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ABSTRACT

Motivation: Most existing methods for predicting causal disease

genes rely on specific type of evidence, and are therefore limited in

terms of applicability. More often than not, the type of evidence avail-

able for diseases varies—for example, we may know linked genes,

keywords associated with the disease obtained by mining text, or

co-occurrence of disease symptoms in patients. Similarly, the type

of evidence available for genes varies—for example, specific micro-

array probes convey information only for certain sets of genes. In this

article, we apply a novel matrix-completion method called Inductive

Matrix Completion to the problem of predicting gene-disease associa-

tions; it combines multiple types of evidence (features) for diseases

and genes to learn latent factors that explain the observed gene–dis-

ease associations. We construct features from different biological

sources such as microarray expression data and disease-related text-

ual data. A crucial advantage of the method is that it is inductive; it can

be applied to diseases not seen at training time, unlike traditional

matrix-completion approaches and network-based inference methods

that are transductive.

Results: Comparison with state-of-the-art methods on diseases from

the Online Mendelian Inheritance in Man (OMIM) database shows that

the proposed approach is substantially better—it has close to one-

in-four chance of recovering a true association in the top 100 predic-

tions, compared to the recently proposed CATAPULT method (second

best) that has 515% chance. We demonstrate that the inductive

method is particularly effective for a query disease with no previously

known gene associations, and for predicting novel genes, i.e. genes

that are previously not linked to diseases. Thus the method is capable

of predicting novel genes even for well-characterized diseases. We

also validate the novelty of predictions by evaluating the method

on recently reported OMIM associations and on associations recently

reported in the literature.

Availability: Source code and datasets can be downloaded from

http://bigdata.ices.utexas.edu/project/gene-disease.

Contact: naga86@cs.utexas.edu

1 INTRODUCTION

In silico prioritization of disease genes is an important step to-

wards discovering causal genes and understanding genetic
disorders. Many disease–gene prioritization tools have been de-

veloped in the last decade, some generic and some disease-class

specific. Due to the inherent difficulty and latency in human

gene–disease studies, very few reliable associations are reported

to public databases such as the Online Mendelian Inheritance in
Man (OMIM) and the Genetic Association Database (Becker

et al., 2004). Therefore, exploiting multiple auxiliary sources of

data is essential for predicting genes related to polygenic traits,

and many existing methods have been developed for this pur-

pose. For example, a popular family of network-based methods

include CIPHER (Wu et al., 2008), GeneWalker (K €ohler et al.,

2008), Prince (Vanunu et al., 2010), RWRH (Li and Patra, 2010)

and CATAPULT (Singh-Blom et al., 2013). These methods exploit

biological networks such as the functional gene interactions

network and disease similarity network; they infer gene–disease

connections by using random walk procedures on different bio-

logical networks or computing a similarity measure between

nodes.
The problem of predicting gene–disease associations can be

thought of as analogous to designing a recommender system

where the goal is to predict the ‘preference’ that a user (gene)

would give to an item (disease). An important formulation used

in recommender systems such as the Netflix movie recommen-

dations (Bennett and Lanning, 2007) is matrix completion, where

the problem is to ‘complete’ the user-item preference matrix

given a sample of observed preferences. The standard matrix

completion techniques for recovering the user-item preference

matrix assume that the true underlying matrix is low-rank. To

the best of our knowledge, there is no existing successful appli-

cation of the matrix completion approach to recovering the

gene–disease associations matrix. Two reasons are the extreme

sparsity of the associations matrix and the lack of ‘negative’ as-

sociations. Also, all matrix completion approaches suffer from

the cold-start problem, that of making predictions for a new user

(see Section 2). Our approach in this article is based on matrix

completion and is best motivated by the limitations of the exist-

ing methods discussed next.
Most of the aforementioned methods typically rely on a seed

or candidate set of genes already linked to the query disease and

therefore fail to make predictions for a new disease of interest,

for which there are no gene linkage studies yet; a few make rea-

sonable predictions if we could compute some similarity measure

with existing diseases on which the methods were trained.

