTDLs that
inhibit BACE1 and GSK-3β [109]. One combined LBVS/SBVS did
not choose particular targets, but rather started with the scaffold of
a preexisting AD drug to attempt to find similar MTDLs [110].

 None of these VSs used ML, but an ML-based VS for AD is not
completely unheard of. Fang et al. used NB and RP classifiers to
conduct an LBVS for MTDLs [111]. They had a total of 25 targets
in the screen, including BACE1, the M1 subtype of mAChR, APP,
CDK5, and GSK-3β, and searched for compounds that bound to as
many targets as possible. Current AD-related drugs were used to
validate the model, which produced predicted MTDLs for further
development.

 It is interesting to note the absence of ANN-based VSs for AD;
the general high performance of ANNs should make them an attrac-
tive method for this purpose. The ease of which MTL can be im-
plemented with ANNs and the clear connections between MTL and

screens for MTDLs further rationalize the approach. Furthermore,
the emergence of CNNs and the applications of convolution in
QSAR modeling make CNNs such as AtomNet™ promising. We
propose using a multi-task, deep CNN for a VS of potential MTDLs
that inhibit a combination of AD-related targets. These targets
should include the enzymes and receptors mentioned above, though
it is crucial to perform additional target-fishing to ensure that any
predicted MTDLs do not interfere with critical neurological func-
tions. Training and testing data should be pulled from some
chemogenomics libraries, with include many examples of known
inhibitors of each proposed target, and the dataset should be prepro-
cessed as described in the background sections before using it to
train and internally validate the CNN. At the moment, we do not
have recommendations for a particular CNN architecture.

 If a model constructed in this manner is sufficiently accurate, it
should be used on a large dataset comprised of compounds distinct
from the initial training and testing sets. The top hits from this
screen should be purchased and put through in vitro assays in order
to ascertain their effectiveness. Ideally, at least one compound
would have the desired activity and could be further developed
from a lead into a drug suitable for clinical trials.

CONCLUSION

 At a time when drug development is steadily getting slower and
costlier, it is vital to turn to cutting-edge technologies for aid. ML-
based VS enables medicinal chemists to efficiently find potential
lead molecules among millions of compounds in chemogenomics
libraries, greatly increasing the yield of HTS and speeding up the
initial stages of drug development. This review described the work-
ings of Naïve Bayesian classifiers, k-Nearest Neighbors, Support
Vector Machines, Random Forests, and Artificial Neural Networks,
all of which are viable implementations of ML for the purposes of
VS. While comparison studies have generally pointed to SVMs and
ANNs as the most accurate VS models, it is important to note that
each technique has its own advantages and disadvantages, which
should be considered when designing a VS. For instance, NB can
identify favorable scaffold fragments and is not susceptible to the
Curse of Dimensionality, RFs are easily parallelizable and can be
enhanced with boosting or bagging, and kNN is simple to imple-
ment and can utilize MTL. Of course, it is possible and perhaps
even preferable to employ an ensemble of ML models, as this gen-
erally increases performance.

 As illustrated in the Application section, it is very feasible to
design an ML-based VS workflow to search for disease-specific
drugs. While complex diseases like AD do not have absolutely
definitive targets on which to conduct the VS, thinking about their
underlying mechanisms and examining prior research may provide
starting points. Coupling MTL approaches through ANN or kNN
with the idea of screening for MTDLs has the promise of creating
high-performing classifiers that output compounds that could poten-
tially bind to multiple targets involved in a disease phenotype.

 The multidisciplinary nature of ML-based VS has led to part-
nerships between powerhouses in the artificial intelligence and
pharmaceutical industries. Such collaborations benefit from the
combination of state-of-the-art hardware and ML technologies
combined with vast in-house chemogenomics libraries. Already,
IBM has partnered with several pharmaceutical companies such as
Teva Pharma, Sage Bionetworks, and Pfizer [112]; the aforemen-
tioned creator of AtomNet™- Atomwise, Inc., is collaborating with
Merck; and GNS healthcare has paired with Genentech for oncolo-
gy drug discovery [113] – these are only a few examples, and it is
likely that other partnerships will continue to form.

