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ABSTRACT: We present a new computational approach for constant
pH simulations in explicit solvent based on the combination of the
enveloping distribution sampling (EDS) and Hamiltonian replica
exchange (HREX) methods. Unlike constant pH methods based on
variable and continuous charge models, our method is based on discrete
protonation states. EDS generates a hybrid Hamiltonian of different
protonation states. A smoothness parameter s is used to control the
heights of energy barriers of the hybrid-state energy landscape. A small s
value facilitates state transitions by lowering energy barriers. Replica exchange between EDS potentials with different s values
allows us to readily obtain a thermodynamically accurate ensemble of multiple protonation states with frequent state transitions.
The analysis is performed with an ensemble obtained from an EDS Hamiltonian without smoothing, s =∞, which strictly follows
the minimum energy surface of the end states. The accuracy and efficiency of this method is tested on aspartic acid, lysine, and
glutamic acid, which have two protonation states, a histidine with three states, a four-residue peptide with four states, and snake
cardiotoxin with eight states. The pKa values estimated with the EDS-HREX method agree well with the experimental pKa values.
The mean absolute errors of small benchmark systems range from 0.03 to 0.17 pKa units, and those of three titratable groups of
snake cardiotoxin range from 0.2 to 1.6 pKa units. This study demonstrates that EDS-HREX is a potent theoretical framework,
which gives the correct description of multiple protonation states and good calculated pKa values.

1. INTRODUCTION

Solution pH is one of the most important environmental
variables that affects the structural and dynamic properties of
biomolecules.1 Various biological events such as protein
folding/unfolding,2 ligand binding,3−5 and enzyme activity6,7

heavily depend on solution pH. Solution pH affects protein
denaturation,8 aggregation,9 and regulates many pH-dependent
membrane proteins and channels.10−13 In cells, the pH in
different compartments varies significantly; for example, the pH
in the cytoplasm and nucleus is neutral (around 7.2), in
vacuoles and Golgi, it is acidic (between 4.8 and 6.5), and in
mitochondria, it is basic (around 8.0).14,15 At the same time, the
pH of each compartment is tightly regulated, and a small pH
change can lead to serious diseases.16

Solution pH affects proteins by changing the protonation
states of ionizable/titratable residues. The protonation state of
an ionizable residue is a function of its pKa value. However, the
pKa values of ionizable residues in protein environments can be
shifted from the standard pKa values experienced in water. The
shift is especially large for groups found in protein
interiors,17−19 and as a result, such buried groups can
sometimes change protonation state even at physiological pH.
Changes in the protonation state can be exploited for function,
for example, when they are coupled to conformational
reorganization, such as in the case of ATP synthase,12

bacteriorhodopsin,20 cytochrome c oxidase,21 or the photo-
active yellow protein.22 To understand the mechanisms of such

proteins, it is essential to know the pKa values of functionally
important residues.
Experimental determination of pKa values of such residues

can be a challenge, and carefully calibrated computational
methods offer a possibility to obtain them. However, current
computational methods have limitations when large scale
structural reorganization is coupled to a change in protonation
state. A widely used methodology for pKa calculation is based
on the solutions of the Poisson−Boltzmann (PB) equa-
tion.23−26 The limitation of PB-based methods is that they
may not properly represent the reorganization/response of
protein induced by the titration of ionizable groups.27,28 Most
PB-based methods use only a single conformation or allow
perturbation of side-chain or hydrogen atoms.25,29 Also, the
conformational response of a protein is modeled by a single
value of a dielectric constant, which is dubious considering the
inhomogeneous environment of the interior and surface of a
protein. This approximation can also be problematic when
water molecules are tightly coupled with ionizable groups of
interest,30−32 which is commonly observed in many trans-
membrane proteins.10−13 A more accurate description of
protein environment and polarizability can be achieved through
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quantum mechanical (QM) or mixed quantum mechanics/
molecular mechanics (QM/MM) approaches.33−39 However,
such calculations are computationally very expensive, and
proper description of conformational changes triggered by
protonation/deprotonation may not be achieved on a relevant
time scale.
Protein conformational changes triggered by ionization can

be considered explicitly using constant pH molecular dynamics
simulations. Constant pH simulation methods can be
categorized into two groups: (1) discrete protonation state
models, and (2) continuous protonation state models.
Constant pH methods based on discrete protonation state
models generally use a hybrid approach combining molecular
dynamics (MD) and Monte Carlo (MC). In the hybrid MC/
MD methods, a MC procedure is performed to determine the
protonation states of ionizable groups at a regular interval over
the course of a MD simulation with either implicit or explicit
water. During the MC procedure, a random walk between
different protonation states is performed, and a state is
determined based on the estimated free energy difference and
Metropolis criteria. With a continuum electrostatic model,23,40

Dlugosz and Antosiewicz41,42 developed a MC/MD method
based on the analytic continuum electrostatic method.43

Mongan et al. used a generalized Born (GB) solvation model
to calculate (de)protonation free energies.44

In contrast to the implicit solvent methods above, the MD/
MC method with explicit water requires a more sophisticated
MC move due to solvent reorganization.45,46 Without solvent
reorganization, a sudden change of charge distribution of a side-
chain is likely to result in a large electrostatic penalty, which
leads to an extremely low MC acceptance ratio. To increase the
acceptance ratio of MC moves, various methods have been
suggested. For example, Baptista et al. evaluated (de)-
protonation free energy by PB and performed a short MD
run to relax the solvent.47,48 Bürgi et al.49 performed short
thermodynamic integration (TI) calculations for MC moves,
which is extremely expensive. Stern50 proposed a similar
approach where MC moves consist of short MD simulations
(not free energy calculations) using a time-dependent
Hamiltonian that interpolates two protonation states. Most of
these types of approaches require approximations that result in
a loss of rigor that distorts the final ensemble.
In the continuous protonation state models, a protonation

state is represented as a titration variable considered as an
independent dynamic variable. Mertz and Pettitt developed an
extended Hamiltonian approach.51 Baptista et al. performed
MD simulations with the average charges of ionizable groups
obtained by a mean field approximation.52 Börjesson and
Hünenberger devised a model in which the extent of
(de)protonation is equilibrated by weak coupling to a proton
bath.53 Lee et al.54 applied, and Khandoghin et al. improved55

the λ dynamics approach56 to constant-pH simulation with the
GB solvation model. Here, the extent of protonation is
parametrized by a fictitious λ particle in the Hamiltonian,
whose value fluctuates between 0 and 1. During the
postprocessing of trajectories, conformations whose λ value is
higher or lower than a threshold value are assigned to a
protonation state, and other unphysical conformations are
discarded. To avoid sampling of unphysical states, a barrier
potential centered at λ = 0.5 is used. This potential has to be
carefully adjusted to maximize the number of transitions and
minimize sampling of unphysical states, however, even with this
approach, most of the sampled conformations are different

from physical states. Recently this approach has been extended
to perform constant-pH MD simulations in explicit water.57−59