However, more often than not, the type of evidence available

for diseases of interest varies—for example, we may know al-

ready linked genes, keywords associated with the disease ob-

tained by mining text, or co-occurrence of disease symptoms in

patients. Methods relying on a specific type of evidence (such as

disease similarities) cannot be applied to a query disease with a

different type of evidence (say keywords associated with the dis-

ease). The same is true for the type of evidence available for

genes. Network-based methods cannot predict a gene that is

not connected to any other node in the network. On the other

hand, methods that exploit gene-expression profiles, functional

annotations and signaling pathways exist but have primarily*To whom correspondence should be addressed.
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been developed for specific disease-classes, and therefore fall

short in generalizing to new diseases.

It is imperative that complementary types of evidence be

merged to provide better coverage and generalization than any

single data source. The survey article by Piro and Di Cunto

(2012) discusses the following different types of evidence used

by prioritization tools: text-mining of biomedical literature,

functional annotations, pathways and ontologies, phenotype

relationships, intrinsic gene properties, sequence data, protein–

protein interactions, regulatory information, orthologous rela-

tionships and gene expression information. In this article, we

propose a framework that can seamlessly integrate features

from the aforementioned data sources. Our approach involves

two steps. First, we derive features for diseases and genes from

multiple sources. Next, we incorporate the features while trying

to learn gene–disease associations in a novel inductive matrix

completion (IMC) approach [recently developed and theoretic-

ally analyzed by Jain and Dhillon (2013)]. The entries of the

associations matrix are assumed to be generated by applying

the corresponding gene and disease feature vectors on an un-

known low-rank matrix Z. The parameter matrix Z is learnt

using a training set of OMIM gene–disease associations, and

predictions for a disease are obtained as a function of the fea-

tures of all genes and the feature vector for the disease. We

evaluate our proposed approach through comprehensive experi-

ments and demonstrate substantial increase in the quality of pre-

dictions compared to state-of-the-art methods. Our findings and

contributions are summarized below.

(1) Integrating diverse feature sets of genes and diseases ob-

tained through a wealth of publicly available data over-

comes extreme sparsity in the gene–disease associations

data.

(2) Our approach is a novel application of the inductive

matrix completion method; it can be applied to diseases

not seen at training time, unlike traditional matrix com-

pletion approaches and other network-based inference

methods that are transductive.

(3) The approach is particularly effective for a query disease

with no previously known gene associations, and for pre-

dicting novel genes, i.e. genes that are previously not

linked to diseases, thus capable of making novel predic-

tions even for well-characterized diseases.

(4) Comparison with state-of-the-art methods on OMIM

diseases shows the superiority of the inductive method.

We also validate the novelty of predictions by evaluating

the method on recently discovered gene associations re-

corded in the OMIM database, as well as on associations

recently reported in the literature curated by B €ornigen

et al. (2012).

We begin by discussing the limitations of traditional matrix

completion techniques, motivating our approach and describing

the inductive method in Section 2. In Section 3, we describe

our experimental datasets and construction of gene and disease

features. Extensive quantitative analysis of the new approach

is presented in Section 4, and conclusions are presented in

Section 5.

1.1 Related work

In the past two decades, a number of tools have been developed

for prioritizing disease genes, leveraging the advances in statis-
tical and machine learning techniques. We refer the reader to the

excellent survey articles by Moreau and Tranchevent (2012) and
by Piro and Di Cunto (2012) for a near-comprehensive treatment

of different classes of methods, contexts in which they are best-

suited and what sources of data they integrate.
Recently, predicting gene–disease links based on network ana-

lysis has become popular (Lee et al., 2011; Li and Patra, 2010;

Linghu et al., 2009; Singh-Blom et al., 2013; Vanunu et al., 2010;
Wu et al., 2008). These methods work by determining similarity

between candidate gene and disease nodes in heterogeneous net-

works composed of different biological networks [see Barab�asi
et al. (2011) for a detailed review of network-based approaches].