 We expect the use of ML in VS for drug discovery to only grow
as the scientific world realizes the power that it brings to the field.
The joint efforts of computer science and medicinal chemistry are
sure to make drug discovery process more efficient and less costly.

3356 Current Pharmaceutical Design, 2018, Vol. 24, No. 28 Carpenter and Huang

LIST OF ABBREVIATIONS

Aβ = Amyloid-beta

ACh = Acetylcholine

AD = Alzheimer’s Disease

ANN = Artificial Neural Network

APP = Amyloid Precursor Protein

AI = Artificial Intelligence

AUC = Area Under Receiving Operator Characteristic
Curve

BACE1 = Beta-Site Amyloid Precursor Protein Cleaving
Enzyme 1

BEDROC = Boltzmann-Enhanced Discrimination of Re-
ceiving Operator Characteristic

CDK5 = Cyclin-dependent Kinase 5

DL = Deep Learning

CNN = Convolutional Neural Network

DNN = Deep Neural Network

DT = Decision Tree

FN = False Negative

FP = False Positive

GSK-3β = Glycogen Synthase Kinase-3 Beta

HTS = High-throughput Screening

kNN = k-nearest Neighbors

LBVS = Ligand-based Virtual Screening

mAChR = Muscarinic Acetylcholine Receptor

MCC = Matthews’ Correlation Coefficient

ML = Machine Learning

MTDL = Multi-target Directed Ligand

MTL = Multi-task Learning

NB = Naïve Bayesian

NFT = Neurofibrillary Tangle

PAINS = Pan-assay Interference Compounds

Q = Accuracy

QSAR = Quantitative Structure-activity Relationship

RBF = Radial Basis Function

ReLU = Rectified Linear Unit

RF = Random Forest

RNN = Recurrent Neural Network

RP = Recursive Partitioning

SBVS = Structure-based Virtual Screening

SE = Selectivity

SP = Specificity

SRM = Structural Risk Minimization

STL = Single-task Learning

SVM = Support Vector Machine

TN = True Negative

TP = True Positive

VS = Virtual Screening

CONSENT FOR PUBLICATION

 Not applicable.

CONFLICT OF INTEREST

 The authors declare no conflict of interest, financial or other-
wise.

ACKNOWLEDGEMENTS

 This work was partially funded by a NIH grant R01AG056614
(to XH). The authors would like to thank the MIT externship pro-
gram for allowing KAC to be a student intern at MGH.

REFERENCES

[1] DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharma-
ceutical industry: New estimates of R&D costs. J Health Econ
2016; 47: 20-33.

[2] Bento AP, Gaulton A, Hersey A, et al. The ChEMBL bioactivity
database: an update. Nucleic Acids Res 2014; 42(Database issue):
D1083-90.

[3] Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and
compound databases. Nucleic Acids Res 2016; 44(D1): D1202-13.

[4] Sterling T, Irwin JJ. ZINC 15--ligand discovery for everyone. J
Chem Inf Model 2015; 55(11): 2324-37.

[5] Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental
and computational approaches to estimate solubility and permeabil-
ity in drug discovery and development settings. Adv Drug Deliv
Rev 2001; 46(1-3): 3-26.

[6] Verheij HJ. Leadlikeness and structural diversity of synthetic
screening libraries. Mol Divers 2006; 10(3): 377-88.

[7] Baell JB, Holloway GA. New substructure filters for removal of
pan assay interference compounds (PAINS) from screening librar-
ies and for their exclusion in bioassays. J Med Chem 2010; 53: 22.

[8] Pitt WR, Calmiano MD, Kroeplien B, Taylor RD, Turner JP, King
MA. Structure-based virtual screening for novel ligands. In: Wil-
liams MA, Daviter T, eds. Protein-Ligand Interactions: Methods
and Applications. Totowa, NJ: Humana Press; 2013. p. 501-19.

[9] Xia J, Jin H, Liu Z, Zhang L, Wang XS. An unbiased method to
build benchmarking sets for ligand-based virtual screening and its
application to GPCRs. J Chem Inf Model 2014; 54(5): 1433-50.