To enhance the accuracy of simulations that depend heavily
on the accuracy of conformational sampling, constant pH
methods with both discrete and continuous protonation states
have been coupled with various enhanced sampling methods.
The GB-based constant pH methods have been coupled with
the temperature replica exchange60,61 and accelerated MD
methods.62 A pH based replica exchange scheme has also been
implemented63−66 where pH values are exchanged between
replicas. To further increase sampling efficiency, the pH-
exchange approach has been combined with reservoirs of
conformations and protonation states within the framework of
the double reservoir pH replica exchange method (work
submitted for publication).
In this study, we develop a new constant-pH method that

yields the correct description of protonation states by
combining the enveloping distribution sampling (EDS)67,68

and Hamiltonian replica exchange (HREX)69,70 methods. The
EDS method was devised to allow sampling of multiple end
states from a single MD simulation of a hybrid Hamiltonian.
Similar mixing schemes have been proposed by others.71−74 In
the context of a constant pH simulation, the hybrid
Hamiltonian is the sum of Boltzmann factors of multiple
Hamiltonians, each corresponding to a different protonation
state. The effect of solution pH is considered by the relative
free energy differences between protonation states. To ensure
proper sampling of all protonation states, a smoothness
parameter, s, that controls the height of energy barriers is
applied to the hybrid EDS Hamiltonian. When s → 0, the
hybrid Hamiltonian becomes highly smoothed, which makes
energy barriers disappear. On the other hand, as s → ∞, no
smoothing is applied to the hybrid Hamiltonian, and it follows
the minimum energy surface among the multiple end states,
which corresponds to the physical Hamiltonian.
To obtain the correct ensemble of multiple protonation

states while enhancing sampling efficiency, we coupled the EDS
simulations with different smoothness parameter through the
HREX method. The HREX method, often called the bias-
exchange method, facilitates diverse conformational sampling
by modifying a physical Hamiltonian or introducing various
biasing potentials. To enhance conformational sampling
efficiency, various Hamiltonian modification schemes have
been suggested: scaling hydrophobic,70 long-range,75,76 solvent-
related77,78 interactions, or biasing backbone dihedral an-
gles.79,80 In the context of the EDS-HREX method, we use
multiple EDS potentials with different smoothness parameter,
including an EDS potential without smoothing that follows the
minimum energy of multiple end states, and perform exchanges
between them periodically. We assessed the performance of our
method with titratable amino acid monomers: aspartic acid,
glutamic acid, lysine, and histidine. We also tested out method
with a small four-residue peptide (KAAE) and snake
cardiotoxin. All systems were solvated with explicit water
molecules. The results show that our method can successfully
and efficiently reproduce the correct distribution of different
protonation states at a given pH.

2. THEORY

We briefly review the enveloping distribution sampling (EDS)
and Hamiltonian replica exchange (HREX) methods and
subsequently describe how these two methods are combined to
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sample the correct ensemble of different protonation states at a
given pH.
2.1. Enveloping Distribution Sampling. The free energy

difference between two states A and B is given by

βΔ = − = − −F F F
Z
Z

lnBA B A
1 B

A (1)

where Z is the partition function of state and β is the inverse of
the thermodynamic temperature.
In the EDS approach, a hybrid Hamiltonian enveloping both

states is defined as follows,67

β= − +β β− − −E (x) ln(e e )E E
h

1 (x) (x)A B (2)

where EA and EB are the Hamiltonians of states A and B. In
principle, a simulation performed on Eh allows sampling of the
important phase space of both state A and B, and their free
energy difference can be estimated by81

βΔ = Δ − Δ = −
⟨ ⟩
⟨ ⟩

β

β
−

− −

− −F F F ln
e

e

E E

E EBA Bh Ah
1

( )
h

( )
h

B h

A h (3)

where ⟨...⟩h denotes an ensemble average of the hybrid state.
However, if the energy difference between the minima of EA
and EB is too large, the simulation will be trapped in the lowest
energy basin of a single Hamiltonian. Additionally, if the energy
barrier between minima is too high, transitions between the two
states will be observed rarely, which can lead to large errors in
the free energy result. To alleviate these problems, a modified
EDS scheme with smoothing was suggested as follows,82

∑β β= − − −−

=

E s s E E(x) ( ) ln{ exp[ ( (x) )]}
i

N

i iEDS
1

1

offset

(4)

where N is the number of end states (e.g., in the case of two
states, N = 2), s is a smoothness parameter, and Ei

offset are
energy offset parameters.
The schematic representations of mixing two protonation

states, HA and A−, with different s values are illustrated in

Figure 1. The relative energy difference between state HA and
A− depends on the solution pH, which can be adjusted by the
energy offset parameters. The pH dependence of energy offset
values will be discussed in more detail in the following section.
A lower s value leads to a lower energy barrier in the hybrid
Hamiltonian, which can facilitate spontaneous state transitions.
However, if s becomes too small, Eh adopts a single energy
minimum, which deviates from the original energy minima of
EA and EB. A simulation on Eh with such a small s value results
in an ensemble comprising of only unphysical intermediate
conformations. An iterative parameter optimization procedure
was suggested to determine appropriate parameters for an
efficient EDS simulation.82 In this paper, we address this
problem by performing simulations at multiple s values and
performing Hamiltonian replica between these simulations to
enhance sampling of conformational transitions in the physi-
cally realistic Hamiltonian.

2.2. Constant pH Simulations with EDS. One goal of
constant-pH simulation is to sample the equilibrium distribu-
tion of the protonated (HA) and deprotonated (A−) states of a
titratable group of a biomolecule at a given pH. The
equilibrium distribution of the two protonation states is
determined by their free energy difference. However, this free
energy difference cannot be calculated by a conventional
molecular mechanics (MM) approach because it cannot
account for two factors: (1) the quantum mechanical energy
of bond breaking and formation and (2) the contribution of
proton solvation, which is affected by external pH. Following
Mongan et al.,44 we assume that the total protonation free
energy of a titratable group in a protein (ΔGprotein) consists of
the molecular mechanics (ΔGprotien

MM ) and nonmolecular
mechanics (ΔGprotien

non‑MM) contributions:

Δ = Δ + Δ ‐G G Gprotein protein
MM

protein
non MM

(5)

The non-MM component can be estimated by introducing
the model compound, which has the same titratable group as
the protein but with a known experimental pKa value. In this
study, a model compound is defined as a solvated amino acid

Figure 1. Schematic representation of EDS Hamiltonians (solid lines) mixing protonated (HA, blue dashed line) and deprotonated (A−, green
dashed line) states for constant pH simulations under various pH conditions: (A) pH = pKa, (B) pH > pKa, and (C) pH < pKa. The difference
between energy minima of each protonation state is determined by eq 8. Five EDS Hamiltonians constructed with different smoothness parameters
are illustrated: s = ∞ (red), s = 0.7 (cyan), s = 0.22 (purple), s = 0.15 (yellow), s = 0.08 (black). Note that a smaller s value leads to a smoother EDS
Hamiltonian with a lower energy barrier. If s is small enough, an EDS Hamiltonian has a single energy minimum, which is different from the energy
minima of either original end state.
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monomer with capped termini. Based on the known pKa of the
model compound (pKa,model), its protonation free energy is