In particular, the recently proposed CATAPULT framework and
Katz on the heterogeneous network (Singh-Blom et al., 2013)

integrate different biological networks and phenotypes from
multiple other species such as mouse and fly. The main draw-

backs of network-based methods are that they are limited to the
genes that belong to the network and often are not capable of

making predictions for new diseases. In contrast, our proposed
approach is inductive, and can integrate multiple diverse sources

of data in the form of features, including the different biological

networks.
Sequence-based features have been employed for prioritizing

disease genes by L �opez-Bigas and Ouzounis (2004) and by Adie

et al. (2005). However, these methods do not use any prior know-
ledge about the disease and prioritize genes a priori. Miozzi et al.

(2008) show that high-throughput gene-expression data can pre-

dict gene function through the ‘guilt by association’ principle and
exploit it to find new candidate genes for many OMIM diseases.

On the other hand, methods like CATAPULT, TOPPGENE (Chen
et al., 2009) and Xu and Li (2006) use topological network fea-

tures. Our proposed approach seamlessly integrates different
types of features and therefore provides better generalization to

new diseases and new types of evidence.

2 INDUCTIVE METHOD

Our goal is to predict potential genes for a given disease of interest. We

form the gene–disease associations matrix P 2 R
Ng�Nd ; where each row

corresponds to a gene (total number of genes is Ng), and each column

corresponds to a disease (total number of training diseases is Nd), such

that Pij=1 if gene i is linked to disease j and 0 if the relationship is

unobserved. Our approach is based on matrix completion, which is one

of the most successful and well-studied techniques for recommender sys-

tems. Given a sample of observed entries W from a true underlying matrix

M 2 R
m�n; the goal is to estimate missing entries under additional as-

sumptions on the structure of the matrix. The most common assumption

is that the matrix is low-rank, i.e. M=WHT, where W 2 R
Ng�k and

H 2 R
Nd�k are of rank k�m, n. Applying the standard low-rank

model on the gene–disease associations matrix P�WHT, we could

solve the following optimization problem:

min
W2RNg�k;H2RNd�k

X
ði;jÞ2W

ðPij �WT
i HjÞ

2+
1

2
�ðkWk2F+kHk

2
FÞ; ð1Þ

where � is a regularization parameter, Wi and Hj denote the latent factor

for the i-th gene and the j-th disease, respectively. We want to learn

factors W 2 R
Ng�k and H 2 R

Nd�k such that the estimated values are
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close to the observed entries, and the rank of WHT is small. The gene–

disease association matrix P is typically very sparse. For example, in our

dataset consisting of diseases from the OMIM database, most columns

(diseases) have just one known entry, and many rows (genes) have no

known entries. Figure 1 illustrates why using traditional matrix comple-

tion Equation (1) on P is not a good idea—it fails to predict on rows and

columns with no known entries. Of course, to make meaningful predic-

tions, we would need more information about genes and diseases that

have no associations data.

Different data sources provide evidence for genes and diseases: text-

mining of biomedical literature, functional annotations, phenotype

relationships, protein–protein interactions, regulatory information,

orthologous phenotypes in other species and gene-expression informa-

tion. The question we ask here is if we can directly use the rich set of

features for genes and diseases, for the prioritization task. One na€ıve way

is to solve a regression problem associated with each disease independ-

ently, where the gene features form the covariates and associations for the

disease are the responses. This is called single-task learning. The funda-

mental problem here is that most diseases do not have enough training

examples. In contrast, we need a multi-task learning approach, as we

would expect closely related diseases to have similar predictions. The

idea is to learn gene associations for multiple diseases jointly. We formu-

late a multi-label learning problem, where each gene is an example and

each disease is a label or a task, and the goal is to jointly learn associ-

ations for all diseases. The recently developed framework (Yu et al., 2014)

for multi-label learning formulates the problem as that of learning a low-

rank linear model Z 2 R
d�L; where each example (gene) is represented by

d features and has up to L labels (diseases). If x 2 R
d denotes the feature

vector for a gene, then the corresponding prediction for disease j is given

by xTZj; where Zj is the j-th column of Z. Two key observations given

below are in order.

