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ABSTRACT

Motivation: The development of effective methods for the prediction

of ontological annotations is an important goal in computational biol-

ogy, with protein function prediction and disease gene prioritization

gaining wide recognition. Although various algorithms have been pro-

posed for these tasks, evaluating their performance is difficult owing to

problems caused both by the structure of biomedical ontologies and

biased or incomplete experimental annotations of genes and gene

products.

Results: We propose an information-theoretic framework to evaluate

the performance of computational protein function prediction. We use

a Bayesian network, structured according to the underlying ontology,

to model the prior probability of a protein’s function. We then define

two concepts, misinformation and remaining uncertainty, that can be

seen as information-theoretic analogs of precision and recall. Finally,

we propose a single statistic, referred to as semantic distance, that can

be used to rank classification models. We evaluate our approach by

analyzing the performance of three protein function predictors of Gene

Ontology terms and provide evidence that it addresses several weak-

nesses of currently used metrics. We believe this framework provides

useful insights into the performance of protein function prediction tools.

Contact: predrag@indiana.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Ontological representations have been widely used in biomedical

sciences to standardize knowledge representation and exchange

(Robinson and Bauer, 2011). Modern ontologies are typically

viewed as graphs in which vertices represent terms or concepts

in the domain of interest, and edges represent relational ties be-

tween terms (e.g. is-a, part-of). Although, in theory, there are no

restrictions on the types of graphs used to implement ontologies,

hierarchical organizations, such as trees or directed acyclic

graphs, have been frequently used in the systematization of bio-

logical experiments, organismal phenotypes or structural and

functional descriptions of biological macromolecules.
In molecular biology, one of the most frequently used ontol-

ogies is the Gene Ontology (GO) (Ashburner et al., 2000), which

standardizes the functional annotation of genes and gene prod-

ucts. The development of GO was based on the premise that the

genomes of all living organisms are composed of genes whose

products perform functions derived from a finite molecular rep-

ertoire. In addition to knowledge representation, GO has also

facilitated large-scale analyses and automated annotation of gene

product function (Radivojac et al., 2013). As the rate of accu-

mulation of uncharacterized sequences far outpaces the rate at

which biological experiments can be carried out to characterize

those sequences, computational function prediction has become

increasingly useful for the global characterization of genomes
and proteomes as well as for guiding biological experiments via

prioritization (Rentzsch and Orengo, 2009; Sharan et al., 2007).

The growing importance of tools for the prediction of GO

annotations, especially for proteins, presents the problem of
how to accurately evaluate such tools. First, because terms can

automatically be associated with their ancestors in the GO graph,

the task of an evaluation procedure is to compare the predicted

graph with the true experimental annotation. Furthermore, the

structure of the ontology introduces dependence between terms,

which must be appropriately considered when comparing two

graphs. Second, GO, as most current ontologies, is generally

unfinished and contains a range of specificities of functional
descriptions at the same depth of the ontology (Alterovitz

et al., 2010). Third, protein function is complex and context de-

pendent; thus, a single biological experiment rarely results in

complete characterization of a protein’s function. This is particu-

larly evident in cases when only high-throughput experiments are

used for functional characterization, leading to shallow annota-

tion graphs. This poses a problem in evaluation, as the ground

truth is incomplete and noisy. Finally, different computational

models produce different outputs that must be accounted for.
For example, some models simply predict an annotation graph,

possibly associating it with a numerical score, whereas others

assign a score to potentially each node in the ontology, with

an expectation that a good decision threshold would be applied

to provide useful annotations.
There are two important factors related to the development of

evaluation metrics. First, because both the experimental and pre-

dicted annotation of genes can be represented as subgraphs of

the generally much larger GO graph, it is unlikely that a given

computational method will provide an exact prediction of the

experimental annotation. Thus, it is necessary to develop metrics

that facilitate calculating degrees of similarity between pairs of
graphs and appropriately address dependency between nodes.

Ideally, such a measure of similarity would be able to character-

ize not only the level of correct prediction of the true (albeit

incomplete) annotation but also the level of misannotation.

The second important factor related to the evaluation metric is

its interpretability. This is because characterizing the predictor’s

performance should be meaningful to a downstream user.

Ideally, an evaluation metric would have a simple probabilistic

interpretation.
In this article, we develop an information-theoretic framework

for evaluating the prediction accuracy of computer-generated

ontological annotations. We first use the structure of the*To whom correspondence should be addressed.
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ontology to probabilistically model, via a Bayesian network, the
prior distribution of protein experimental annotation. We then
apply our metric to three protein function prediction algorithms

selected to highlight the limitations of typically considered evalu-
ation metrics. We show that our metrics provide added value
to the current analyses of the strengths and weaknesses of com-

putational tools. Finally, we argue that our framework is prob-
abilistically well founded and show that it can also be used to
augment already existing evaluation metrics.

2 BACKGROUND

The issue of performance evaluation is closely related to the
problems of measuring similarity between pairs of graphs or
sets. First, we note that a protein’s annotation (experimental or

predicted) is a graph containing a subset of nodes in the ontology
together with edges connecting them. We use the term leaf node
to describe a node that has no descendants in the annotation

graph, although it is allowed to have descendants in the ontol-
ogy. A set of leaf terms completely describes the annotation
graph.