Δ = Δ + Δ

= −

‐G G G

k T K

(6)

ln 10(pH p ) (7)

model model
MM

model
non MM

B a,model

Therefore, the non-MM component of the protonation free
energy of the model compound is

Δ = −Δ + −‐G G k T Kln 10(pH p )model
non MM

model
MM

B a,model

(8)

With the assumption that the non-MM component of the
model compound is identical with that of the protein,
ΔGprotien

non‑MM = ΔGmodel
non‑MM, eq 5 can be expressed as

Δ = Δ − Δ

+ −

G G G

k T Kln 10(pH p )

MM
protein protein

MM
model

B a,model (9)

where ΔGmodel
MM can be readily obtained by conventional free

energy calculation methods.
For a single ionizable group, when no other ionizable groups

are titrated, ΔGprotein
MM can be calculated by performing an EDS

simulation with Hamiltonians of two protonation states, Eprotein
MM

(HA) and Eprotein
MM (A−). The ΔGprotein

MM − ΔGmodel
MM part in eq 9

can be viewed as a shift in free energy of the model compound
that is due to the change in the environment of nonbonded
interactions of the ionizable group when it is transferred from
the solvent to the protein environment.54,83 By using eq 9, the
sampling of different protonation states of a titratable group in
a protein environment is performed in a pH dependent
manner. Equation 9 is practically implemented such that the
protonated state is considered the reference state and is not
experiencing any energy offset, while the deprotonated state is
experiencing the pH dependent energy offset −ΔGmodel

MM + kBT
ln 10 (pH − pKa,model), as also depicted in Figure 1.
When multiple ionizable groups in a protein are titrated, the

number of states considered has to be increased, e.g. for two
ionizable groups, four different states need to be considered,
and for three ionizable groups, eight different states need to be
considered. The advantage of this method, as opposed to free
energy methods such as thermodynamic integration in which
only two states are considered, is that it can estimate the pH
dependent populations of multiple states in a single EDS
simulation.
For example, in the case of two titratable groups, four states

need to be considered. While one of the states (say the state in
which both titratable groups are protonated) can be considered
to be the model state, the pH dependent offset will be applied
to the three other states. For a state in which titratable group 1
is deprotonated and group 2 is protonated, the pH dependent
energy offset is −ΔGmodel1

MM + kBT ln 10 (pH − pKa,model1); for a
state in which titratable group 1 is protonated and group 2 is
deprotonated, the pH dependent energy offset is −ΔGmodel2

MM +
kBT ln 10 (pH − pKa,model2); for a state in which both groups
are deprotonated, the offset is a sum of the two offsets. If the
two titratable groups are of different nature, say Lys and Glu,
the two model compound free energies ΔGmodel

MM and pKa,model
values will be different, but if two groups are the same, these
energies and pKa,model values will be the same.
2.3. Hamiltonian Replica Exchange Method. In

Hamiltonian replica exchange (HREX), replicas are swapped
between different Hamiltonians periodically. Each Hamiltonian

corresponds to a different environmental condition or
representation of a system, such as external fields in Ising
spin system or the strength of hydrophobic interaction in
protein folding simulation. Generally, a proper exchange
between different Hamiltonians can enhance the sampling
efficiency while preserving the Boltzmann distribution.69 If the
mth replica follows the Hamiltonian Em (x), its Boltzmann
distribution is

β= −−P Z Ex x( ) exp( ( ))m m m
1

(10)

where Zm is the partition function of Em. Because replicas are
noninteracting, the joint probability of having configuration x in
in the mth replica and configuration x′ in the nth replica is
defined as

β β

′ ′

= − − ′− −

P E E

Z Z E E

x x x x

x x

( , ( ); , ( ))

exp( ( ))exp( ( ))
m n

m n m n
1 1

(11)

We define the probability of exchanging x in mth replica with x′
in nth replica as W(x,Em;x′,En), and the probability of the
reverse process is W(x′,Em;x,En). To satisfy the detailed balance
condition, the exchange probability between the two replica
must follow the relation:

′ ′ ′

= ′ ′ ′

P E E W E E

P E E W E E

x x x x x x

x x x x x x

( , ( ); , ( )) ( , ; , )

( , ( ); , ( )) ( , ; , )
m n m n

m n m n (12)

Combining eq 10 with eq 12 leads to

′
′

= −Δ
W E E
W E E

x x
x x

( , ; , )
( , ; , )

exp( )m n

m n (13)

where

βΔ ≡ ′ + − + ′E E E Ex x x x[( ( ) ( )) ( ( ) ( ))]m n m n (14)

This condition can be satisfied by using the Metropolis-type
criteria for exchanges,

′ = Δ ≤

= −Δ Δ >

W E Ex x( , ; , ) 1 if 0 (15)

exp( ) if 0 (16)

m n

2.4. Constant pH Simulation by Combination of EDS
and HREX. The original EDS method with smoothing (eq 4)
allows sampling of parts of the important phase space of
multiple states in a single simulation, and it may lead to poor
sampling of physical states. The conformations sampled in the
middle of potential energy minima correspond to virtual
intermediates between physical states, which may be similar to
conformations with fractional charges (e.g., λ ∼ 0.5) in λ-
dynamics.54,55,58 However, these mixed states are never
included in analysis of the ensemble. To increase the efficiency
of simulation, residence time at intermediate states should be
reduced.
As shown in Figure 1, when s is small, the corresponding

EDS simulation will mainly reside in an intermediate region in
the phase space, which deviates substantially from the physical
energy minima. To address this problem while preserving the
sampling efficiency of EDS, we combined the EDS method with
the Hamiltonian exchange method (Figure 2). In this study, we
introduce the baseline EDS Hamiltonian without smoothing for
conformational sampling, E0(x;s = ∞), which follows the
minimum potential surface among the original states. Assume
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that state i with Hamiltonian Ei′ has the lowest energy at x0
among {E1′,...,EN′ },

∑

∑

β β

β

β

= ∞ = − − ′

= ′ +

+ − ′ − ′

= ′ ′ = ′

→∞

−

=

→∞

−

=

≠

E s s s E

E s

s E E

E E E

x x

x

x x

x x x

( ; ) lim ln{ exp[ ( )]} (17)