(1) In typical multi-label problems arising in machine learning appli-

cations [considered, for example, by Yu et al. (2014)], the set of

labels is usually fixed and when presented a new example we

would want to predict which of the labels are most relevant. In

the case of gene–disease associations, as discussed earlier, it would

be desirable to make predictions for a new disease—for example,

one that was not previously known to be a polygenic disorder. But

this is not possible in the standard multi-label formulation because

it is transductive—the labels are fixed during the training phase,

and predictions on new labels are not possible.

(2) On the other hand, it would be helpful to construct features from

other auxiliary sources such as text articles on diseases, studies on

patients, symptoms, etc. Relationships (such as co-occurrences)

with other existing polygenic traits also make viable biological

features. We would want to be able to exploit available informa-

tion to make informed predictions on diseases.

To this end, we adopt the recently developed IMC method (Jain and

Dhillon, 2013) for the task of learning gene–disease associations.

The method can be interpreted as a generalization of the transductive

multi-label learning formulation. IMC assumes that the associations

matrix is generated by applying feature vectors associated with its row

as well as column entities to a low-rank matrix Z. The goal is to recover

Z using observations from P. The idea is illustrated in Figure 2.

Let xi 2 R
fg denote the feature vector for gene i, and yj 2 R

fd denote

the feature vector for disease j. Let X 2 R
Ng�fg denote the training feature

matrix ofNg genes, where the i-th row is the gene feature vector xi, and let

Y 2 R
Nd�fd denote the training feature matrix of Nd diseases, where the i-

th row is the disease feature vector yi. The IMC problem is to recover a

low-rank matrix Z 2 R
fg�fd using the observed entries from the gene–

disease association matrix P. Denote the set of observed entries (i.e.

training gene–disease associations) by W. The entry Pij of the matrix is

modeled as Pij=xTi Zyj and the goal is to learn Z using the observed

entries W. Z is of the form Z=WHT, where W 2 R
fg�k and

H 2 R
fd�k; and k is small. The low-rank constraint on Z is NP-hard to

solve. The standard relaxation of the rank constraint is the trace norm,

i.e. sum of singular values. Minimizing the trace-norm of Z=WHT is

equivalent to minimizing 1
2 ðkWk

2
F+kHk

2
FÞ: The factors W and H are

obtained as solutions to the following optimization problem:

min
W2Rfg�k;H2Rfd�k

X
ði;jÞ2W

‘ðPij;x
T
i WHTyjÞ+

�

2
ðkWk2F+kHk

2
FÞ: ð2Þ

The loss function ‘ penalizes the deviation of estimated entries from the

observations. A common choice for loss function is the squared loss

function given by ‘sqða; bÞ=ða� bÞ2: The regularization parameter �

trades off accrued losses on observed entries and the trace-norm con-

straint. Given a new disease j 0 that was not a part of the training data,

the predictions Pij 0 can be computed for all genes i as long as we have

feature vector yj 0 : Typically, when the number of features is very large, a

small value of k implies that the number of parameters to be learnt is

much smaller than fg� fd. Note that in the standard matrix completion,

we would learn (Ng+Nd)� k parameters, but in IMC the number of

parameters is independent of the number of genes or diseases, but de-

pends only on the number of gene and disease features.

