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A B S T R A C T

This research investigates the effect of baking temperature and time on the resistant starch (RS), glycemic index
(GI) and glycemic load (GL) of gluten-free cookies, optimized the processing parameter using a chemometrics
approach of response surface methodology (RSM) and artificial neural network (ANN). The in-vitro starch di-
gestibility of the formulated cookies exhibited a monophasic starch digestogram. Increase in resistant starch, and
a decrease in the predicted GI of the cookies, was associated with low temperature and high baking time. The use
of RSM and ANN modelling techniques accurately predict the RS, pGI and GL (coefficient of determinant, R2 >

0.93 and root mean square of error ¼ 0.43–0.62) of the gluten-free cookies. The optimal condition for the pro-
duction of cookies with high RS, low pGI and GL were baking temperature of 158 �C and baking time of 20 min
with predicted RS value of 19.61 g/100g of dry starch, pGI value of 56.98 and GL value 52.64.
1. Introduction

In recent times, there had been increase in the demand for gluten-free
(GF) food products such as bakery and pastry products with nutritive and
sensory properties for partial replacement of traditional cereal-based
products (Olawoye et al., 2017). The demand for GF food was due to
the growing numbers of patients suffering from celiac disease. Celiac
disease, an immune-mediated disorder, is a digestion condition in which
an individual exhibits a negative reaction from the ingestion of
gluten-containing grain. Food products made fromwheat, rye, barley and
oats contain gluten and may be injurious to the health of gluten-sensitive
people. In these individuals, the ingestion of gluten-containing products
led to the inflammation as well as mucosal damage of the small intestine.
Owing to this, the only successful treatment for such patients is strict
adherence to gluten-free foods and this had led to the production of
gluten-free (GF) products from crops such as chickpea (Santos et al.,
2020), plantain flour (Guti�errez, 2018), pseudo cereal grain (Martí-
nez-Villaluenga et al., 2020) and finally from grape peel and whey
powder (Ungureanu-Iuga et al., 2020).

To formulate gluten-free food, there is a need for careful selection of
raw materials. Several raw materials (maize, pseudo-cereal, sorghum
oye).
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etc.) used belong to the classes of medium-to-high glycemic index (GI)
food (Chung et al., 2008; Ferrer-Mairal et al., 2012), as they are rapidly
digested in the gastrointestinal tract compared to cardaba banana flour
whose value were 53 and 40.44 for glycemic index and load, respectively
(Ayodele and Godwin, 2010). Starch is one of the important raw mate-
rials used in the formulation of GF food and it's digested by
alpha-amylase from the saliva as well as the pancreas followed by a
border enzyme into glucose molecules in the gastrointestinal tract. This
glucose provides the energy needed to carry out daily activities in human
beings. However, the rate at which glucose is release into the blood-
stream is of interest in the management of some degenerating diseases.
Physiologically, Englyst et al. (1992) classified starch into Rapidly
Digestible Starch (RDS), Slowly Digestible Starch (SDS), and Resistant
Starch (RS). Food that contains high RDS resulted in high rate of glucose
release into the bloodstream and hence, high GI. The GI is the degree at
which the blood glucose level is raised two hours after the consumption
of carbohydrate foods. Foods high in glycemic index (GI > 71) are found
to be associated with degenerating diseases such as type 2 diabetes,
cardiovascular diseases and obesity. On the other hands, SDS and RS
starch fraction foods had been reported to have a low GI and help in the
prevention of metabolic disorder such as hypolipoproteinaemia, as well
mber 2020
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as oxidative stress reduction. Resistant starch belongs to the starch
fraction that is not digested in the small intestine but fermented by the
colonmicroorganism to produce short-chain fatty acid (SCFA). This SCFA
provides the body with additional energy as well as a high concentration
of butyrate which is also beneficial in the reduction of colon cancer.
Hence, it had been suggested that for health benefits, starch-baked food
high in slowly digestible starch and resistant starch should be consumed
(Olawoye and Gbadamosi, 2020c).

Several previous studies to improve the overall nutritional and
sensorial characteristics of gluten-free products had been carried out
(Malgor et al., 2020; Olawoye and Gbadamosi, 2020c; Rybicka et al.,
2019). Owing to this, cookie could serve as a potentially nutritious
gluten-free snack through careful selection of ingredients. The
improvement of gluten-free cookie nutritionally as a result of decrease in
the glycemic index, as well as the glycemic load, can be achieved through
the modification of starch using either physical, chemical or enzymatic
methods of starch modification. Chemical modification, depending on
the degree and type of modification, the extent of starch gelatinization
and sources of starch affects the rate of starch digestibility and glycemic
response. Citric acid modification is a mild acid treatment of starch,
which is relatively safe for industrial and pharmaceutical uses. Several
researchers had reported the decrease in the GI of starch-modified
through citric acid modification which they said was due to the in-
creases in SDS and RS fractions of the starch. Remya et al. (2018),
attributed the reduction in the glycemic index to the formation of bulky
derivatizing group (mono, di and tri esters) which hinder the formation
of the enzyme-substrate complex. Hence, cardaba banana starch modi-
fication using citric acid could find application in the production of
gluten-free cookies. However, during the production of cookies, the
thermal processing according Guill�en et al. (2018), might lead to a
reduction in resistant and slowly digestible starch, therefore, increase in
the glycemic index of the formulated cookies. Hence, the need for the
optimization of the baking process to minimize the glycemic response of
the cookies.