( ) lim ln{1

exp[ ( ( ) ( ))]}

(18)

min( ( ), ..., ( )) ( ) (19)

s j

N

j

i
s

j

j i

N

j i

N i

0 0

0

0 0

0 0 0

0 1

1

1

1

1

All exponential terms in eq 18 vanish as s → ∞ because −sβ(Ej′
− Ei′) becomes a large negative number. Therefore, all
conformations sampled with E0 exactly correspond to one of
the original end states, and we denote the corresponding
ensemble Γ0. In other words, E0 connects multiple Hamil-
tonians in a way that maximizes the correspondence to the
original end states. This effect is more prominent near
transition state regions, where the original potential energy
surfaces are distorted most by a positive s (Figure 1). In
addition, E0 enables a more accurate sampling of equilibrium
ensembles of given Hamiltonians than the original EDS
method, which uses an effective s = 1.0 and slightly deviates
from the original Hamiltonians near the transition state region.
The contribution of a given conformation x in Γ0 to each
partition function can be obtained by simply calculating a
corresponding Boltzmann factor. These properties make this
minimum energy surface the logical choice for collecting the
accurate constant pH ensemble.
Generally, E0 has a high energy barrier in explicit solvent

simulations due to solvent reorganization, which makes it
impossible to observe spontaneous protonation state transitions
within a computationally accessible time scale. Thus, to
accelerate transitions, we introduce additional hybrid Hamil-
tonians with smaller s, which lowers the energy barriers in
transition regions (Figure 2) and perform exchanges between
the Hamiltonians at a regular interval. At the potential with the
smallest s value, there is virtually no energy barrier, thus
sampling mostly nonphysical conformations. These non-

physical conformations will be filtered through successive
exchanges with more physical Hamiltonians, and eventually,
only physically accessible conformations will be collected in the
E0 trajectory. The exchange criterion between Hamiltonian is
defined in eq 16.

3. METHODS

3.1. Preparing Initial Structures. In this study, we used
five test systems: an aspartic acid, glutamic acid, lysine
monomers, a KAAE peptide, and snake cardiotoxin V from
Naja naja atra (CTX A5, PDB ID: 1CVO).86 The input
structures of all test systems were generated from the
CHARMM22 topology files87 using the CHARMMing server.88

The N-termini and C-termini of all test systems are capped
with the neutral acetyl and N-methyl groups, respectively. The
amino acid monomers and the KAAE peptide are solvated in a
30 Å cubic box with explicit TIP3P water molecules, and the
snake cardiotoxin is solvated in a 60 Å cubic box. The
protonated and deprotonated states only differ in the partial
charges of their side chains. The deprotonated state has a
dummy nonzero mass hydrogen atom without charge while
keeping the bond, angle, and van der Waals interactions. As
discussed in the previous section, the contributions of these
terms cancel out because the non-MM free energy components
of the model compound and protein environment are almost
identical. The charges of titratable amino acids are adopted
from the CHARMM22 parameter set.54

3.2. MD Simulations. The combination of EDS and HREX
is implemented in the CHARMM program.89 The EDS
calculation is performed with the EDS command90 of the
MSCALE facility,91 which can run simulations of multiple
independent but connected systems. Each MSCALE subsystem
is constructed to represent a protonation state. Their potential
energy values are calculated in subprocesses and are used to
calculate the EDS energy and associated gradients67 in the main
processes. The HREX calculation is performed by the REPD
facility.92 For all MD simulations in this study, exchanges
between replicas are attempted every 1000 MD steps, and the
SHAKE algorithm is used to constrain the bond length of
hydrogen atoms. A time step of 1 fs is used, and the Nose−́
Hoover thermostat93,94 is employed to maintain a temperature
of 300 K. A nonbonded cutoff of 15 Å is used, electrostatic
interactions are truncated by the force shift method, and van
der Waals interactions are truncated with a switching function
between 10 and 12 Å. All initial solvated systems are minimized
by 200 steps of steepest descent followed by 200 steps with the
adopted basis Newton−Raphson method.95 After minimization,
the systems are equilibrated for 1 ns with constant pressure
simulations at 1 atm. The last snapshot of the equilibration run
is used as the initial structure for the constant pH simulations,
and the size of water box is kept constant.

3.3. Calculation of ΔGmodel
MM . To carry out a constant pH

simulation, the MM contribution to the protonation free energy
of the model compound is required, which effectively arises
from the change of electrostatic interactions. In this study, a
model compound is defined as a solvated amino acid monomer
with capped termini. The ΔGmodel

MM values of model compounds
are obtained by TI,

∫ λ
λ

λ
Δ =

∂
∂ λ

G
E

d
( )

model
MM

0

1
ele

(20)

Figure 2. Schematic representation of the combination of EDS and
Hamiltonian exchange methods for constant pH simulation. An EDS
Hamiltonian with s = ∞, E0(x;s = ∞), follows the minimum of either
Hamiltonian of protonated or deprotonated state, min-
(Eprot(x),Edeprot(x)). The other hybrid Hamiltonians with positive s
values have lower energy barriers, which enhances protonation state
transitions.
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where λ represents a coupling parameter between the
protonated and deprotonated states. Eele (λ) is defined as

λ λ λ= − +E E E( ) (1 )ele ele,prot ele,deprot (21)

where Eele,prot and Eele,deprot are the electrostatic potentials of
protonated and deprotonated states, respectively. The TI
calculations are performed using the PERT facility in
CHARMM. The λ value changes from 0 to 1 in increments
of 0.05 at every 120 ps, using 20 ps of equilibration and 100 ps
for gathering statistics. The calculated ΔGmodel

MM values are
summarized in Table 1.

3.4. Calculation of pKa Values. With a given pKa value,
the fraction of deprotonated samples depends on the pH value
and can be obtained with the Hill equation:

=
+ −f (pH)

1
1 10n Kd (p pH)a (22)

where fd (pH) is the fraction of deprotonated states at a given
pH, and n is the Hill coefficient. In our method, the fd value is
estimated by comparing the Boltzmann factors of the
protonated and deprotonated states of the conformations in
Γ0 sampled with the baseline Hamiltonian E0 (eq 19). The fd
value can be obtained with

∑Γ =
+

β

β β
=

− ′

− ′ − ′f
N

( )
1 e

e ei

N E

E E

x

x xd
0

1

( )

( ) ( )

i

i i

deprot

prot deprot (23)

where N is the number of configurations in Γ0, xi ∈ Γ0, and E′
= E − Eoffset.