We roughly group both graph similarity and performance
evaluation metrics into topological and probabilistic categories
and note that a particular metric may combine aspects from

both. More elaborate distinctions are provided by Guzzi et al.
(2012) and Pesquita et al. (2009). Topological metrics rely on the

structure of the ontology to perform evaluation and typically use
metrics that operate on sets of nodes and/or edges. A number of
topological measures have been used, including the Jaccard and

cosine similarity coefficients (the cosine approach initially maps
the binary term designations into a vector space), the shortest
path-based distances (Rada et al., 1989) and so forth. In the

context of classifier performance analysis, two common 2D met-
rics are the precision/recall curve and the Receiver Operating
Characteristic (ROC) curve. Both curves are constructed based

on the overlap in either edges or nodes between true and pre-
dicted terms and have been widely used to evaluate the perform-
ance of tools for the inference of GO annotations. They can also

be used to provide a single statistic to rank classifiers through the
maximum F-measure in the case of precision/recall curve or the
area under the ROC curve. The area under the ROC curve has a

limitation arising from the fact that the ontology is relatively
large, but that the number of terms associated with a typical

protein is relatively small. In practice, this results in specificities
close to one, regardless of the prediction, as long as the number
of predicted terms is relatively small.

Although these statistics provide good feedback regarding
multiple aspects of a predictor’s performance, they do not
always address node dependency or the problem of unequal spe-

cificity of functional annotations found at the same depth of the
graph. Coupled with a large bias in the distribution of terms
among proteins, prediction methods that simply learn the prior

distribution of terms in the ontology could appear to have better
performance than they actually do.
The second class of similarity/performance measures is prob-

abilistic or information-theoretic metrics. Such measures assume
an underlying probabilistic model over the ontology and use a
database of proteins to learn the model. Similarity is then as-

sessed by measuring the information content of the shared terms

in the ontology but can also take into account the information

content of the individual annotations. Unlike with topological

measures where updates to the ontology affect similarity between

objects, information-theoretic measures are also affected by

changes in the underlying probabilistic model even if the struc-

ture of the ontology remains the same.
Probabilistic metrics closely follow and extend the method-

ology laid out by Resnik (1995), which is based on the notion

of information content between a pair of individual terms. These

measures overcome biases related to the structure of the ontol-

ogy; however, they have several drawbacks of their own. One

that is especially important in the context of analyzing the per-

formance of a predictor is that they only report a single statistic,

namely, the similarity or distance between two terms or sets of

terms. This ignores the tradeoff between precision and recall that

any predictor has to make. In the case of Resnik’s metric, a

prediction by any descendant of the true term will be scored as

if it is an exact prediction. Similarly, a shallow prediction will be

scored the same as a prediction that deviates from the true path

at the same point, regardless of how deep the erroneous predic-

tion might be. Although some of these weaknesses have been

corrected in subsequent work (Jiang and Conrath, 1997; Lin,

1998; Schlicker et al., 2006), there remains the issue that the

available probabilistic measures of semantic similarity resort to

ad hoc solutions to address the common situation where proteins

are annotated by graphs that contain multiple leaf terms (Clark

and Radivojac, 2011). Various approaches have been taken,

including averaging between all pairs of leaf terms (Lord et al.,

2003), finding the maximum among all pairs (Resnik, 1999) or

finding the best-match average, but each such solution lacks

strong justification in general. For example, all-pair averaging

leads to anomalies where the exact prediction of an annotation

containing a single leaf term u would be scored higher than the

exact prediction of an annotation containing two distinct leaf

terms u and v of equal information content, when it is more

natural to think that the latter prediction should be scored

higher. Finally, certain semantic similarity metrics that incorpor-

ate pairwise matching between leaf terms tacitly assume that the

objects to be compared are annotated by similar numbers of leaf

terms. As such, they could produce undesirable solutions when

applied to a wide range of prediction algorithms such as those

outputting a large number of predicted terms.

3 METHODS

Our objective here is to introduce information-theoretic metrics for eval-

uating classification performance in protein function prediction. In this

learning scenario, the input space X represents proteins, whereas the

output space Y contains directed acyclic graphs describing protein func-

tion according to GO. Because of the hierarchical nature of GO, both

experimental and computational annotations need to satisfy the consist-

ency requirement, i.e. if an object x 2 X is assigned a node (functional

term) v from the ontology, it must also be assigned all of the ancestors of

v up to the root(s). Therefore, the task of a classifier is to assign the best

consistent subgraph of the ontology to each new protein and output a

prediction score for this subgraph and/or each predicted term.

We only consider consistent subgraphs as descriptions of function and

simplify the exposition by referring to such graphs as prediction or an-

notation graphs. In addition, we frequently treat consistent graphs as sets

of nodes or functional terms and use set operations to manipulate them.
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We now proceed to provide a definition for the information content of

a (consistent) subgraph in the ontology. Then, using this definition, we

derive information-theoretic performance evaluation metrics for compar-

ing pairs of graphs.