[10] Hawkins PCD, Skillman AG, Nicholls A. Comparison of shape-
matching and docking as virtual screening tools. J Med Chem 2007;
50: 9.

[11] Krizhevsky A, Sutskever I, Hinton GE, editors. Imagenet classifica-
tion with deep convolutional neural networks. 26th Annual Confer-
ence on Neural Information Processing Systems; 2012; Lake Tahoe,
Nevada, USA: Neural Information Processing Systems.

[12] Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa
P. Natural language processing (Almost) from scratch. JMLR 2011;
12: 45.

[13] Kolog EA, Montero CS, Toivonen T, Eds. Using machine learning
for sentiment and social influence analysis in text2018; Cham:
Springer International Publishing.

[14] Prado Álvaro J, Michałek Maciej M, Cheein Fernando A. Machine-
learning based approaches for self-tuning trajectory tracking con-
trollers under terrain changes in repetitive tasks. Eng Appl Artif In-
tell 2018; 67: 63-80.

[15] Vapnik VN. The nature of statistical learning theory. New York:
Springer-Verlag; 1995.

[16] Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of
useful decoys, enhanced (DUD-E): better ligands and decoys for
better benchmarking. J Med Chem 2012; 55(14): 6582-94.

[17] Tanimoto TT. An elementary mathematical theory of classification
and prediction: International business machines corporation; 1958.

[18] Weiss GM, Provost F. The effect of class distribution on classifier
learning: An empirical study. Technical Report ML-TR-43, Dept of
Computer Science, Rutgers Univ. 2001.

[19] Lee K, Lee M, Kim D. Utilizing random Forest QSAR models with
optimized parameters for target identification and its application to
target-fishing server. BMC Bioinformatics 2017; 18(Suppl 16):
567.

[20] Lenselink EB, Ten Dijke N, Bongers B, et al. Beyond the hype:
deep neural networks outperform established methods using a
ChEMBL bioactivity benchmark set. J Cheminform 2017; 9(1): 45.

[21] Jang JW, Cho NC, Min SJ, et al. Novel scaffold identification of
mglu1 receptor negative allosteric modulators using a hierarchical
virtual screening approach. Chem Biol Drug Des 2016; 87(2): 239-
56.

[22] Yu M, Gu Q, Xu J. Discovering new PI3Kalpha inhibitors with a
strategy of combining ligand-based and structure-based virtual
screening. J Comput Aided Mol Des 2018; 32(2): 347-61.

Machine Learning for Virtual Drug Screening Current Pharmaceutical Design, 2018, Vol. 24, No. 28 3357

[23] Cai J, Li C, Liu Z, et al. Predicting DPP-IV inhibitors with machine
learning approaches. J Comput Aided Mol Des 2017; 31(4): 393-
402.

[24] Baba H, Takahara J-i, Mamitsuka H. In silico predictions of human
skin permeability using nonlinear quantitative structure–property
relationship models. Pharm Res 2015; 32(7): 2360-71.

[25] Multi-task Neural Networks for QSAR Predictions [Internet]. 2014.
[26] Li Y, Wang L, Liu Z, et al. Predicting selective liver X receptor

beta agonists using multiple machine learning methods. Mol Bio-
syst 2015; 11(5): 1241-50.

[27] Wang L, Chen L, Liu Z, Zheng M, Gu Q, Xu J. Predicting mTOR
inhibitors with a classifier using recursive partitioning and Naive
Bayesian approaches. PLoS One 2014; 9(5): e95221.

[28] Deshmukh AL, Chandra S, Singh DK, Siddiqi MI, Banerjee D.
Identification of human flap endonuclease 1 (FEN1) inhibitors us-
ing a machine learning based consensus virtual screening. Mol Bio-
syst 2017; 13(8): 1630-9.

[29] Herrera-Acevedo C, Scotti L, Scotti MT. In silico studies designed
to select sesquiterpene lactones with potential antichagasic activity
from an in-house Asteraceae database. ChemMedChem 2018;
13(6): 634-45.