4. RESULTS AND DISCUSSION
4.1. Titration of Two-State Systems. To assess the

accuracy of EDS-HREX constant-pH simulation, we estimated
the pKa values of several two-state systems, including aspartic
acid, glutamic acid, and lysine monomers in explicit water. For
each system, we performed three independent constant-pH
simulations for 1 ns at different pH values. Aspartic acid was
run for 5 ns to investigate the convergence of a small system
with our method. Each EDS-HREX simulation consists of 4
EDS replicas, E0 to E3, using s values of ∞, 0.027, 0.020, and
0.01. The energy offset value of the deprotonated state is
determined by eq 8. The pKa values were estimated by fitting
the baseline ensembles Γ0 to the Hill equation. The average pKa
values and standard deviations of all benchmark systems are
summarized in Table 2.
For aspartic acid, we carried out 3 independent sets of 6

EDS-HREX simulations with pH values ranging from 2 to 7
with an interval of 1. Figure 3A illustrates the average
deprotonated fraction of the aspartic acid at each pH condition
obtained from 3 independent EDS-HREX simulations, along
with the corresponding Hill equation. The average pKa value of

the aspartic acids is estimated to be 3.92, which agrees well with
the experimental pKa value of 4.0.
To test the convergence and accuracy of the EDS-HREX

method, we performed constant pH simulations of aspartic acid
for 5 ns at 6 different pH conditions: 18 constant pH
simulations in total. The average estimated pKa values and
standard deviations are calculated for 1 ns time windows (Table
3). The results show that a deviation from experiment of only
0.08 pKa units, corresponding to 0.11 kcal/mol, can be achieved
even with a 1 ns simulation. In addition, the estimated pKa
value remains stable for 5 ns. Starting from a standard deviation
of 0.094 pKa unit, the value decreases to 0.032 after 2 ns. Little
change in the standard deviation after 2 ns indicates that the
simulations are converged within 2 ns. These results
demonstrate that the EDS-HREX method can give a reliable
pKa estimate.
To verify that the exchange with smoothed EDS potentials

enhances the state transitions, we traced the protonation state
transition of replica 0 of the aspartic acid from one simulation
over time (Figure 4). To determine the state of a conformation
x in the smoothed EDS Hamiltonians, we define the likelihood
of state i, θi (x), that is, being protonated or deprotonated, as
follows:

θ =
+

β

β β

− ′ −

− ′ − − ′ −x( )
e

e e
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E E

E E E E

x x

x x x x
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i j

EDS

EDS EDS (24)

where E′ = E − Eoffset, which is adopted from the Zwanzig
equation (eq 3). In Figure 4A, if θi (x) is larger than 0.9999, x is
considered to be the state i. If both θi (x) and θj (x) are less
than 0.9999, x is considered as an intermediate state, which
could be unphysical. It can be observed that, after multiple
exchanges between the EDS potentials, replica 0 of aspartic acid
returns to E0 and its protonation state is changed from the
protonated to the deprotonated state at 350 ps. After 80 ps,
replica 0 reaches the EDS Hamiltonian with the smallest s, E3.
At E3, intermediate states are dominantly sampled due to a
lowered energy barrier. In addition, fast spontaneous
protonation state transitions without Hamiltonian exchange
are readily observed. These results demonstrate that an EDS
potential with a small s facilitates state transitions through
nonphysical intermediate states, as expected.
The sampling efficiency of EDS-HREX can be estimated

from the number of protonation state transitions observed in
the production ensemble Γ0 (Figure 4B). During the 1 ns
simulation of aspartic acid at pH 4, we observe an average of 83
protonation state transitions, which is comparable to previous
λ-dynamics based approaches. Donnini et al.57 observed ∼100
transitions during 20 ns of the titration of imidazole,
corresponding to ∼5 transitions per ns, and Goh et al.58

achieved ∼50 transitions per ns for the titrations of adenine and
cytosine.
To verify that the ensemble Γ0 consists only of physical

states, we compare the radial distribution functions (RDFs) of

Table 1. Experimental pKa Values
84,85 and Calculated Free

Energy Differences ΔFelec,w of Titratable Residues in Explicit
Water

titratable residue pKa,w ΔFelec,w (kcal/mol)

Asp 4.0 −43.60
Glu 4.4 −46.15
Lys 10.4 22.40
His-δ 6.5 −4.39
His-ε 7.1 −13.12

Table 2. Calculated pKa Values of Amino Acids with Two
Protonation States from EDS-HREX Constant pH
Simulation in Explicit Water

titratable residue estimated pKa std. dev. experimental pKa

Asp (1 ns) 3.92 0.094 4.0
Asp (5 ns) 3.94 0.046 4.0
Glu 4.33 0.094 4.4
Lys 10.43 0.034 10.4
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water molecules around the OD atoms of aspartic acid in each
protonation state obtained by our constant-pH simulation with
those produced by conventional MD simulations with fixed
charges (Figure 5). The RDFs obtained by our constant-pH
simulations are almost identical with those from conventional
fixed-charge MD simulations, which demonstrates that our
method samples physical states rather than approximate states
with noninteger charges obtained by λ-dynamics. The RDFs
between the water hydrogen atoms and the OD atoms of
aspartic acids are significantly different depending on the
protonation state. In the deprotonated state, due to the

negatively charged OD atoms, the water hydrogen atoms form
a sharp peak of the first solvation shell at 1.8 Å, and the second
solvation shell is observed at 3.1 Å. However, in the protonated
state, a hydrogen atom with +0.44e charge is bonded to an OD
atom, which repels water hydrogen atoms and reduces the peak
height of first solvation shell substantially. The RDFs of water
oxygens display similar differences. In the deprotonated state,
the first and second solvation shells are clearly observed at 2.7
and 4.8 Å, while only the first solvation shell is observed in the
protonated state.
The RDFs obtained from the ensemble sampled with E3 (x;s

= 0.01) show much less difference between the protonation
states. The protonation state is determined based on the state
likelihood criterion, θ (x) > 0.99. The peaks of the
deprotonated aspartic acid become lower, and those of the
protonated state become higher, which converges to the
average of the RDFs of the two protonation states. This shows
that the EDS sampling with a positive s leads to a significant
deviation from the original states. Thus, one should be cautious
when interpreting an ensemble obtained with a modified
Hamiltonian, such as λ-dynamics or an EDS potential with s >
0, because the estimated thermodynamic properties can
significantly diverge from the true values.

Figure 3. Deprotonated fractions of (A) aspartic acid, (B) glutamic acid, and (C) lysine by EDS-HREX constant pH simulation with explicit water
molecules. The average deprotonated fractions of three independent 1 ns simulations are shown as red dots. The fitted titration curves are shown as
solid lines.

Table 3. Averages of estimated pKa Values, Standard
Deviations, and Absolute Errors of the Blocked Aspartic
Acid from 18 EDS-HREX Constant pH Simulations by 1 ns
Time Window Along 5 ns Trajectories

time (ns) pKa std. dev.

0−1 3.92 0.094
0−2 3.90 0.032
0−3 3.89 0.022
0−4 3.93 0.014
0−5 3.94 0.046

Figure 4. (Top) Protonation states and the visited EDS potentials of
replica 0 during 1 ns EDS-HREX simulation at pH = 4. Based on the
state likelihood θi, the protonated (red circle), deprotonated (blue ×
marks), and intermediate (green triangle) states are assigned.
(Bottom) Difference between the adjusted potential energies of two
protonation states, ΔE = (Eprot − Eprot

offset) − (Edeprot − Edeprot
offset ). Because

E0 follows the lower energy between (Eprot − Eprot
offset) and (Edeprot −

Edeprot
offset ), if ΔE is negative, a configuration corresponds to the

protonated state (red). Otherwise, the configuration corresponds to
the deprotonated state (blue).