3.1 Calculating the information content of a graph

Let each term in the ontology be a binary random variable and consider a

fixed but unknown probability distribution over X and Y according to

which the quality of a prediction process will be evaluated. We shall

assume that the prior distribution of a target can be factorized according

to the structure of the ontology, i.e. we assume a Bayesian network as the

underlying data generating process for the target variable. According to

this assumption, each term is independent of its ancestors, given its par-

ents and, thus, the full joint probability can be factorized as a product of

individual terms obtained from the set of conditional probability tables

associated with each term (Koller and Friedman, 2009). Here, we are only

interested in marginal probabilities that a protein is experimentally asso-

ciated with a consistent subgraph T in the ontology. This probability can

be expressed as

PrðTÞ ¼
Y
v2T

PrðvjPðvÞÞ, ð1Þ

where v denotes a node in a graph and PðvÞ is the set of parent nodes of v.

Here, Equation (1) can be derived from the full joint factorization by first

marginalizing over the leaves of the ontology and then moving towards

the root(s) for all nodes not in T.

The information content of a subgraph can be thought of as the

number of bits of information one would receive about a protein if it

were annotated with that particular subgraph. We calculate the informa-

tion content of a subgraph T in a straightforward manner as

iðTÞ ¼ log
1

PrðTÞ

and use a base 2 logarithm as a matter of convention. The information

content of a subgraph T can now be expressed by combining the previous

two equations as

iðTÞ ¼
X
v2T

log
1

PrðvjPðvÞÞ

¼
X
v2T

iaðvÞ,

where, to simplify the notation, we use ia(v) to represent the negative

logarithm of PrðvjPðvÞÞ. Term ia(v) can be thought of as the increase,

or accretion, of information obtained by adding a child term to a parent

term, or set of parent terms, in an annotation. We will refer to ia(v) as

information accretion (perhaps information gain would be a better term,

but because it is frequently used in other applications to describe an

expected reduction in entropy, we avoid it in this situation).

A simple ontology containing five terms together with a conditional

probability table associated with each node is shown in Figure 1A.

Because of the graph consistency requirement, each conditional probabil-

ity table is limited to a single number. For example, at node b in the

graph, the probability Prðb ¼ 1ja ¼ 1Þ is the only one necessary because

Prðb ¼ 0ja ¼ 1Þ ¼ 1� Prðb ¼ 1ja ¼ 1Þ and because Prðb ¼ 1ja ¼ 0Þ is

guaranteed to be 0. In Figure 1B, we show a sample dataset of four

proteins functionally annotated according to the distribution defined by

the Bayesian network. In Figure 1C, we show the total information con-

tent for each of the four annotation graphs.

3.2 Comparing two annotation graphs

We now consider a situation in which a protein’s true and predicted

function is represented by graphs T and P, respectively. We define two

metrics that can be thought of as the information-theoretic analogs of

recall and precision and refer to them as remaining uncertainty and mis-

information, respectively.

DEFINITION 1. The remaining uncertainty about the protein’s true anno-

tation corresponds to the information about the protein that is not yet

provided by the graph P. More formally, we express the remaining un-

certainty (ru) as

ruðT,PÞ ¼
X

v2T�P

iaðvÞ

which is simply the total information content of the nodes in the ontology

that are contained in true annotation T, but not in the predicted anno-

tation P. In a slight abuse of notation, we apply set operations to graphs

to manipulate only the vertices of these graphs.

DEFINITION 2. The misinformation introduced by the classifier corres-

ponds to the total information content of the nodes along incorrect

paths in the prediction graph P. More formally, the misinformation is

expressed as

miðT,PÞ ¼
X

v2P�T

iaðvÞ,

which quantifies how misleading a predicted annotation is.

Here, a perfect prediction (one that achieves P¼T) leads to

ruðT,PÞ ¼ 0 and miðT,PÞ ¼ 0. However, both ruðT,PÞ and miðT,PÞ

can be infinite in the limit. In practice, though, ruðT,PÞ is bounded by

the information content of the particular annotation, whereas miðT,PÞ is

only limited by the particular annotations a predictor chooses to return.

To illustrate calculation of remaining uncertainty and misinformation,

in Figure 2, we show a sample ontology where the true annotation of a

protein T is determined by the two leaf terms t1 and t2, whereas the pre-

dicted subgraphP is determined by the leaf terms p1 and p2: The remaining

uncertainty ruðT,PÞ and misinformation miðT,PÞ can now be calculated

by adding the information accretion corresponding to the nodes circled in

gray.