[30] Watson P. Naive bayes classification using 2D pharmacophore
feature triplet vectors. J Chem Inf Model 2008; 48: 13.

[31] Sheridan RP. Time-split cross-validation as a method for estimating
the goodness of prospective prediction. J Chem Inf Model 2013;
53(4): 783-90.

[32] Baldi P, Brunak S, Chauvin Y, Andersen CAF, Nielsen H. As-
sessing the accuracy of prediction algorithms for classification: an
overview. Bioinformatics 2000; 16(5): 412-24.

[33] Matthews BW. Comparison of the predicted and observed second-
ary structure of T4 phage lysozyme. Biochim Biophys Acta 1975;
405(2): 442-51.

[34] Truchon JF, Bayly CI. Evaluating virtual screening methods: good
and bad metrics for the "early recognition" problem. J Chem Inf
Model 2007; 47(2): 488-508.

[35] Puga JL, Krzywinski M, Altman N. Points of signifi-
cance: Bayes' theorem. Nat Methods 2015; 12: 277-8.

[36] Molecular Operating Environment (MOE). 1010 Sherbooke St.
West, Suite #910, Montreal, QC, Canada, H3A 2R7: Chemical
Computing Group ULC; 2018.

[37] Yap CW. PaDEL-descriptor: an open source software to calculate
molecular descriptors and fingerprints. J Comput Chem 2011;
32(7): 1466-74.

[38] BIOVIA RDS. Discovery Studio Modeling Environment. San Die-
go: Dassault Systemes; 2016.

[39] Cereto-Massague A, Ojeda MJ, Valls C, Mulero M, Garcia-Vallve
S, Pujadas G. Molecular fingerprint similarity search in virtual
screening. Methods 2015; 71: 58-63.

[40] Bellman RE. Adaptive Control Processes: A Guided Tour: Prince-
ton University Press; 2015.

[41] Chandra S, Pandey J, Tamrakar AK, Siddiqi MI. Multiple machine
learning based descriptive and predictive workflow for the identifi-
cation of potential PTP1B inhibitors. J Mol Graph Model 2017; 71:
15.

[42] Wang L, Le X, Li L, et al. Discovering new agents active against
methicillin-resistant Staphylococcus aureus with ligand-based ap-
proaches. J Chem Inf Model 2014; 54(11): 3186-97.

[43] Lian W, Fang J, Li C, Pang X, Liu AL, Du GH. Discovery of Influ-
enza A virus neuraminidase inhibitors using support vector machine
and Naive Bayesian models. Mol Divers 2016; 20(2): 439-51.

[44] Cover TM, Hart PE. Nearest neighbor pattern classification. IEEE
Transactions on Information Theory 1967; 13(1): 7.

[45] Zheng W, Tropsha A. Novel variable selection quantitative struc-
ture-property relationship approach based on the k-nearest-neighbor
principle. J Chem Inf Comput Sci 2000; 40: 10.

[46] Tropsha A. Best practices for QSAR model development, valida-
tion, and exploitation. Mol Inform 2010; 29(6-7): 476-88.

[47] Luo M, Wang XS, Tropsha A. Comparative analysis of QSAR-
based vs. chemical similarity based predictors of GPCRs binding
affinity. Mol Inform 2016; 35(1): 36-41.

[48] Caruana RA, editor Multitask Learning: A Knowledge-Based
Source of Inductive Bias. Tenth International Conference on Ma-
chine Learning; 1993: Morgan Kaufmann.

[49] Caruana RA. Multitask Learning. Machine Learning 1997; 28: 35.
[50] Zhang L, Sedykh A, Tripathi A, et al. Identification of putative

estrogen receptor-mediated endocrine disrupting chemicals using

QSAR- and structure-based virtual screening approaches. Toxicol
Appl Pharmacol 2013; 272(1): 67-76.

[51] Cortes C, Vapnik V. Support-vector networks. Machine Learning
1995; 20(3): 273-97.

[52] Winters-Hilt S, Merat S. SVM clustering. BMC Bioinformatics
2007; 8 Suppl 7: S18.

[53] Chang C-C, Lin C-J. LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology
2011; 2(3):1.