Response surface methodology (RSM) is a combination of the math-
ematical and statistical method used for the design of experiment, model
building, evaluation of the relationship between process variables as well
as determining the optimum condition of variables for desire or targeted
goals. It is regarded as an effective tool in optimizing complex process or
reaction and had been applied by various researchers in food processing
operations (Abd Rahman et al., 2017). Artificial Neural Network (ANN),
on the other hand, is a collection of computational elements stimulated to
imitate the human brain. Its advantage is that it is structurally generic
and can learn from historical data. It is advantageous over RSM in that it
doesn't need prior knowledge of the experimental data and can be used to
estimate almost all types of non-linear models such as quadratic models
(Khajeh et al., 2017). Although ANN had found application in modelling
various biosystem, however, its application in optimizing the glycemic
response in GF cookie is still limited. In this study, RSM and ANN were
used to find the optimum process condition (baking temperature and
time) for the preparation of GF cookies with low GI.

2. Materials and methods

2.1. Cardaba banana flour

The flour from cardaba banana used for the cookies production was
produced as described by Olawoye and Gbadamosi (2020a). The
de-bunched cardaba banana was peeled under water, sliced and dried at
50 �C for 8 h in a conventional hot air oven (Uniscope, SM9053, En-
gland). Following drying, the sliced bananas were milled and packed in
an airtight container prior to use.
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2.2. Extraction of cardaba banana starch

Cardaba banana was de-bunched, washed and peeled, the isolation of
starch from the banana was done using a method described by Olawoye
and Gbadamosi (2020a). Briefly, Cardaba banana was de-bunched from
the stalk, washed, peeled and sliced. The banana slices were milled with
the addition of water (1.5 L) for 10 min using Stephan milling machine
(Stephan Universal Machine, Germany). The banana mash obtained after
milling was suspended into distilled water (1.5 w/v). Following sus-
pension, the mash was sieved using 200 μm mesh size and the corre-
sponding starch slurry was allowed to stay overnight. The starch
obtained was washed three times with distilled water until the starch
slurry was free from non-starch material. After washing, the starch ob-
tained was dried at 45 for 12 h and was subsequently packaged in airtight
container until for further use.

2.3. Citric acid modification of cardaba banana starch

Citric acid modification was done according to the method described
by Klaushofer et al. (1978) with some modifications. Cardaba banana
starch (500g) was dissolved in 0.12M of citric acid (1:4 w/v) in a glass
beaker. The starch slurry was stirred on a magnetic stirrer for 120 min
with a continuous adjustment of the pH to 5.5 using 0.1M NaOH. The
starch slurry was centrifuged at 3000 rpm for 5 min and subsequently
washed three times with a twofold volume of distilled water to remove
the unreacted citric acid. Finally, the washed starch was dried at 45 �C in
a hot-air oven (Uniscope, SM9053, England) for 12 h, it was milled into
powder and packed in airtight containers for further use.

2.4. Experimental design, RSM modelling and optimization

A central composite design (CCD) with a second-order polynomial
model was used to evaluate the combined effect of the independent
variables (baking temperature and time) on the resistant starch, glycemic
index and glycemic load of the formulated GF cookies using Design
Expert 12.0.3 (Stat-Ease. Inc. U.S.A.). The range of values considered for
the independent variables were 150–180 �C and 10–20 min for the
baking temperature and baking time, respectively (Table 1). A second-
order polynomial model was used to fit the relationship between the
independent variables and the response (Eq. (1)). The quality of the fitted
model was evaluated using a significance test and analysis of variance
(ANOVA). The effects of each model terms, as well as their interaction,
were identified graphically using the Pareto chart.

Y ¼ b0 þ
Xk

i¼1

biXi þ
Xk

i¼1

biiX2
i þ

Xk

i<j

bijXiXj þ e (1)

where Y is the response variable, b0 is the intercept value, bi (I ¼ 1, 2,….
k) is the first-order model coefficient, bij is the interaction effect, and bii
represents the quadratic coefficient of Xi. Xi and Xj are the independent
variables that affect the dependent (response) variables and e represents
the random error.