Finally, this framework can be used to define the similarity between

the protein’s true annotation and the predicted annotation without rely-

ing on identifying an individual common ancestor between pairs of leaves

(this node is usually referred to as the maximum informative common

A B

C

Fig. 1. An example of an ontology, dataset and calculation of information

content. (A) An ontology viewed as a Bayesian network together with a

conditional probability table assigned to each node. Each conditional

probability table is limited to a single number owing to the consistency

requirement in assignments of protein function. Information accretion

calculated for each node, e.g. iaðeÞ ¼ � logPrðejcÞ ¼ 2, are shown in

gray next to each node. (B) A dataset containing four proteins whose

functional annotations are generated according to the probability distri-

bution from the Bayesian network. (C) The total information content

associated with each protein found in panel (B); e.g. iðaceÞ ¼ iaðaÞþ

iaðcÞ þ iaðeÞ ¼ 2. Note that iðabÞ ¼ 1 and iðabcdeÞ ¼ 4, although proteins

with such annotation have not been observed in part (B)
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ancestor; Guzzi et al., 2012). The information content of the subgraph

shared by T and P is one such possibility; i.e. sðT,PÞ ¼
P

v2T\P

iaðvÞ.

3.3 Measuring the quality of function prediction

A typical predictor of protein function usually outputs scores that indi-

cate the strength (e.g. posterior probabilities) of predictions for each term

in the ontology. To address this situation, the concepts of remaining

uncertainty and misinformation need to be considered as a function of

a decision threshold �. In such a scenario, predictions with scores greater

than or equal to � are considered positive predictions, whereas the re-

maining associations are considered negative (if the strength of a predic-

tion is expressed via P-values or E-values, values lower than the threshold

would indicate positive predictions). Regardless of the situation, every

decision threshold results in a separate pair of values corresponding to

the remaining uncertainty ruðT,Pð�ÞÞ and misinformation miðT,Pð�ÞÞ.
The remaining uncertainty and misinformation for a previously unseen

protein can be calculated as expectations over the data generating prob-

ability distribution. Practically, this can be performed by averaging over

the entire set of proteins used in evaluation, i.e.

ruð�Þ ¼
1

n

Xn
i¼1

ruðTi,Pið�ÞÞ ð2Þ

and

mið�Þ ¼
1

n

Xn
i¼1

miðTi,Pið�ÞÞ ð3Þ

where n is the number of proteins in the dataset, Ti is the true set of terms

for protein xi, and Pið�Þ is the set of predicted terms for protein xi, given

decision threshold �. Once the set of terms with scores greater than or

equal to � is determined, the set Pið�Þ is composed of the unique union

of the ancestors of all predicted terms. As the decision threshold is moved

from its minimum to its maximum value, the pairs of ðruð�Þ,mið�ÞÞ will re-

sult in a curve in 2D space. We refer to such a curve using ðruð�Þ,mið�ÞÞ� .

Removing the normalizing constant (1n) from the aforementioned equa-

tions would result in the total remaining uncertainty and misinformation

associated with a database of proteins and a set of predictions.

3.3.1 Weighted metrics One disadvantage of definitions in Equations

(2) and (3) is that an equal weight is given to proteins with low and high

information content annotations when averaging. To address this, we

assign a weight to each protein according to the information content of

its experimental annotation. This formulation naturally downweights

proteins with less informative annotations compared with proteins with

rare, and therefore more informative (surprising), annotations. In biolo-

gical datasets, frequently seen annotations have a tendency to be incom-

plete or shallow annotation graphs and arise owing to the limitations

or high-throughput nature of some experimental protocols. We define

weighted remaining uncertainty as

wruð�Þ ¼

Pn
i¼1

iðTiÞ � ruðTi,Pið�ÞÞ

Pn
i¼1

iðTiÞ

ð4Þ

and weighted misinformation as

wmið�Þ ¼

Pn
i¼1

iðTiÞ �miðTi,Pið�ÞÞ

Pn
i¼1

iðTiÞ

ð5Þ

3.3.2 Semantic distance Finally, to provide a single performance

measure, which can be used to rank and evaluate protein function pre-

diction algorithms, we introduce semantic distance as the minimum

distance from the origin to the curve ðruð�Þ,mið�ÞÞ� . More formally, the

semantic distance Sk is defined as

Sk ¼ min
�
ðrukð�Þ þmikð�ÞÞ

1
k, ð6Þ

where k is a real number greater than or equal to one. Setting k¼ 2 results

in the minimum Euclidean distance from the origin. The preference for

Euclidean distance (k¼ 2) over say Manhattan distance (k¼ 1) is to pen-

alize unbalanced predictions with respect to the depth of predicted and

experimental annotations.

3.4 Precision and recall

To contrast the semantic distance-based evaluation with more conven-

tional performance measures, in this section, we briefly introduce preci-

sion and recall for measuring functional similarity. As before, we consider

a set of propagated experimental terms T and predicted terms Pð�Þ and

define precision as the fraction of terms predicted correctly. More

specifically,

prðT,Pð�ÞÞ ¼
jT \ Pð�Þj

jPð�Þj
,

where �j j is the set cardinality operator. Only proteins for which the pre-

diction set is non-empty can be used to calculate average precision. To

address this issue, the root term is counted as a prediction for all proteins.