[54] Quinlan JR. Learning Efficient Classification Procedures and their
Application to Chess End Games. In: Michalski RS, Carbonell JG,
Mitchell TM, editors. Machine Learning: An Artificial Intelligence
Approach: Springer-Verlag; 1986.

[55] Gini C. Variabilità e mutabilità: contributo allo studio delle dis-
tribuzioni e delle relazioni statistiche. [|.]: Tipogr. di P. Cuppini;
1912.

[56] Breiman L, Friedman J, Stone CJ, Olshen RA. Classification and
Regression Trees: Taylor & Francis; 1984.

[57] Breiman L. Random Forests. Machine Learning 2001; 45: 28.
[58] Ho TK. The Random Subspace Method for Constructing Decision

Forests. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 1998; 20(8): 13.

[59] Ho TK, editor Random Decision Forests. 3rd International Confer-
ence on Document Analysis and Recognition; 1995; Montral, Que.,
Canada: IEEE.

[60] Breiman L. Bagging Predictors. Machine Learning. 1996;24:18.
[61] Schapire RE. The Boosting Approach to Machine Learning: An

Overview. In: Denison DD, Hansen MH, Holmes CC, Mallick B,
Yu B, editors. Nonlinear Estimation and Classification Lecture
Notes in Statistics. 171. New York, NY: Springer; 2003.

[62] Freund Y, Schapire RE. A Decision-Theoretic Generalization of
On-Line Learning and an Application to Boosting. J Comput Sys
Sci 1997; 55: 21.

[63] Quinlan JR. C4.5: Programs for Machine Learning: Elsevier Sci-
ence; 2014.

[64] Wong SL, Zhang LV, Tong AHY, et al. Combining biological
networks to predict genetic interactions. PNAS 2004; 101(44): 6.

[65] Chen XW, Liu M. Prediction of protein-protein interactions using
random decision forest framework. Bioinformatics.
2005;21(24):4394-400.

[66] Rosenblatt F. The Perceptron: A probabilistic model for infor-
mation storage and organization in the brain. Psychol Rev 1958;
65(6): 23.

[67] Nair V, Hinton GE, editors. Rectified Linear Units Improve Re-
stricted Boltzmann Machines. 27th International Conference on
Machine Learning; 2010; Haifa, Israel.

[68] Lombardo S, Maskos U. Role of the nicotinic acetylcholine recep-
tor in Alzheimer's disease pathology and treatment. Neuropharma-
cology 2015; 96(Pt B): 255-62.

[69] Rumelhart DE, Hinton GE, Williams RJ. Learning representations
by back-propagating errors. Nature 1986; 323(9): 4.

[70] Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for
deep belief nets. Neural Comput 2006; 18(7): 8.

[71] Martens J, editor Deep learning via Hessian-free optimization. 27th
International Conference on Machine Learning; 2010; Haifa, Israel.

[72] Sutskever I, Martens J, Dahl G, Hinton GE, editors. On the im-
portance of initialization and momentum in deep learning. 30th In-
ternational Conference on Machine Learning; 2013; Atlanta, Geor-
gia, USA: JMLR; W&CP.

[73] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R. Dropout: A Simple Way to Prevent Neural Networks from Over-
fitting. J of Machine Learning Research. 2014;15:30.

[74] Gupta A, Muller AT, Huisman BJH, Fuchs JA, Schneider P,
Schneider G. Generative Recurrent Networks for De Novo Drug
Design. Mol Inform 2017.

[75] Goodfellow I, Bengio Y, Courville A. Deep Learning: MIT Press;
2016.

[76] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;
521(7553): 436-44.

[77] Chen X, Xu Y, W. KWD, Y. WT, Liu J, editors. Glaucoma detec-
tion based on deep convolutional neural network. 2015 37th Annual
International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC); 2015; Milan.

[78] Hong S, You T, Kwak S, Han B. Online Tracking by Learning
Discriminative Saliency Map with Convolutional Neural Network.
In: Francis B, David B, editors. Proceedings of the 32nd Interna-

3358 Current Pharmaceutical Design, 2018, Vol. 24, No. 28 Carpenter and Huang

tional Conference on Machine Learning; Proceedings of Machine
Learning Research: PMLR; 2015. p. 597-606.