2.5. Production of GF cookies

The gluten-free cookies were produced following the method
described by Giuberti et al. (2015). Briefly, cardaba banana flour and
citric acid modified cardaba banana starch were blended in the ratio of
20:80 (w/w). Unsalted buttercream (8.5% of the flour blends) was
creamed, mixed with whole egg (12% of the flour blend) and 20 ml of
distilled water and then added to the flour blends. Sugar was not added to
the mixture to limit or control the glycemic index of the formulated



Table 1. Experimental and predicted values for the dependent variables.

Runs Code A B Experimental Predicted RS Predicted PGI Predicted GL

RS PGI GL RSM ANN RSM ANN RSM ANN

C1 165 15 18.33 56.88 51.95 17.29 17.4199 56.90 56.89 51.45 51.45

C2 165 25 22.64 56.98 55.12 22.99 22.6307 56.98 56.97 55.28 55.12

C3 150 20 20.28 57.07 52.73 20.08 20.2528 57.07 57.07 52.67 52.73

C4 165 15 16.89 56.87 51.97 17.29 17.4199 56.90 56.89 51.45 51.45

C5 180 20 19.53 56.67 53.62 18.93 20.5958 56.67 56.67 53.30 53.62

C6 150 10 13.55 57.11 50.11 13.97 13.5848 57.10 57.11 50.30 50.11

C7 165 15 15.96 56.94 51.28 17.29 17.4199 56.90 56.89 51.45 51.45

C8 195 15 20.05 56.50 53.66 20.30 20.0537 56.50 56.50 53.82 53.66

C9 165 15 16.99 56.92 51.31 17.29 17.4199 56.90 56.89 51.45 51.45

C10 135 15 15.68 57.13 50.87 15.52 15.0143 57.14 57.13 50.77 50.87

C11 180 10 19.89 56.86 52.78 19.91 19.8946 56.86 56.86 52.72 52.78

C12 165 15 18.08 56.89 50.58 17.29 17.4199 56.90 56.89 51.45 51.45

C13 165 5 18.12 57.19 52.42 17.85 18.1411 57.20 57.19 52.33 52.42

*A: Baking temperature (�C); B: Baking time (min); RS: Resistant starch (g/100 g dry starch); PGI: Predicted glycemic index; GI H90: Glycemic index at 90 min; GL:
Glycemic load.
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cookies. The mixture blends were amalgamated to form a homogenous
dough in a mixer (Kenwood KMM021, UK) for 7 min, after which a pasta
roller was used to laminate the dough at 80 mm height and was allowed
to rest at 4 �C for 30 min. The laminated dough was cut into a small size
using a dough cutter and was baked at various temperature and time
following experimental design data in a household oven (Cuisinart
TOB-200, U.S.A.). After baking, the cookies were allowed to cool for 30
min and were packaged in separated Ziploc polythene nylon at room
temperature until further analysis.

2.6. In-vitro starch digestibility and hydrolysis kinetics

The digestion rate of the cookies was evaluated according to the
method described by Olawoye and Gbadamosi (2020a). The released
glucose was determined colorimetrically as described by Olawoye and
Gbadamosi (2020a). The rate of starch digestion was expressed as the
percentage of total starch (TS) hydrolyzed at different times.

The digestion kinetics, as well as the pGI of the GF cookies, were
calculated using the procedure described by (Go~ni et al., 1997). Starch
hydrolysis kinetics was described using a non-linear model as shown in
Eq. (2).

Ct ¼ C∞ (1-e-kt) (2)

where Ct is the concentration of product or reactant at time t, Cα is the
corresponding equilibrium concentration and k is a pseudo-first-order
rate constant (Go~ni et al., 1997). The basis of fit of the model is a low
mean relative deviation modulus (MRDM <10) and high coefficient of
determinant (r2) greater than 0.7. The hydrolysis index (HI) was obtained
by dividing the area under the hydrolysis curves (0–180 min) of the
cookies by the area of reference sample (white bread). From the result of
HI, predicted glycemic index (pGI) was computed using Eq. (3) below.

GI ¼ 39.71 þ 0.54 HI (3)

Also, the glycemic load per g solid (GL) was determined from the pGI
as shown in Eq. (4)

GL¼ pGI � TS
100

(4)

where TS is the total starch of the cookie sample.
3

2.7. Physical and textural characteristics of GF cookies

Diameter and thickness of some selected cookies, as well as the
optimized cookie, were determined with a Vanier calliper at three
different points. The colour of the cookie sample was determined by a
method described by Olawoye and Gbadamosi (2020b). The colour
which include L*, lightness (0 ¼ black, 100 ¼white), a* (-a ¼ greenness,
þa ¼ redness) and b* (-b ¼ blueness, þb ¼ yellowness) of the cookies
were obtained using HunterLab colorimeter coupled with an optical
sensor (HunterLab, U.S.A.). Hardness analysis was performed with a
TA-XT2i Texture Analyser (Stable Micro Systems, UK) fitted with a shape
blade-cutting probe as described by (Sharma et al., 2016).