Figure 5. Radial distribution functions (RDFs) between the OD atoms
of aspartic acid and water molecules obtained by EDS-HREX constant
pH simulation at (A) E0(x;s = ∞) and (B) E3(x;s = 0.01) with a state
likelihood threshold of 0.99. The subplot C is obtained from 2 ns MD
simulations with the fixed charges for the protonated and
deprotonated states. The RDFs of protonated and deprotonated
states are shown as solid and dashed lines, respectively.
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4.2. Histidine. To verify that our method can be extended
to a chemically coupled multistate titration straightforwardly,
we performed a constant pH simulation of histidine, which has
two coupled titratable sites, ND1 and NE2, leading to four
possible tautomeric states. The titration of histidine is one of
the most important goals of constant pH simulations because
its experimental pKa value is in the range of physiological
conditions. In this work, we consider three protonation states
defined in the CHARMM22 force field, the doubly protonated
state (residue type HSP), the ND1-protonated state (HSD),
and the HE2-protonated state (HSE). From the given
microscopic equilibrium constants, k1 and k2, for the reactions
HSP ↔ HSD and HSP ↔ HSE, the macroscopic equilibrium
constant, k, for histidine can be derived as

= +k k k1 2 (25)

By using the definition of pKa, the macroscopic experimental
pKa value of histidine can be obtained from the microscopic
pKa values, pKa,1 and pKa,2, as follows

= − +− −Kp log (10 10 )a 10
pK pKa,1 a,2 (26)

From the given experimental pKa value of 6.5 for HSD and 7.1
for HSE,85 the macroscopic experimental pKa value is
determined to be 6.4.
We carried out 1 ns constant pH simulations of histidine at 5

different pH values ranging from 5 to 9. Because histidine has
three protonation states, more state transitions are required for
convergence than for the two protonation state systems. We
used 6 EDS potentials with s = ∞, 0.06, 0.05, 0.04, 0.024, and
0.01. Figure 6 shows the macroscopic and two microscopic
titration curves of histidine, and the estimated pKa values are
listed in Table 4. The estimated macroscopic pKa value is 6.24

with a standard deviation of 0.033, which agrees well with the
experimental pKa. The estimated microscopic pKa values of
HSD and HSE are 6.33 and 7.20, respectively, which also agree
with the experimental pKa values. These results demonstrate
that our method can successfully perform constant pH
simulations of multiple titratable sites with chemical coupling.

4.3. KAAE Peptide. The KAAE peptide contains two
titratable residues, Lys-1 and Glu-4. For this peptide, four
different protonation states were considered: state 1, with both
groups protonated, state 2 with Lys-1 deprotonated and Glu-4
protonated, state 3 with Lys-1 protonated and Glu-4
deprotonated, and state 4 with both groups deprotonated.
Because the pKa of a Lys model compound is 10.4 and the pKa
value of Glu model compound is 4.4, state 2 with deprotonated
Lys and protonated Glu is improbable and could have been
omitted. However, for consistency, we kept it in the
calculations.
Simulations of the KAAE peptide were performed at pH

values 2.4 to 13.4 in steps of 1 pH unit. Three different sets of
simulations were performed, each with different initial velocities
and using slightly different EDS potentials. The first set of
simulations was performed at s = ∞, 0.027, 0.021, 0.016, and
0.012. The acceptance ratios in replica exchange simulations
between replicas 3 and 4 were 45%, that is, larger than the
target acceptance ratio of 20%. Thus, the second set of
simulations was performed with the same s value of the highest
replica decreased from 0.012 to 0.0086. The acceptance ratios
for replica exchange between all replicas were still higher than
20% (the target acceptance ratio), except at a few pH values
between replicas 0 and 1, and at one pH value between replicas
1 and 2. Thus, we performed the third set of simulations at s =
∞, 0.03, 0.022, 0.016, and 0.0086.
The titration curves for the peptide were determined by

averaging the three simulations (Figure 7). The pKa values and
Hill coefficients were determined from the Hill equation. The
calculated pKa values and their standard deviations are shown in
Table 5. Based on the standard deviations, we conclude that the
change in distribution of EDS potentials had virtually no effect
on the population of the four states and the calculated pKa
values and Hill coefficients.
The pKa value of Lys-1 is 11.38; that is, it is shifted by 1 pH

unit from the model compound pKa value of 10.4, while the pKa
of Glu-4 is 4.23, only 0.2 pH units lower than that of the model
compound. Hydrogen bond analysis was performed with
VMD96 for simulations at pH values 2.4, 7.4, and 13.4, which
corresponded to states 1, 3, and 4, respectively, being
predominately populated. As a measure of ion-pair interactions,
we looked at the distance between Lys-1:NZ and Glu-4:CD.
For pH values 2.4 and 13.4, these two atoms were never closer
than 4 Å to each other, but at pH 7, they were within 4 Å 6% of
the time. In terms of hydrogen bonding interactions with the
rest of the peptide, Glu-4 did not engage in any, while Lys-1
was hydrogen bonded 8% of the time at pH 2.4, 20% of the

Figure 6. Titration curves of histidine obtained by EDS-HREX constant pH simulation with explicit water molecules. (A) The macroscopic, the total
deprotonated fraction of Nδ and Nε, and two microscopic titration curves of (B) Nδ and (C) Nε are illustrated. The average deprotonated fractions of
three 1 ns simulations are shown as red dots. The fitted titration curves are shown as solid lines.

Table 4. Calculated pKa Values of Histidine in Explicit Water

titratable residue estimated pKa std. dev. experimental pKa

His-δ 6.33 0.016 6.5
His-ε 7.20 0.132 7.1
His-all 6.24 0.033 6.4
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time at pH 7.4, and 2% of the time at pH 13.4. These hydrogen
bonding interactions may explain why the calculated pKa value
of Lys was shifted more than that of Glu.
4.4. Snake Cardiotoxin. Finally, we performed a constant

pH simulation of snake cardiotoxin V from Naja naja atra
(CTX A5, PDB ID: 1CVO).86 CTX A5 has three titratable
residues, Glu-17, Asp-42, and Asp-59 that affect the stability of
the protein between pH values 2 and 5.97,98 We considered all
possible protonation state combinations of these residues (8
total).
Three sets of 1 ns EDS-HREX simulations were performed at

pH values ranging from 1 to 6 in steps of 1 pH unit. Each EDS-

HREX simulation consists of 6 replicas with s values of ∞,
0.033, 0.027, 0.022, 0.018, and 0.01 corresponding to a total
simulation time of 108 ns. The deprotonated fractions of
titratable residues were obtained from the average of three sets
of simulations, and the variables for the Hill equation were
obtained by fitting the average data points to the Hill equation
(Figure 8). The calculated pKa values and Hill coefficients of
three titratable residues are listed in Table 6.