2.1 Principal components as features

We perform dimensionality reduction on different types of data sources

to obtain robust gene and disease features. Most of our data sources are

in the form of networks represented by adjacency matrices. One way to

obtain real-valued features for nodes is to look at the principal compo-

nents of the adjacency matrices. In particular, we use the leading eigen-

vectors of the adjacency matrix as latent features. For example, consider

the gene-interactions network G of size Ng�Ng. Let U 2 R
Ng�m denote

the matrix of eigenvectors corresponding to the top m eigenvalues of G.

Now, the i-th row of U gives m latent features for gene i. We perform

PCA (principal components analysis) on the microarray expression and

word-count data to obtain low-dimensional informative features for

genes and diseases, respectively. We discuss data sources and feature ex-

traction in detail in Section 3.

2.2 Optimization

The objective function in Equation (2) is non-convex. We adapt the

LEML solver provided by Yu et al. (2014) for solving Equation (2)

since the traditional multi-label learning problem can be thought of a

special case of Equation (2) where the disease feature matrix Y is set to

the identity matrix of size Nd. The solver uses alternating minimization

(fixW and solve forH and vice versa) to optimize Equation (2). If the loss

function ‘ is convex, then the objective function becomes convex whenW

or H is fixed. The resulting convex problem in one variable (W or H) is

solved using the Conjugate Gradient iterative procedure. Common

choices of loss function include squared loss, logistic loss ‘logða; bÞ=log

ð1+e�abÞ and squared-hinge loss ‘sqhingeða; bÞ=ðmax ð0; 1� abÞÞ2: Note

Fig. 1. Low-rank modeling of gene–disease associations matrix. The

shaded region in the P matrix corresponds to genes or diseases with at

least one known association. Traditional matrix completion would fail to

make predictions for genes and diseases with no known associations
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that the set W contains only positive (known gene–disease) associations.

However, the number of positive associations typically is very small.

In many machine-learning applications, we also have access to negative

examples. Unfortunately, we do not have any negative examples (i.e.

absence of a gene–disease connection) for our task. Common strategies

to cope with the situation are treating all unknowns as negative associ-

ations, randomly sampling negative associations from unknowns, or

using label-dependent costs (Kshirsagar et al., 2013; Natarajan et al.,

2013; Singh-Blom et al., 2013).

2.3 Computational efficiency

Computational cost of solving the optimization problem potentially dif-

fers with the choice of the loss function. In our experiments, we use

squared loss in the objective, and treat missing values as zeros. For

squared loss with fully observed labels, we can essentially use the

Algorithm 2 in Yu et al. (2014), which yields a fast procedure for solving

Equation (2). In particular, the time taken per alternating minimization

step is OððnnzðPÞ+Ngfg+NdfdÞk
2TÞ; where nnz(P) denotes the number

of non-zeros in P, and T is a small constant. In our experiments, fd, fg and

k are very small (few hundreds), and the alternating minimization

procedure converges in510 iterations (takes under 2min on average on

a 2.8 GHz, 8-core machine).

3 DATASET AND FEATURES

3.1 OMIM associations

We obtained human gene–disease associations data from the

OMIM project. OMIM phenotypes have become the standard

data set for the evaluation of prediction of gene–disease associ-

ations (Karni et al., 2009; K €ohler et al. 2008; Li and Patra, 2010;

Mordelet and Vert, 2011; Singh-Blom et al., 2013; Vanunu et al.,

2010; Wu et al., 2008). For quantitative evaluation (using 3-fold

cross-validation discussed in Section 4.1), we use the OMIM data

used in Singh-Blom et al. (2013). There are 3209 diseases with at

least one known gene association and 3954 gene–disease associ-

ations (i.e. the total number of non-zeros in the gene–disease

associations matrix). The matrix is extremely sparse, with

490% of the columns with exactly one non-zero entry and

�75% of the rows with no non-zero entries. To compare differ-

ent gene prioritization methods on the novelty of predictions

(see Section 4.7), we use more recently reported associations in

the OMIM database (reported between August 2011 and

November 2013).