2.8. Modelling using ANN

In this study, a commercial software NeuralPower version 2.5 (CPC-X
Software) was used to predict the glycemic index and glycemic load of
the formulated cookies. The ANN architecture included an input layer
with two neurons (baking temperature and time), an output layer con-
sisting of three neurons (RS, pGI and GL) as well as a hidden layer. To
develop an optimal network topology for the model, the number of
neurons, as well as the transfer function of hidden and output layers,
were determined iteratively through the development of many networks.
Multilayer full feedforward (MFFF), as well as multilayer normal feed-
forward (MNFF) neural networks, were used to predict the output vari-
ables, while the training of the data sets was done using different learning
algorithms such as incremental backpropagation (IBP), quickprob (QP),
genetic algorithm (GA), batch backpropagation (BBP), and Levenberg-
Marquardt algorithm (LM). The experimental data obtained from the
central composite design was split into two: training and testing data sets.
The training dataset consists of 8 experimental runs while the remaining
dataset was used for testing.

3. Result and discussion

3.1. In vitro starch hydrolysis kinetics of the cookies

The in-vitro starch hydrolysis kinetics (digestogram) of the formu-
lated cookies is shown in Figure 1a. The cookies, irrespective of their
processing variables exhibited a monophasic starch digestogram in



Figure 1. (a) Starch digestogram of the gluten-free cookies; (b) Digestion parameters of the cookies.
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which the initial restriction to hydrolysis was insignificant. It could be
seen that the quantity of digested starch increased with an increase in the
digestion time at a different rate throughout the enzymatic hydrolysis of
the cookies. This increase could be as a result of an increased in the in-
teractions between the substrate (cookies) as reported by Mahasukhon-
thachat et al. (2010).

To obtain more quantifiable information about the digestion prop-
erties of the cookies, a first-order kinetics model was applied to the
cookies hydrolysis and a predictive parameter was obtained whose
values (average r2 ¼ 0.760, SSE ¼ 13, MRDM ¼ 4%) affirmed the suit-
ability of the approach in describing the cookies monophasic digesto-
gram (Figure 1a). As it could be seen, the average value of the MDRM is
lower than 10 which is an indication of a good model. The values of the
digested starch equilibrium (C∞) and kinetic constant (k) which revealed
the rate of digestion of the formulated cookies are shown in Figure 1b.
The figure reveals the values ranged between 0.059 to 0.081 min�1 and
55.39–56.98 g/100g dry starch for kinetics constant and digested starch
equilibrium, respectively. The highest rate of digestion (k) was found in
cookie sample C11while it was observed cookie sample coded C2 had the
lowest rate of digestion. The values of k reported in this study were
slightly higher than the values reported by Giuberti et al. (2015) who
reported an average of 0.61min�1 for their gluten-free maize cookies.
The kinetics constant (k) is an important property and index for the
susceptibility of the cookies to amylase hydrolysis. The value of C∞
revealed that the cookies with the maximum digested starch were
cookies coded C3 with 56.98 g/100 g dry starch.

3.2. Process optimization

3.2.1. Analysis of the model of resistant starch
The analysis of variance obtained for the models is presented in

Table 2. The ANOVA of the regression model demonstrated that the
experimental model was highly significant, an evident of its lower p-
values (<0.001). Also, as it could be seen from the result, the linear terms
(i.e. 1L and 2L), interaction parameter, as well as the quadratic term of
the baking time were all observed to be highly significant (p < 0.001).
However, the quadratic parameter of the baking temperature is not sig-
nificant (p > 0.05). The predictive equation of the quadratic model was
deduced taking into consideration only the significant terms with p <

0.001 as shown in Eq. (5).

RS¼ 17:29þ 1:19Aþ 1:28B� 1:77ABþ 0:78B2 (5)
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The relationship between the dependent variable (resistant starch)
and the model terms are shown in Figure 2a. The result of the regression
coefficient revealed that all the linear terms as well as the quadratic
parameter of baking time had a positive regression coefficient and hence,
a positive synergy between the experimental model terms and the
experimental response. However, the interaction between the baking
temperature and time had a negative coefficient hence, a negative impact
on the resistant starch.

The statistical significance and quality of the model as evaluated
using an ANOVA test as presented in Table 2 suggest that the regression
model could be employed in navigating the design space. The value of the
coefficient of determinant (R2) is 0.9329 which indicated that 93.29% of
the data variance was attributed to the independent variables while only
6.61% of the variation could not be explained. The closeness of the R2

values to unity indicates the high significance of model terms. However,
the coefficient of determinant alone does not make a goodmodel or fit for
use because it doesn't take into consideration the effect exhibited when a
new term is added to the experimental process. Hence, it must be
compared to the adjusted R2 (08849) which measures the sample vari-
ance of the experimental process and take in consideration the addition
of new independent variables and only increase when the model is being
enhanced by the new terms. The lack of fit of the model was 0.8202
which is insignificant (p > 0.05).