The calculated pKa values, directions of the pKa shifts, and
Hill coefficients are in accordance with the experiment. It is
known that Asp-59 strongly interacts with the adjacent Lys-2,
which results in a large shift of pKa value of Asp-59, from 4.0 to
less than 2.3.97,98 In our result, the pKa is calculated to be 1.4,
which is consistent with this. The pKa of Asp-42 is calculated to
be 3.0, which is close to the experimental value of 3.2. The
largest error is observed in Glu-17, whose calculated pKa value
is lower than the experiment by 1.6 pKa units.
One possible source of this error may be limited conforma-

tional sampling. To obtain accurate pKa estimates, multiple
transitions between different protonation states should be
sampled. Generally, the titrations of residues are strongly
coupled with protein conformational changes. Therefore,
sufficient conformational sampling is important to reproduce
experimental results. To check the convergence of our
simulations, we counted the average number of protonation
transitions of replicas sampled with the s = ∞ Hamiltonian at
pH 2 and pH 3 (Figure 9). The protonation states of three
residues, Glu-17, Asp-42, and Asp-59, are denoted by three
letters (e.g., PDD). P and D represent the protonated and
deprotonated state, respectively, and thus PDD would
correspond to Glu-17 protonated, Asp-42 deprotonated, and
Asp-59 deprotonated.
The majority of state transitions are observed between a

subset of states, while the rest of the states are rarely visited.
This indicates that the simulations are not fully converged,

Figure 7. Titration curves of KAAE peptide in explicit water. (A) The
macroscopic, the sum of deprotonated fractions of glutamic acid and
lysine, and two microscopic titration curves of (B) glutamic acid and
(C) lysine are illustrated. The average deprotonated fractions of three
1 ns simulations are shown as red dots. The fitted titration curves are
shown as solid lines.

Table 5. Calculated pKa Values and Hill Coefficients of
KAAE Peptide

estimated pKa Hill coefficient

titratable residue avg std avg std

Glu 4.23 0.15 0.94 0.27
Lys 11.38 0.09 0.96 0.08

Figure 8. Titration curves of three titratable residues of snake cardiotoxin (CTX A5) are shown. The deprotonated fractions of (A) Glu-17, (B) Asp-
42, and (C) Asp-59 are illustrated. The average deprotonated fractions of three 1 ns simulations are shown as red dots. The fitted titration curves are
shown as solid lines.

Table 6. Calculated pKa Values and Hill Coefficients of
Titratable Residues of CTX A5

calculated pKa Hill coefficient

titratable residue avg std avg std exp

Glu-17 2.4 0.10 0.77 0.04 4.0
Asp-42 3.0 0.37 0.60 0.08 3.2
Asp-59 1.4 0.28 0.77 0.17 <2.3
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possibly due to limited conformational sampling. At pH 2, most
protonation transitions occur between states PPP, PPD, DPP,
and DPD, while the transition to state DDP is sampled only
once during all 3 simulations (Figure 9A and B). When the
external pH is 3, transitions between two pairs of states are
mainly observed: state PPD−DPD and PDD−DDD.
The current EDS scheme lowers energy barriers caused by

different energy terms between end states. In constant pH
simulations, only electrostatic interactions are affected by the
EDS mixing. In other words, the energy barriers originating
from other energy terms (i.e., van der Waals or dihedral terms)
are conserved after mixing by EDS, which can limit the
conformational sampling of titratable groups. This sampling
issue may be solved by combining the current EDS scheme
with other accelerated sampling methods that preserve the
canonical ensemble, such as self-guided Langevin dynamics
with reweighting90,99,100 or orthogonal space random walk.101

In addition, introducing additional dimensions of Hamiltonian
exchange to allow exchanges between pH values can also
improve the convergence rate of simulations.61,63−66

Another source of error may originate from an imperfect
representation of electrostatistics: using the classical MM model
with fixed partial charges. For Glu-17, three positively charged
lysines, Lys-2, Lys-13, and Lys-19, are located in the vicinity of
Glu-17 and can affect the titration behavior. Lys-2 is considered
to be especially important in controlling the stability of CTX
A5 through interaction with Glu-17.97,98 If electrostatic
interactions between Glu-17 and these three neighboring
lysines are overestimated with the current MM force field, it
may result in overpopulation of deprotonated Glu-17 leading to
a lower calculated pKa value. This issue can be addressed by
using polarizable force fields102,103 or QM/MM ap-
proaches,104,105 which can treat electrostatic interactions more
accurately. Additionally, considering charge-leveling may
improve the accuracy of simulations. Recently, Wallace and
Shen have shown that a charge-leveling by simultaneous
ionization or neutralization of a ion in solution can help to
reproduce an experimental pKa value more accurately.106

4.5. Advantages of the EDS-HREX Method. The EDS-
HREX method can be readily extended to titratable groups with
chemically coupled moieties, such as histidine. This approach
solves a problem inherent in λ-dynamic based ap-
proaches,54,55,57 where a new model or coordinate must be
implemented to control the interconversion between such
states. For example, histidine has two titratable sites, Nδ and Nε,

and their atomic charges depend on each other. This
dependence cannot be represented properly by a single
titration coordinate. To address this issue, Khandogin and
Brooks introduced a tautomeric state variable in addition to λ,55

and Donnini et al. performed linear-interpolations between all
possible combinations of protonation states explicitly.57 In the
EDS-HREX method, transitions between any pair of proto-
nation states are automatically considered by performing MD
simulation with the hybrid Hamiltonian.
The EDS-HREX method is compatible with any existing

force field because the energy and forces of the hybrid
Hamiltonian can be readily obtained from those of end states,
which are calculated independently. In most current force
fields, an atom type and its associated force field parameters
depend on its protonation state. Our method can consider the
change of atomic parameters other than charge, such as the van
der Waals or Generalized Born solvation radius parameters. To
apply the λ-dynamics approach to the change of general force
field parameters rigorously, the parameters have to be
interpolated linearly with respect to λ.55,57 Otherwise, this
can be an inherent source of error as discussed in previous
constant pH simulation with the GBSW implicit solvent
model.54,55 The linear interpolation of parameters also requires
the analytic derivatives of energy functions associated with λ,
which can be highly complicated to compute.
The EDS-HREX method can be used for any free-energy

calculation, not only those involving pH. It yields accurate free
energy estimates because the E0 replica does not smooth the
EDS Hamiltonian at all (s = ∞). In the original EDS method,
free energies are calculated via eq 3. However, this equation
only converges if energy differences between the original hybrid
states are small.107−109 Therefore, a trade-off must be made
between efficiency of sampling (small s) and convergence of the
result (achievable with large s). To address this, an iterative
parameter optimization scheme has been proposed to find the
ideal s value, which optimizes accuracy.82 However, this method
still samples some number of unphysical system states. In the
EDS-HREX method, the E0 replica always has a s of ∞, while
other replicas are used to explore different conformations.
Therefore, the free energy differences between states can be
directly calculated by comparing their Boltzmann factors from
replica E0 because this replica only samples physical states.
Another potentially significant advantage of EDS-HREX is that
the resultant ensemble has only discrete protonation states, and
these can be coupled to a high quality quantum mechanics