Similarly, recall is defined as the fraction of experimental (true) terms,

which were correctly predicted, i.e.

rcðT,Pð�ÞÞ ¼
jT \ Pð�Þj

jTj
:

As before, precision prð�Þ and recall rcð�Þ for the entire dataset are calcu-

lated as averages over the entire set of proteins [an alternative definition

of precision and recall is given by Verspoor et al. (2006)]. Finally, to

provide a single evaluation measure, we use the maximum F-measure

over all decision thresholds. For a particular set of terms T and Pð�Þ,

F-measure is calculated as the harmonic mean of precision and recall.

More formally, the final evaluation metric is calculated as

Fmax ¼ max
�

2 �
prð�Þ � rcð�Þ

prð�Þ þ rcð�Þ

� �

where prð�Þ and rcð�Þ are calculated by averaging over the dataset.

Fig. 2. Illustration of calculating remaining uncertainty and misinforma-

tion, given a predicted annotation graph P and a graph of true annota-

tions T. Graphs P and T are uniquely determined by the leaf nodes p1, p2,

t1, and t2, respectively. Nodes colored in gray represent graph T. Nodes

circled in gray are used to determine remaining uncertainty (ru; right side)

and misinformation (mi; left side) between T and P
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3.4.1 Information-theoretic weighted formulation The definition of

information accretion and the use of a probabilistic framework defined

by the Bayesian network enables the straightforward application of in-

formation accretion to weight each term in the ontology. Therefore, it is

easy to generalize the definitions of precision and recall from the previous

section into a weighted formulation. Here, weighted precision and

weighted recall can be expressed as

wprðT,Pð�ÞÞ ¼

P
v2T\Pð�Þ

iaðvÞ

P
v2Pð�Þ

iaðvÞ

and

wrcðT,Pð�ÞÞ ¼

P
v2T\Pð�Þ

iaðvÞ

P
v2T

iaðvÞ
:

Weighted precision wprð�Þ and recall wrcð�Þ can then be calculated as

weighted averages over the database of proteins, as in Equations (4)

and (5).

4 EXPERIMENTS AND RESULTS

In this section, we fist analyze the average information content in
a dataset of experimentally annotated proteins and then evaluate
performance accuracy of different function prediction methods

using both topological and probabilistic metrics. Each experi-
ment was conducted on all three categories of the GO:
Molecular Function (MFO), Biological Process (BPO) and

Cellular Component (CCO) ontologies. To avoid cases where
the information content of a term is infinite, a pseudo-count of
one was added to each term, and the total number of proteins in

the dataset was incremented when calculating term frequencies.

4.1 Data, prediction models and evaluation

We first collected all proteins with GO annotations supported by
experimental evidence codes (EXP, IDA, IPI, IMP, IGI, IEP,

TAS, IC) from the January 2011 version of the Swiss-Prot data-
base (29 699 proteins in MFO, 31608 in BPO and 30486 in
CCO). We then generated three simple function annotation

models: Naive, BLAST and GOtcha, to assess the ability of per-
formance metrics to accurately reflect the quality of a predicted
set of annotations. In addition to these three methods, we gen-

erated another set of ‘predictions’ by collecting experimental an-
notations for the same set of proteins from a database generated
by the GO Consortium released at about the same time as our
version of Swiss-Prot. This was done to quantify the variability

of experimental annotation across different databases using the
same set of metrics. In addition, this comparison can be used to
estimate the empirical upper limit of prediction accuracy because

the observed performance is limited by the noise in experimental
data. All computational methods were evaluated using 10-fold
cross-validation.

The Naive model was designed to reflect biases in the distri-
bution of terms in the dataset and was the simplest annotation
model we used. It was generated by first calculating the relative

frequency of each term in the training dataset. This value was
then used as the prediction score for every protein in the test set;
thus, every protein in the test partition was assigned an identical
set of predictions over all functional terms. The performance of

the Naive model reflects what one could expect when annotating
a protein with no knowledge about that protein.

The BLAST model was generated using local sequence identity

scores to annotate proteins. Given a target protein sequence x,

a particular functional term v in the ontology, and a set of

sequences Sv ¼ fs1, s2, . . .g annotated with term v, we determine

the BLAST predictor score for function v as maxfsidðx, sÞ :

s 2 Svg, where sidðx, sÞ is the maximum sequence identity re-

turned by the BLAST package (Altschul et al., 1997) when the

two sequences are aligned. We chose this method to mimic the

performance one would expect if they simply used BLAST to

transfer annotations between similar sequences.
The third method, GOtcha (Martin et al., 2004), was selected

to incorporate not only sequence identity between protein se-

quences but also the structure of the ontology (technically,

BLAST also incorporates structure of the ontology but in a rela-

tively trivial manner). Specifically, given a target protein x, a

particular functional term v, and a set of sequences

Sv ¼ fs1, s2, . . .g annotated with function v, one first determines

the r-score for function v as rv ¼ c�
P

s2Sv
logðeðx, sÞÞ, where

eðx, sÞ represents the E-value of the alignment between the

target sequence x and sequence s, and c¼ 2 is a constant

added to the given quantity to ensure all scores were above 0.

Given the r-score for function v, i-scores were then calculated by

dividing the r-score of each function by the score for the root

term iv ¼ rv=rroot. As such, GOtcha is an inexpensive and robust

predictor of function.