3.2.2. Effect of independent variables on resistant starch
The simultaneous effect of the baking temperature and time on the

resistant starch of the cookies is depicted in Figure 3a. The three-
dimensional response surface plot revealed that the resistant starch of
the cookies depends mainly on the baking time because both the linear
and quadratic effects are highly significant with p < 0.001. The plot
revealed an increase in the resistant starch of the cookies as both the
baking temperature and time increases. Although the baking temperature
of the cookies had no significant effect on the RS, its increase led to an
increase in the resistant starch. The increase in the resistant starch frac-
tion of the cookies could be attributed to the strong interaction between
the molecular chains and the helical structure causing an orientation and
formation of starch crystals after baking at high temperature. The for-
mation of starch crystals in the cookies would lead to the resistance of the
cookies against enzyme hydrolysis hence, an increase in the resistant
starch. In their study, Ritudomphol and Luangsakul (2019), reported an
increase in the resistance starch of an instant rice. They attributed this
increase to the formation of starch crystal as a result of high processing



Table 2. Analysis of variance (ANOVA) of the dependent variables.

Factor SS df MS F P

Resistant starch

Model 63.69 5 12.74 19.46 <0.001*

(1)Baking Temperature(L) 17.13 1 17.13 26.17 0.0013

Baking Temperature(Q) 0.56 1 0.56 0.85 0.3870

(2)Baking Time(L) 19.79 1 19.79 30.24 <0.001*

Baking Time(Q) 14.09 1 14.09 21.53 0.0023

1L by 2L 12.55 1 12.55 19.17 0.0032

Lack of fit 0.86 3 0.29 0.31 0.8202**

Error 4.58 7 0.65

Total SS 68.27 12

R2 0.9329

Adjusted R2 0.8849

Predicted glycemic index

Model 0.42 5 0.08 168.01 <0.001*

(1)Baking Temperature(L) 0.30 1 0.30 602.56 <0.001*

Baking Temperature(Q) 0.01 1 0.01 19.65 0.003*

(2)Baking Time(L) 0.04 1 0.03 71.51 <0.001*

Baking Time(Q) 0.05 1 0.05 97.42 <0.001*

1L by 2L 0.01 1 0.01 11.63 0.0112*

Lack of fit 0.001 3 0.000 0.05 0.9853**

Error 0.003 7 0.0005

Total SS 0.43 12

R2 0.9917

Adjusted R2 0.9858

Glycemic load

Model 22.30 5 4.46 20.24 <0.001*

(1)Baking Temperature(L) 6.96 1 6.96 31.60 <0.001*

Baking Temperature(Q) 1.03 1 1.03 4.67 0.068**

(2)Baking Time(L) 6.53 1 6.53 29.63 <0.001*

Baking Time(Q) 7.96 1 7.96 36.10 <0.001*

1L by 2L 0.80 1 0.80 3.64 0.098**

Lack of fit 0.22 3 0.07 0.22 0.8760**

Error 1.54 7 0.22

Total SS 23.84 12

R2 0.9353

Adjusted R2 0.8891

Superscript * are significant at P < 0.05; Superscript ** are not significant at p > 0.05.
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temperature. The combined effect of both variables shows that a low
temperature/high baking time is more effective in increasing the resis-
tant starch of the gluten-free cookies than a high temperature/low baking
time. The result obtained in this study commensurate with the findings of
Liu et al. (2020). The optimal resistant starch conditions for this model
were determined by maximizing desirability and were: baking temper-
ature: 158 �C; baking time: 20 min of the cookie production have been
investigated and the actual RS obtained under this conditions was 20.10
� 1.04 g/100g against a predicted value of 19.61 g/100g of dry starch
with no significant difference (p > 0.05).

3.2.3. Analysis of RSM model of predicted glycemic index
The result of the RSM model analysis of the pGI is shown in Table 2.