3.2 Gene features

Microarray measurements of gene-expression levels in different

tissue samples, obtained from BioGPS (www.biogps.org) and

Connectivity Map (www.broadinstitute.org/cmap), serve as the

first source of the gene features. In particular, each feature cor-

responds to a gene-expression level in a sample of a given cell

type. Typically, microarray measurements are given for ‘probes’

(that encode possibly multiple genes). If a probe involves more

than a single gene, then the probe is discarded—thus favoring

gene-specific probes. If a gene is part of many such probes, then

the measurements are averaged across probes. There are some

genes for which we do not have any measurements, and hence no

features are available for those genes. In total, there are 4536

features for each of the 8755 genes. We observe that the features

are highly correlated. This is understandable as samples of same

cell type from two different individuals (as in the case of BioGPS

features) tend to have similar gene-expression profiles. In our

experiments, we project the data to a lower dimensional space.

In particular, we use PCA that performs a linear mapping of the

data onto the lower dimensional space spanned by the leading

100 eigenvectors of the covariance matrix, maximizing the vari-

ance of the data in the new representation.

The second source of gene features is the functional interaction

data between genes. HumanNet (Lee et al., 2011) is a large-scale

functional gene network which incorporates multiple datasets,

including mRNA expression, protein–protein interactions, pro-

tein complex data and comparative genomics (but not disease or

phenotype data). HumanNet contains 21 different data sources,

which are combined into one integrated network using a regu-

larized regression scheme trained on GO pathways. HumanNet

has been shown to be very useful for the gene-prioritization task

(Singh-Blom et al., 2013). We obtain latent graph features for

genes from HumanNet given by the leading 100 eigenvectors of

the network.

Fig. 2. Schematic of the proposed approach. First, we construct gene and disease features using different sources. Then, we perform IMC using row and

column features. The shaded region in the P matrix corresponds to genes or diseases with at least one known association
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The third source of gene features arises from gene orthology—
gene–phenotype associations of other species that are relatively
richer compared to gene–disease studies in humans. We use

phenotypes of eight different species (Singh-Blom et al., 2013),
namely, plant [Arabidopsis thaliana, from TAIR Swarbreck et al.
(2008)], worm [Caenorhabditis elegans fromWormBaseChen et al.

(2005) and Green et al. (2011)], fruit fly [Drosophila melanogaster
from FlyBase Tweedie et al. (2009)], mouse [Mus musculus from

MGD Eppig et al. (2007)], yeast [Saccharomyces cerevisiae from
Dwight et al. (2002), Saito et al. (2004), McGary et al. (2007) and
Hillenmeyer et al. (2008)] Escherichia coli [Nichols et al. (2011)],

zebrafish [Danio rerio from ZFIN Sprague et al. (2006)] and
chicken [Gallus gallus from GEISHA Bell et al. (2004)]. We
form a large gene–phenotype associations matrix (similar to the

gene–disease associations matrix), whose columns correspond to
phenotypes of the aforementioned organisms. We use the leading

100 singular vectors of the matrix as features for genes.

3.3 Disease features

Analogous to the use of HumanNet for obtaining latent features
for genes, we extract 100 latent disease features from the disease

similarity network MimMiner (Van Driel et al., 2006). The
MimMiner network has been previously used for prioritizing
disease genes (Li and Patra, 2010; Singh-Blom et al., 2013;