4.2 Average information content of a protein

We first examined the distribution of the information content per

protein for each of the three ontologies (Fig. 3). We observe a

wide range of information contents in all ontologies, reaching

over 128 bits in case of BPO (which corresponds to a factor of

128 in the probability of observing particular annotation graphs).

The distributions for MFO and CCO show unusual peaks for

low information contents, suggesting that a large fraction of an-

notation graphs in these ontologies are low quality. One such

anomaly is created by the term ‘binding’ in MFO that is asso-

ciated with 72% of proteins. Furthermore, 41% of proteins are

annotated with its child ‘protein binding’ as a leaf term, and 26%

are annotated with it as their sole leaf term. Such annotations,

which are clearly a consequence of high-throughput experiments,

present a significant difficulty in method evaluation.
Previously, we showed that the distribution of leaf terms in

protein annotation graphs exhibits scale-free tendencies (Clark

and Radivojac, 2011). Here, we also analyzed the average

number of leaf terms per protein and compared it with the in-

formation content of that protein. We estimate the average

number of leaf terms to be 1.6 (std. 1.0), 3.0 (std. 3.6) and 1.6

(std. 1.0) for MFO, BPO and CCO, respectively, and calculate

Pearson correlation between the information content and the

number of leaf terms for a protein (0.80, 0.92 and 0.71). Such

high level of correlation suggests that proteins annotated with a

small number of leaf terms are generally annotated by shallow

graphs. This is particularly evident in the case of ‘protein bind-

ing’ annotations that can be derived from yeast-2-hybrid experi-

ments but provide little insight into the functional aspects

of these complexes when only viewed as GO annotations.

We believe the wide range of information contents coupled

i57

Information-theoretic evaluation



with the fact that a large fraction of proteins were essentially

uninformative, justifies the weighting proposed in this work.

4.3 2D plots

To assess how each metric evaluated the performance of the four

prediction methods, we generated 2D plots. Figure 4 shows the

performance of each predictor using precision/recall and ru-mi

curves, as well as their weighted variants [additional precision/

recall curves using the definition by Verspoor et al. (2006) as well

as additional ru-mi curves are provided in Supplementary

Materials]. The performance of the GO/Swiss-Prot annotation

is represented as a single point because it compares two data-

bases of experimental annotations.
When looking at the precision/recall curves, we first observe

an unusually high area under the curve associated with the Naive

model. This is a result of a significant fraction of low information

content annotations that are relatively easy to predict by simply

using prior probabilities of terms as prediction values. In add-

ition, these biases lead to a biologically unexpected result where

the predictor based on the BLAST algorithm performs on

par with the Naive model, e.g. Fmax(BLAST, MFO) ¼ 0:65
and Fmax(Naive, MFO) ¼ 0:60, whereas Fmax(BLAST, CCO)

¼ 0:63; Fmax(Naive, CCO) ¼ 0:64. The largest difference be-

tween the BLAST and Naive models was observed for BPO,

which has a Gaussian-like distribution of information contents

in the logarithmic scale (Fig. 3). The second column of plots in

Figure 4 shows the weighted precision/recall curves. Here, we

observe large changes in the performance accuracy, especially

for the Naive model, in MFO and CCO categories, whereas

the BPO category was, for the most part, not impacted. We be-

lieve that the information-theoretic weighting of precision and

recall resulted in more meaningful evaluation.
The information-theoretic measures are shown in the last two

columns of Figure 4. One useful property of ru-mi plots is that

they explicitly illustrate how many bits of information are yet to

be revealed about a protein (on average) as a function of misin-

formation that is introduced by over-prediction or misannota-

tion. In all three categories, the amount of misinformation being

introduced increases rapidly; quickly obtaining a rate that is

twice the amount of expected information for an average protein.

We believe these plots shed new light into how much information

overload a researcher can be presented with by drawing predic-

tions at a particular threshold. Looking from right to left in each

plot, we observe an elbow in each of the curves (at �3 bits for

MFO and CCO and 12 bits for BPO; Fig. 4) after which the

remaining uncertainty barely decreases, whereas misinformation

grows out of control.

4.4 Comparisons of single statistics

Here, we analyze the ability of the single measures to rank pre-

dictors and lead to useful evaluation insights. We compare the

performance of semantic distance to several other methods that

calculate either topological or semantic similarities. For each

evaluation method, the decision threshold was varied for each

of the prediction methods, and the threshold providing the best

performance was selected as optimal. We then analyze and dis-

cuss the performance of these metrics at those optimal

thresholds.
We implemented the semantic similarity metrics of Jiang and

Conrath (1997), Lin (1998), Resnik (1995) and Schlicker et al.

(2006), as detailed in Supplementary Materials. Because each of

these measures is defined for a pair of terms in the ontology,

scores between two protein annotation graphs (true graph T

versus predicted graph P) were obtained by averaging scores

over all pairs of leaf terms ðt, pÞ such that t 2 T and p 2 P. We

refer to such scoring as all-pair averaging and note that the all-

pair averaging using Resnik’s term similarity was implemented

by Lord et al. (2003) in the context of GO annotations. The

results for a best-match averaging (also referred to as max-aver-

age method) are presented in the Supplementary Materials. In

addition to these semantic measures, we also implemented the

Jaccard similarity coefficient between the sets of vertices in the

two annotation graphs (Supplementary Materials). In terms of

precision/recall curve and ru-mi curve, we used Fmax and S2
measures to obtain optimal thresholds.