[79] Pinheiro P, Collobert R. Recurrent Convolutional Neural Networks
for Scene Labeling. In: Eric PX, Tony J, editors. Proceedings of the
31st International Conference on Machine Learning; Proceedings of
Machine Learning Research: PMLR; 2014. p. 82-90.

[80] Wallach I, Dzamba M, Heifets A. AtomNet: A Deep Convolutional
Neural Network for Bioactivity Prediction in Structure-based Drug
Discovery. CoRR 2015: 11.

[81] Toxicity Prediction using Deep Learning [Internet]. 2015.
[82] Fjell CD, Jenssen H, Hilpert K, et al. Identification of Novel Anti-

bacterial Peptides by Chemoinformatics and Machine Learning. J
Med Chem 2009; 52(7): 2006-15.

[83] Durrant JD, McCammon JA. NNScore 2.0: A Neural-Network
Receptor–Ligand Scoring Function. J Chem Inf Model 2011;
51(11): 2897-903.

[84] Jamali AA, Ferdousi R, Razzaghi S, Li J, Safdari R, Ebrahimie E.
DrugMiner: comparative analysis of machine learning algorithms
for prediction of potential druggable proteins. Drug Discov Today
2016; 21(5): 718-24.

[85] Korkmaz S, Zararsiz G, Goksuluk D. MLViS: A Web Tool for
Machine Learning-Based Virtual Screening in Early-Phase of Drug
Discovery and Development. PLoS ONE 2015; 10(4): e0124600.

[86] Wildenhain J, FitzGerald N, Tyers M. MolClass: a web portal to
interrogate diverse small molecule screen datasets with different
computational models. Bioinformatics 2012; 28(16): 2200-1.

[87] Rogawski MA, Wenk GL. The Neuropharmacological Basis for the
Use of Memantine in the Treatment of Alzheimer's Disease. CNS
Drug Rev 2003; 9(3): 275-308.

[88] Richarz U, Gaudig M, Rettig K, Schauble B. Galantamine treatment
in outpatients with mild Alzheimer's disease. Acta Neurol Scand
2014; 129(6): 382-92.

[89] Schneider LS, Dagerman KS, Higgins JT, McShane R. Lack of
evidence for the efficacy of memantine in mild alzheimer disease.
Arch Neurol 2011; 68(8): 991-8.

[90] Qaseem A, Snow V, Cross J, Jr, et al. Current pharmacologic
treatment of dementia: A clinical practice guideline from the ameri-
can college of physicians and the american academy of family phy-
sicians. Ann Intern Med 2008; 148(5): 370-8.

[91] Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's Dis-
ease: progress and problems on the road to therapeutics. Science
2002; 297(5580): 4.

[92] Rapoport M, Dawson HN, Binder LI, Vitek MP, Ferreira A. Tau is
essential to β-amyloid-induced neurotoxicity. Proc Natl Acad Sci
USA 2002; 99(9): 6364-9.

[93] Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis
of geriatric memory dysfunction. Science 1982; 217(4558): 408-14.

[94] Woolf NJ. The critical role of cholinergic basal forebrain neurons in
morphological change and memory encoding: A hypothesis. Neu-
robiol Learn Mem 1996; 66(3): 258-66.

[95] Vassar R, Bennett BD, Babu-Khan S, et al. Beta-secretase cleavage
of Alzheimer's amyloid precursor protein by the transmembrane as-
partic protease BACE. Science 1999; 286(5440): 735-41.

[96] Wolf BA, Wertkin AM, Jolly YC, et al. Muscarinic regulation of
Alzheimer's Disease amyloid precursor protein secretion and amy-
loid beta-protein production in human neuronal NT2N cells. J Biol
Chem 1995; 270(9): 4916-22.

[97] Jiang S, Wang Y, Ma Q, Zhou A, Zhang X, Zhang YW. M1 musca-
rinic acetylcholine receptor interacts with BACE1 and regulates its
proteosomal degradation. Neurosci Lett 2012; 515(2): 125-30.