Figure 9. Summary of protonation state transitions at pH (A) 2 and (B) 3 are shown. Each node represents a protonation state and the width of the
edge is proportional to the average number of transitions observed. The numbers of the most frequently observed transitions are displayed on the
edges. The thinnest edge corresponds to only one transition from three sets of EDS-HREX simulations.
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(QM) or QM/MM surface using a non-Boltzmann Bennett
approach.104,105

4.6. Performance Characteristics and Optimization.
Determining the optimal replica distribution and smoothness
parameters efficiently requires further investigation. In this
study, the parameters were determined by trial-and-error, using
a series of short simulations. We plan to devise an automatic
procedure to determine the optimal parameter set for a given
problem, which is similar to an iterative procedure that
optimizes parameters for a single EDS simulation.82 As general
guidelines to determine parameters, two conditions should be
satisfied. First, spontaneous state transitions should be observed
with highly smoothed EDS potentials, as shown in Figure 4A.
This ensures that an EDS-HREX simulation actually samples
important protonation states, which is essential in constant pH
simulations. Second, an average exchange rate between replicas
should be in the range 20−30% for an efficient sampling of
various protonation state.
Our method requires more computational resources than λ-

dynamics for the same simulation length. However, this
increased cost is offset by the advantage that every time step
may be used to collect the final ensemble. No steps need to be
discarded. Currently, the EDS method is implemented via the
MSCALE facility in CHARMM, which requires the independ-
ent energy evaluation of each end state. Therefore, the apparent
cost of our method is simply proportional to the number of
possible protonation states times the number of replicas used.
For example, if there are x titratable groups with two
protonation states, we need at most 2xNr times more
computational resources than a single Hamiltonian simulation,
where Nr is the number of replicas. However, in some cases, at
any given pH, the number of states considered can be reduced.
For example, a histidine residue has four possible protonation
states but the only three of those states need to be considered
under physiological conditions; the fully deprotonated state will
not contribute. In the case of the KAAE peptide, the state in
which Glu is protonated and Lys is deprotonated could have
also been omitted, reducing the total number of states from
four to three. Finally, CTX A5 has multiple lysines on its
surface, which were assumed to be positive in this study
because they are almost fully exposed and expected to
experience little pKa shifts. Therefore, the cost may be reduced
by eliminating rarely populated charge states.
On a similar note, we point out that the scalability of λ-

dynamics may not be completely linear with the number of
titratable groups. When there are N independent titratable
groups, and if we assume that a probability to obtain a physical
charge state of a single titratable site, that is, λ > 0.8 or λ < 0.2,
is p, the fraction of snapshots that all titratable groups are in
physical charge states becomes pN.
Our method focuses on obtaining accurate configurations of

different protonation states. As shown in Figure 5, even with a
rather strict state likelihood value >0.99, the radial distribution
functions between titratable sites and water molecules obtained
from a smoothed EDS potential are significantly distorted.
Therefore, the reliability of ensembles obtained with fluctuating
charges is questionable. Thus, the major contribution of our
method is in the improved quality of ensembles, because our
method samples original end states with the s = ∞
Hamiltonian.
The computational cost can also be reduced with an

improved EDS scheme when only a few atom charges change
in a large system. The EDS equation only requires energy

differences. Instead of calculating the full energy of each charge
state, computing just the energy differences can greatly reduce
the number of required floating point operations. In other
words, instead of calculating E1, E2, E3, and E4, we can perform
an EDS simulation by calculating E1, E2 − E1, E3 − E1, and E4 −
E1. In constant pH simulations, the energies of different states
differ only in electrostatic interactions between titratable groups
and their neighboring atoms within a cutoff radius. Therefore,
the energies and gradients of a subset of nonbonded pairs
should be recalculated with different charge sets. This can
significantly reduce computational cost compared to the
current EDS implementation.

5. CONCLUSION

We devised a new computational approach for constant-pH
simulations in explicit solvent by combining the EDS and
Hamiltonian replica exchange algorithms. We showed that this
method can reproduce the correct description of multiple
protonation states with frequent state transitions. A comparison
of radial distribution functions between aspartic acid and water
molecules demonstrates that the ensemble obtained with the
baseline EDS Hamiltonian agrees well with those of MD
simulations with fixed charges. In terms of sampling efficiency,
we observed over 80 protonation state transitions of blocked
aspartic acid during 1 ns of simulation, which is comparable to
the λ-dynamics based approaches. We also showed that the
EDS-HREX method can be easily extended to multiple
protonation state cases with the titration of histidine, KAAE
peptide, and snake cardiotoxin. Due to the generality of the
EDS-HREX method, it can be applied to free energy
calculations in various problems that require frequent
transitions between multiple states separated by large energy
barriers.
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(2) Muñoz, V.; Serrano, L. J. Mol. Biol. 1995, 245, 297.
(3) Doster, W.; Beece, D.; Bowne, S. F.; DiIorio, E. E.; Eisenstein, L.;
Frauenfelder, H.; Reinisch, L.; Shyamsunder, E.; Winterhalter, K. H.;
Yue, K. T. Biochemistry 1982, 21, 4831.
(4) Tan, A.; Young, A. D.; Noble, R. J. Biol. Chem. 1972, 247, 2493.
(5) Hünenberger, P. H.; Helms, V.; Narayana, N.; Taylor, S. S.;
McCammon, J. A. Biochemistry 1999, 38, 2358.
(6) Davies, R.; Neuberger, A.; Wilson, B. Biochim. Biophys. Acta,
Enzymol. 1969, 178, 294.
(7) Thomas, P.; Russell, A.; Fersht, A. Nature 1985, 318, 375.
(8) Anderson, D. E.; Becktel, W. J.; Dahlquist, F. W. Biochemistry
1990, 29, 2403.
(9) Kelly, J. W. Curr. Opin. Struct. Biol. 1996, 6, 11.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500175m | J. Chem. Theory Comput. 2014, 10, 2738−27502748

mailto:juyong.lee@nih.gov


(10) Schlesinger, P. H.; Gross, a.; Yin, X. M.; Yamamoto, K.; Saito,
M.; Waksman, G.; Korsmeyer, S. J. Proc. Natl. Acad. Sci. U.S.A. 1997,
94, 11357.
(11) Cuello, L. G.; Romero, J. G.; Cortes, D. M.; Perozo, E.
Biochemistry 1998, 37, 3229.
(12) Rastogi, V. K.; Girvin, M. E. Nature 1999, 402, 263.
(13) Schnell, J. R.; Chou, J. J. Nature 2008, 451, 591.
(14) Seksek, O.; Bolard, J. J. Cell Sci. 1996, 109, 257.
(15) Llopis, J.; McCaffery, J. M.; Miyawaki, a.; Farquhar, M. G.;
Tsien, R. Y. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 6803.
(16) García-Moreno E, B. J. Biol. 2009, 8, 98.
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