A B C

Fig. 3. Distribution of information content (in bits) over proteins annotated by terms for each of the three ontologies. The average information content

of a protein was estimated at 10.9 (std. 10.2), 32.0 (std. 33.6) and 10.4 (std. 9.2) bits for MFO, BPO and CCO, respectively

i58

W.T.Clark and P.Radivojac

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt228/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt228/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt228/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt228/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt228/-/DC1


Table 1 shows the maximum similarity, or minimum distance

in the case of Jiang and Conrath’s and semantic distance, that

each metric obtained for each of our classification models. In

addition to reporting the maximum similarity, we also report

the decision threshold at which that value was obtained along

with the associated level of remaining uncertainty and misinfor-

mation at that threshold. The first interesting observation is that

all metrics, aside from that of Jiang and Conrath, obtain optimal

thresholds that result in relatively similar levels of remaining un-

certainty and misinformation for the GOtcha model. However,

all metrics, aside from semantic distance and Jiang and

Conrath’s distance, seem to favor extremely high levels of mis-

information at the reported decision thresholds for the BLAST

model. For MFO and CCO, the semantic similarity measures of

Lord et al., Lin and Sclicker et al. report misinformation levels

that are more than twice the information content of the average

protein in that ontology for the BLAST model. In BPO, those

are even more extreme. We believe this is a direct consequence of

the pairwise term averaging applied in these methods.
It is particularly interesting to analyze the optimal thresholds

obtained for the BLAST model. These thresholds can be inter-

preted as the level of sequence identity above which each metric

reports functional transfer can be made. For example, because

their optimal BLAST thresholds are relatively low, the levels of

misinformation provided by the similarities of Lord et al., Lin

and Schlicker et al. are rather large. Fmax and Jaccard approaches

also report low threshold values for all ontologies, whereas Jiang

and Conrath’s distance selects the optimal threshold at an overly

restrictive 100% sequence identity. We believe that the semantic

distance S2 provides more reasonable values for functional trans-

fer, finding an optimal distance at 77, 88 and 78% for MFO,

BPO and CCO, respectively.

A

B

C

Fig. 4. The 2D evaluation plots. Each plot shows three prediction methods: Naive (gray, dashed), BLAST (red, solid) and GOtcha (blue, solid)

constructed using cross-validation. Green point labeled GO shows the performance evaluation between two databases of experimental annotations,

downloaded at the same time. The rows show the performance for different ontologies (MFO, BPO, CCO). The columns show different evaluation

metrics: ðprð�Þ, rcð�ÞÞ� , ðwprð�Þ,wrcð�ÞÞ� , ðruð�Þ,mið�ÞÞ� and ðwruð�Þ,wmið�ÞÞ�
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5 DISCUSSION

In this work, we propose an information-theoretic framework

for evaluating the performance of computational protein func-
tion prediction. We frame protein function prediction as a struc-

tured-output learning problem in which the output space is
represented by consistent subgraphs of the GO graph. We
argue that our approach directly addresses evaluation in cases

where there are multiple true and predicted (leaf) terms asso-
ciated with a protein by taking the structure of the ontology
and the dependencies between terms induced by a hierarchical

ontology into account. Our method also facilitates accounting
for the high level of biased and incomplete experimental anno-

tations of proteins by allowing for the weighting of proteins
based on the information content of their annotations. Because

we maintain an information-theoretic foundation, our approach

is relatively immune to the potential dissociation between the

depth of a term and its information content, a weakness of

often-used topological metrics in this domain such as precision/

recall or ROC-based evaluation. At the same time, because we

take a holistic approach to considering a protein’s potentially

large set of true or predicted functional associations, we resolve

many of the problems introduced by the practice of aggregating

multiple pairwise similarity comparisons common to existing se-

mantic similarity measures.

Although there is a long history (Resnik, 1999) and a signifi-

cant body of work in the literature regarding the use of semantic

similarity measures (Guzzi et al., 2012; Pesquita et al., 2009), to

the best of our knowledge, all such metrics are based on single

Table 1. Performance evaluation of several information-theoretic and topological metrics

Molecular Function Biological Process Cellular Component

Lord et al. (2003) Max Threshold ru mi Max Threshold ru mi Max Threshold ru mi

GOtcha 2.34 0.47 6.34 3.20 1.95 0.40 23.36 11.90 1.80 0.36 5.88 4.58

BLAST 1.61 0.43 4.69 27.90 1.40 0.43 16.73 139.57 1.27 0.38 4.42 37.24

Naive 0.46 0.09 9.56 4.23 0.63 0.01 10.35 504.88 0.75 0.07 5.81 16.34

Lin (1998) Max Threshold ru mi Max Threshold ru mi Max Threshold ru mi

GOtcha 0.44 0.52 6.67 2.67 0.26 0.46 24.43 9.40 0.41 0.50 6.71 2.76

BLAST 0.22 0.43 4.69 27.90 0.16 0.43 16.73 139.57 0.23 0.40 4.78 30.45

Naive 0.37 0.30 10.39 0.21 0.12 0.12 24.92 23.14 0.26 0.31 8.98 1.32

Schlicker et al. (2006) Max Threshold ru mi Max Threshold ru mi Max Threshold ru mi