For the predicted glycemic index, it could be seen from Table 2 that both
the linear terms of the independent variables (1L and 2L), the quadratic
parameter of the baking time was highly significant (p < 0.001), while
the interaction between the independent variables as well as the
quadratic parameter of the baking temperature was significant (p <

0.05). The final predictive equation for the predicted glycemic index was
obtained and presented in Eq. (6).

pGI ¼ 56:90� 0:16A� 0:05B� 0:04AB� 0:02A2 þ 0:05B2 (6)
5

From the result of the analysis of variance of the experimental result
of pGI, the F value of the model was 168.01 and was highly significant (p
< 0.001). Both the P and F value shows the significance of model terms,
but they don't differentiate between the positive or negative significant
effect on the model. Owing to this, the standard effect of the baking
temperature and time, as well as their interaction on the predicted gly-
cemic index, is visualized using the Pareto chart (Figure 2b). The nega-
tive coefficient of all the model terms except the quadratic term of the
baking temperature showed an antagonist effect on the predicted gly-
cemic index of the cookies. The statistical significance of the experi-
mental model was evaluated using the coefficient of determinant and
adjusted R2. The value of the R2 was 0.9917 which indicate that only
0.83% of the experimental data variation could not be explained by the
independent variables. The adjusted R2 of model 0.9858, a value close to
the coefficient of determinant and hence the significance of the experi-
mental model to adequately predict the dependent variable. Also, the
insignificance of the lack of fit (0.9853) with p > 0.05 affirmed the ad-
equacy of the experimental model.

3.2.4. Effect of independent variables on predicted glycemic index
The three-dimensional response surface profile of the predicted

glycemic index is shown in Figure 3b. Both the independent variable



Figure 2. Pareto chart of standardized effects for modification process.; L - linear; Q – quadratic. (a) Resistant starch; (b) glycemic index; (c) glycemic load.
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had a significant effect (p < 0.001) on the pGI of the cookies. How-
ever, it was observed that the baking time had a linear effect on the
pGI while the baking temperature exhibit a quadratic effect on the pGI
of the cookies. The plot revealed a decrease in the predicted glycemic
index as the baking temperature of the cookies increases. The decrease
could be ascribed to the increase formation of resistant starch as a
result of the crystallization of the amylose starch granule in the
cookies. This result commensurate with the report of da Silva and
Conti-Silva (2018) who also reported decrease in the glycemic index of
gluten free cookies as the temperature of baking of the cookies in-
creases. Minimal predicted glycemic index was observed when the
baking time increased from 4 min to 18 min, however, a baking time
above 18 min led to a significant increase in the pGI. The reason for
the low pGI could probably be that the baking condition not only
renders a fraction of the starch resistant due to amylose crystallization
but also lower the rate of enzymatic digestion of the cookies non-RS
fraction. The optimal conditions for the production of low glycemic
6

index cookies after which the desirability had been maximized are:
baking temperature: 158 �C; baking time: 20 min of the cookies pro-
duction in which the actual predicted glycemic index obtained was
54.83 � 0.92 against a predicted value of 56.98 with a significant
difference (p < 0.05).

3.2.5. Analysis of RSM model of glycemic load
The analysis of variance results of the baking temperature and time

effect on the glycemic load of cookies are resented in Table 2.
The results revealed that the linear parameters (i.e. baking tempera-

ture and time) are highly significant (p< 0.001). for the quadratic terms,
only the baking time (Q) is highly significant (p < 0.001) while the
baking temperature (Q) was found to be insignificant (p > 0.05). Finally,
the interaction parameter of the baking temperature and time is insig-
nificant with p > 0.05. The final equation for the prediction of the gly-
cemic load of the cookies taking into consideration only the significant
terms is presented in Eq. (7).



Figure 3. Effects of independent variables on (a) resistant starch (b) glycemic index (c) glycemic load for RSM model (d) resistant starch (e) glycemic index (f)
glycemic load for ANN model.
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GL¼ 51:45þ 0:76Aþ 0:74Bþ 0:59B2 (7)
The analysis of the glycemic load model revealed the significance
of the model owing to its high Fischer test value of 20.24. Both the P
and F values of the model indicated the significance of the model
terms, they however did not reveal the synergistic effects (positive or
antagonist effect) of the model terms on the dependent variable
(glycemic load). owing to this, the synergistic effects of the indepen-
dent variables as well as their interaction on the glycemic load is
presented visually using the Pareto chart (Figure 2c). The chart
revealed that both the linear terms as well as the quadratic parameter
of baking time (Q) had a positive coefficient and hence positive syn-
ergistic effect on the glycemic load of the cookies. The bar chart of the
quadratic parameter of the baking temperature as well as that of
interaction parameter was observed to fall below the threshold red
line and hence their insignificant effect on the GL. The statistical
quality of the experimental model was determined using the coeffi-
cient of determinant, adjusted R2 as well as the lack of fit of the model.
The values of the R2, adjusted R2 and the lack of fit of the model were
0.9353, 08891 and 0.8760, respectively. According to Olawoye and
Gbadamosi (2020a), coefficient of determinant measures the extent of
sample variation in the glycemic load, which can be explained by the
baking temperature and time as well as the interaction between them.
The R2 value obtained in this study indicated that only 6.47% of the
experimental data variations could not be explained by the processing
factors as well as the interaction between them. The experimental
model lack-of-fit is insignificant with p > 0.05.