[98] Mazanetz MP, Fischer PM. Untangling tau hyperphosphorylation in
drug design for neurodegenerative diseases. Nat Rev Drug Discov
2007; 6: 464-79.

[99] Sun W, Qureshi HY, Cafferty PW, et al. Glycogen synthase kinase-
3beta is complexed with tau protein in brain microtubules. J Biol
Chem 2002; 277(14): 11933-40.

[100] Arif A. Extraneuronal activities and regulatory mechanisms of the
atypical cyclin-dependent kinase Cdk5. Biochem Pharmacol 2012;
84(8): 985-93.

[101] Hitt BD, Jaramillo TC, Chetkovich DM, Vassar R. BACE1(-/-
)mice exhibit seizure activity that does not correlate with sodium
channel level or axonal localization. Mol Neurodegener 2010; 5:
31.

[102] Hu X, He W, Luo X, Tsubota KE, Yan R. BACE1 regulates hippo-
campal astrogenesis via the Jagged1-Notch pathway. Cell Rep
2013; 4(1): 40-9.

[103] Laird FM, Cai H, Savonenko AV, et al. BACE1, a Major Determi-
nant of Selective Vulnerability of the Brain to Amyloid-β Amyloi-
dogenesis, is Essential for Cognitive, Emotional, and Synaptic
Functions. J Neurosci 2005; 25(50): 11693-709.

[104] Rajapaksha TW, Eimer WA, Bozza TC, Vassar R. The Alzheimer's
β-secretase enzyme BACE1 is required for accurate axon guidance
of olfactory sensory neurons and normal glomerulus formation in
the olfactory bulb. Mol Neurodegener 2011; 6(1): 88.

[105] Mitani Y, Yarimizu J, Saita K, et al. Differential Effects between γ-
Secretase Inhibitors and Modulators on Cognitive Function in Amy-
loid Precursor Protein-Transgenic and Nontransgenic Mice. J Neu-
rosci 2012; 32(6): 2037-50.

[106] Timme CR, Gruidl M, Yeatman TJ. Gamma-secretase inhibition
attenuates oxaliplatin-induced apoptosis through increased Mcl-1
and/or Bcl-xL in human colon cancer cells. Apoptosis 2013; 18(10):
1163-74.

[107] Ma XH, Shi Z, Tan C, et al. In-silico approaches to multi-target
drug discovery. Pharm Res 2010; 27(5): 739-49.

[108] Xie H, Wen H, Zhang D, et al. Designing of dual inhibitors for
GSK-3β and CDK5: Virtual screening and in vitro biological activi-
ties study. Oncotarget 2017; 8(11): 18118-28.

[109] Kumar A, Srivastava G, Sharma A. A physicochemical descriptor
based method for effective and rapid screening of dual inhibitors
against BACE-1 and GSK-3β as targets for Alzheimer’s disease.
Comput Biol Chem 2017; 71: 1-9.

[110] Chen Y, Liu Z-l, Fu T-m, Li W, Xu X-l, Sun H-p. Discovery of new
acetylcholinesterase inhibitors with small core structures through
shape-based virtual screening. Bioorg Med Chem Lett 2015;
25(17): 3442-6.

[111] Fang J, Li Y, Liu R, et al. Discovery of multitarget-directed ligands
against Alzheimer's disease through systematic prediction of chem-
ical-protein interactions. J Chem Inf Model 2015; 55(1): 149-64.

[112] Laursen L. IIBM debuts hyped 'cognitive cloud' biotech HQ in
Cambridge. Nat Biotechnol 2015; 33(12): 1219-20.

[113] Smalley E. AI-powered drug discovery captures pharma interest.
Nat Biotechnol 2017; 35(7): 604-5.

	Machine Learning-based Virtual Screening and Its Applications to Alzheimer’s DrugDiscovery: A Review
	Abstract:
	Keywords:
	1. INTRODUCTION
	Fig. (1).
	Fig. (2).
	Fig. (3).
	APPLICATION: ALZHEIMER’S DISEASE
	CONCLUSION
	REFERENCES