GOtcha 0.29 0.51 6.60 2.76 0.23 0.42 23.73 10.99 0.30 0.43 6.31 3.56

BLAST 0.17 0.44 4.83 25.39 0.14 0.43 16.73 139.57 0.18 0.43 5.26 23.26

Naive 0.14 0.30 10.39 0.21 0.08 0.12 24.92 23.14 0.13 0.31 8.98 1.32

Jiang and Conrath (1997) Min Threshold ru mi Min Threshold ru mi Min Threshold ru mi

GOtcha 5.74 0.75 8.20 1.27 8.38 0.98 30.88 1.22 4.83 0.76 8.21 1.19

BLAST 6.34 1.00 10.62 0.43 8.39 1.00 31.31 1.40 5.20 1.00 10.16 0.35

Naive 6.19 0.63 10.53 0.13 8.24 0.50 31.75 0.07 5.01 0.61 10.13 0.08

Jaccard Max Threshold ru mi Max Threshold ru mi Max Threshold ru mi

GOtcha 0.57 0.46 6.29 3.32 0.31 0.34 22.24 15.24 0.56 0.43 6.31 3.56

BLAST 0.37 0.50 5.74 14.72 0.19 0.50 19.68 76.98 0.34 0.43 5.26 23.26

Naive 0.46 0.30 10.39 0.21 0.17 0.19 27.53 9.22 0.47 0.31 8.98 1.32

Fmax Max Threshold ru mi Max Threshold ru mi Max Threshold ru mi

GOtcha 0.72 0.43 6.12 3.68 0.49 0.32 21.84 16.69 0.73 0.43 6.31 3.56

BLAST 0.64 0.48 5.42 17.89 0.49 0.50 19.68 76.98 0.63 0.45 5.57 19.42

Naive 0.60 0.29 9.87 1.44 0.33 0.19 27.53 9.22 0.64 0.33 9.22 0.80

S2 Min Threshold ru mi Min Threshold ru mi Min Threshold ru mi

GOtcha 7.11 0.47 6.34 3.20 26.14 0.43 23.91 10.56 7.23 0.46 6.48 3.21

BLAST 9.13 0.77 8.25 3.90 29.89 0.88 28.28 9.69 9.08 0.78 8.51 3.15

Naive 9.98 0.10 9.72 2.80 29.00 0.22 27.67 8.72 8.79 0.21 7.71 4.95

Note: For each measure, the decision threshold was varied across the entire range of predictions to obtain the maximum or minimum value (shown in column 1). The threshold

at which each method reached the best value is shown in column 2. Columns 3 and 4 show the remaining uncertainty (ru) and misinformation (mi) calculated according to the

Bayesian network. Each semantic similarity metric was calculated according to the relative frequencies of observing each term in the database.

i60

W.T.Clark and P.Radivojac



statistics and are unable to provide insight into the levels of re-
maining uncertainty and misinformation that every predictor is
expected to balance. Therefore, the methods proposed in this
work extend, modify and formalize several useful information-

theoretic metrics introduced during the past decades. In addition,
both remaining uncertainty and misinformation have natural in-
formation-theoretic interpretations and can provide meaningful

information to the users of computational tools. At the same
time, the semantic distance based on these concepts facilitates
not only the use of a single performance measure to evaluate

and rank predictors but can also be exploited as a loss function
during training.
One limitation of the proposed approach is grounded in the

assumption that a Bayesian network, structured according to the
underlying ontology, will perfectly model the prior probability
distribution of a target variable. An interesting anomaly with
this approach is that the marginal probability, and subsequently

the information content, of a single term (i.e. consistent graph
with a single leaf term) calculated from a Bayesian network
does not necessarily match the relative term frequency in the data-

base (instead, the conditional probability tables are estimated as
relative frequencies). Ad hoc solutions that maintain the term
information content are possible but would result in sacrificed

interpretability of the metric itself. One such solution can be ob-
tained via a recursive definition iaðvÞ ¼ iðvÞ �

P
u2PðvÞ iaðuÞ and

iaðrootÞ ¼ 0, where i(v) is estimated directly from the database.
Finally, rationalizing between evaluation metrics is a difficult

task. The literature presents several strategies where protein se-
quence similarity, protein–protein interactions or other data are
used to assess whether a performance metric behaves according

to expectations (Guzzi et al., 2012). In this work, we took a
somewhat different approach and showed that the demonstrably
biased protein function data can be shown to provide surprising

results with well-understood prediction algorithms and conven-
tional evaluation metrics. Thus, we believe that our experiments
provide evidence of the usefulness of the new evaluation metric.
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