3.2.6. Effect of independent variables on predicted glycemic loads
The three-dimensional response surface profile of the glycemic

load of the formulated cookies is shown in Figure 3c. Both the baking
temperature and time significantly affect the glycemic load. The
baking temperature shows a linear effect on the GL while the baking
time had a very highly significant quadratic effect on the glycemic
load of the cookies. Increase in both the baking temperature and time
was found to significantly increase the glycemic load of the cookies.
7

However, the combined effect of both variables revealed that a low
temperature/low baking time is more effective in reducing the gly-
cemic load of the gluten-free cookies than a high temperature/high
baking time. Punia et al. (2017) reported that the glycemic load of the
cookies is dependent on both the glycemic index as well as the total
starch content of the gluten-free cookies. For this experimental model,
the optimal glycemic load conditions are baking temperature: 158 �C;
baking time: 20 min of the cookies production and the actual glycemic
load obtained under this condition was 50.47 � 1.49 against a pre-
dicted value of 52.64. These optimization conditions were based on
maximum desirability.
3.3. ANN modelling and process optimization

Optimal neural network topology and architecture selection is critical
in the modelling of dependent variables using ANN. Owing to this,
several neural architectures were developed and test for the prediction of
the resistant, glycemic index and glycemic load. The result for the
determination of optimal neural topology is summarized in Table 3
which revealed that the increment backpropagation (IBP) learning al-
gorithm andmultilayer normal feed-forward connection type best fits the
experimental data. Furthermore, the type of transfer functions used af-
fects both the learning rate as well as the performance of the network. In
this research, among several transfer functions employed for the hidden
and output layers, the sigmoid-sigmoid transfer functions bring about the
acceptable model. The optimal number of hidden neurons needs to be
carefully and its usually achieved by a trial by error method. According to
Betiku and Taiwo (2015), the learning performance of the experimental
model becomes better as the number of hidden neurons increases. The
result which is based on the best goodness of fit is presented in Figure 4.
Therefore, the optimum number of hidden for the neural architecture is 9
which also had 2 input neurons (baking temperature and time) as well as
3 output neurons (RS, pGI and GL). Many input and output transfer
functions were used; however, the sigmoid-sigmoid transfer function was
chosen which consist of a 2-9-3 topology as it gave the highest coefficient



Table 3. R2 and RMSE of the dependent variables as a function of different learning algorithm and connection types.

Model Learning Algorithms Connections Types Output Layer Transfer Function Input Layer Transfer Function Training Testing

fR2 gRMSE R2 RMSE

2-6-3 BBPa MFFFb Hyperbolic Tangent Hyperbolic Tangent 0.9899 0.206 0.9871 1.78

2-6-3 IBPc MFFF Hyperbolic Tangent Sigmoid 0.9902 0.105 0.9900 1.49

2-7-3 IBP MNFFd Sigmoid Hyperbolic Tangent 0.9906 0.06 0.9902 0651

2-7-3 QPe MFFF Hyperbolic Tangent Hyperbolic Tangent 0.9710 4.025 0.9793 4.83

2-8-3 IBP MNFFd Sigmoid Hyperbolic Tangent 0.9907 0.064 0.9904 0.62

2-8-3 QPe MFFF Sigmoid Hyperbolic Tangent 0.9164 3.037 0.9174 3.09

2-8-3 BBP MFFF Hyperbolic Tangent Sigmoid 0.9897 0.113 0.9893 1.36

2-9-3 IBP MNFF Sigmoid Sigmoid 0.9915 0.0623 0.9904 0.337

2-9-3 IBP MFFF Sigmoid Hyperbolic Tangent 0.9906 0.0641 0.9905 0.314

a Batch Back Propagation;
b Multilayer Full Feed Forward;
c Incremental back propagation;
d Multilayer normal Feed Forward;
e Quick Propagation;
f Coefficient of determination;
g Root mean square deviation.

Figure 4. Neural Network Topology of the dependent variables.
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of determinant coupled with a very low root mean square of error. The
result of the ANN modelling as shown in Table 3 revealed the value of
0.9915 and 0.062 were obtained for the coefficient of determinant (R2)
and RMSE, respectively, for the training data set while the result of the
testing revealed that the value of the coefficient of determinant (R2) and
RMSE were 0.9904 and 0.337, respectively. The result obtained revealed
that the relationship between the independent variables and the re-
sponses can adequately be predicted using artificial neural network.
3.4. Comparison between RSM and ANN predicted values

Table 4 and Figure 5 revealed the predicted and actual values of
resistant starch, glycemic index and glycemic load using RSM and ANN.
The performance of both models was evaluated using the coefficient of
determinant (R2) and root mean square of error (RMSE). Although both
RSM and ANNmodel performedwell, however, the ANNmodel approach
performed better n both experimental data fitting as well as estimation
Table 4. Optimal condition for RSM and ANN.

Model Baking temperature (�C) Baking time (min) Predicted value

RS (g/100 g dry starc

RSM 158 20 19.61

ANN 155 18.5 20.65
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capabilities than RSM model approach. This result was also supported by
the parity plot between the predicted and experimental values. Akin-
tunde et al. (2015) and Olawoye et al. (2020) also reported the superi-
ority of ANN over RSM when optimizing the extraction of oil from
Bauhinia monandra seed and cardaba starch respectively.

3.5. Physical and textural properties of the gluten-free cookies

The physical characteristics (thickness, width and spread ratio) of the
gluten-free cookies are presented in Table 5. The thickness and width of
the cookie samples ranged between 0.60 - 0.79 mm and 3.52–4.15mm,
respectively. The result revealed that the baking time had a pronounced
effect on the thickness and width of the cookie samples. Cookie subjected
to long baking time had the lowest thickness and width. The spread ratio
of the cookie sample which was obtained by dividing the width to
thickness of the cookie ranged from 5.46 to 6.23. Cookie formulated
under the processing condition of 180 �C baking temperature and 20 min
baking time had the highest spread ratio. The change in spread ratio
values of the gluten-free cookie samples was consistent with the changes
in thickness and width of the cookies.

The L*, a*, b* values of the cookie samples ranged from 49.83 �
0.84–61.39 � 0.80, -4.93 � 0.03–1.85 � 0.01 and 9.38 � 0.21–11.60 �
0.09, respectively. The decrease in L and a value coupled with increased b
values of the cookies as a result of an increase in baking temperature and
time could probably be due to onset/acceleration of Maillard reaction in
the production of cookies. The most obvious changes in the colour of the
cookie (significant decrease in L and a value, as well as increase in b
values) was observed in cookie sample formulated under the process
conditions of 180 �C baking temperature and 20 min of baking time. The
hardness of the cookie samples which is related to the force required to
break the cookie samples varied from 43.11 � 0.53 to 67.92 � 1.06 N.
The result obtained in this research revealed that the breaking strength of
the cookies in increased with increase in baking time rather than the
baking temperature.
Actual value

h) pGI GL RS (g/100 g dry starch) pGI GL

56.98 52.64 20.1 54.83 50.47

54.06 49.11 21.04 52.9 48.52



Figure 5. Plot of predicted (RSM and ANN) values against Actual values:(a) resistant starch; (b) predicted glycemic index; (c) glycemic load.

Table 5. Physical and textural characteristics of the gluten-free cookies.

Sample Thickness (mm) Width (mm) Spread ratio L* a* b* Hardness (N)

C1 0.72 � 0.02a 4.01 � 0.09a 5.57 � 0.10b 60.21 � 0.31a -4.93 � 0.03a 10.53 � 0.13a 60.03 � 0.91b

C5 0.60 � 0.01b 3.74 � 0.07a 6.23 � 0.08a 49.83 � 0.84b -4.35 � 0.01a 11.19 � 0.17a 67.92 � 1.06a

C8 0.63 � 0.04a 3.52 � 0.01b 5.59 � 0.06b 56.42 � 0.75b -3.30 � 0.05b 9.38 � 0.21b 64.87 � 0.77a

C13 0.76 � 0.02a 4.15 � 0.05a 5.46 � 0.10b 61.39 � 0.80a -4.27 � 0.03a 11.60 � 0.09a 43.11 � 0.53c

Copt 0.67 � 0.03a 3.84 � 0.04a 5.56 � 0.10b 51.38 � 0.47b 1.85 � 0.01c 10.61 � 0.11a 65.70 � 1.78a

*Copt: cookies produced from optimum condition. Values are means of three replicates�standard deviation (n¼ 3). Values in the row with the same letter in superscript
are not significantly different from each other (p � 0.05).
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4. Conclusion

In this study, the effects of baking temperature and time on the
resistant starch, predicted glycemic index and glycemic load of cookies
was evaluated to maximize the RS and minimize the pGI and GL. The
second-order polynomial model fitted revealed a relationship exists
between the independent variables and the dependent variables (RS,
pGI and GL). Based on the statistical indices, the RSM had higher
RMSE as well as lower coefficient of correlation (R), compared to
ANN. Hence, ANN gave the best performance as a predictive model for
the dependent variables. The optimal condition for the production of
cookies with high RS, low pGI and GL were baking temperature of 158
�C and baking time of 20 min with predicted RS value of 19.61 g/100g
of dry starch, pGI value of 56.98 and GL value 52.64. The findings of
9

this research will enable the establishment of appropriate process
conditions for the production of GF cookies with low glycemic index
and load. It would then be possible to predict appropriately baking
temperature and time which will facilitate the maximization of resis-
tant starch as well as minimization of glycemic index and load of the
formulated cookies.
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