Vanunu et al., 2010). Another source of disease features we in-
corporate comes from the web pages for the OMIM diseases. In

particular, we look at the ‘Clinical Features’ and ‘Clinical
Management’ sections of the web pages that document the symp-
toms, medication and responses by patients, and related studies

of effects of different courses of therapies. We want a represen-
tation for diseases such that two diseases that are biologically
close (such as variants of the same disease) are also close in the

feature space. To this end, we form the so-called term-document
matrix M, where Mij gives the frequency of the term i in the web

page corresponding to disease j. The term-document matrix is
commonly used in text mining such as topic extraction from a
corpus of documents. Often it is better to use a re-weighting

scheme called tf–idf (term frequency–inverse document fre-
quency): Mij is offset by the frequency of the word i in the
entire collection of documents. This helps filtering out common

words. After applying the tf–idf scheme, we trim the feature
space by purging the most common (like ‘dose’, ‘day’, ‘regimen’

that are not informative) and very rare words (specific to a dis-
ease such as ‘vicriviroc’ that appears only in the OMIM page for
Susceptibility to Human Immunodeficiency Virus Type I pheno-

type). The resulting feature space for diseases is still high dimen-
sional (�20000 words). We reduce the dimensionality of

the feature space using PCA as in the case of microarray gene
features, retaining the top 100 principal components.

4 RESULTS AND DISCUSSION

4.1 Evaluation methods

To quantitatively evaluate our approach and to compare to the

state-of-the-art disease–gene-prioritization methods, we measure
the recovery of genes using a cross-validation strategy similar to
the one used by Mordelet and Vert (2011) and by Singh-Blom

et al. (2013) on OMIM data. We split the known gene–disease

pairs into three equally sized groups. We hide the associations in

one group and run the methods on the remaining associations,

repeating three times to ensure that each group is hidden exactly

once. For each disease in our dataset, we order all the genes by

how strongly the method predicts them to be associated with the

disease. Finally, for every gene–disease pair (g, d) in the hidden

group we record the rank of the gene g in the list associated with

disease d. We use the cumulative distribution of the ranks as a

measure for comparing the performances of different methods,

i.e. the probability that the rank (at which hidden gene–disease

pair is retrieved) is less than a threshold r. The motivation for

using this performance measure is to distinguish methods based

on the probability of recovering a true association in the top-r

predictions for a given disease. A small value of r is desired by

biologists; Here, we report results for r� 100. Recent methods

including ProDiGe (Mordelet and Vert, 2011) and CATAPULT

(Singh-Blom et al., 2013) have adopted this performance meas-

ure for evaluation.

We are also interested in studying the ability of our method to

correctly identify associations between diseases and genes that are

less well studied. Singh-Blom et al. (2013) propose validation on

singleton genes, i.e. genes with only one known association in the

dataset but none in the training, for highlighting methods that

discover novel genes. We employ this validation strategy in

Section 4.5. In Section 4.6, we study how different methods per-

form on the task of predicting genes for a new disease, i.e. diseases

for which there are no known associations at the training time.
Assessing the novelty of predictions is often challenging. It is

common to hand-pick biologically relevant genes from the top

few predictions and corroborate with findings in the existing lit-

erature, which is then sometimes followed by wet-lab experi-

ments. Here, we choose to use the unbiased evaluation scheme

adopted by B €ornigen et al. (2012) for assessing the novelty of

gene-prioritization methods. In particular, we train all the com-

petitive methods using all the available OMIM data collected

until August 2011. Then, we evaluate the methods on the asso-

ciations recently reported in the literature, collected by B €ornigen

et al. (2012), and the associations recorded in the OMIM data-

base between August 2011 and November 2013 (Section 4.7).

4.2 Baselines and competitive methods

A natural baseline for our proposed approach is the standard

matrix completion on the gene–disease associations matrix P

given in Equation (1), i.e. IMC with the gene feature matrix X

and the disease feature matrix Y set to identity matrices of appro-

priate sizes. We compare to two recently proposed methods that

rely on combining the different biological networks we use to

derive latent features from: the gene-interactions network, the dis-

ease similarity network and the bipartite gene–phenotype associ-

ations networks of multiple species. We also consider a stronger

baselinemethod—matrix completion on a heterogeneous network

that is composed of the aforementioned biological networks.

Finally, we compare to the LEML method (Yu et al., 2014),

which is the transductive equivalent of IMC, when there are no

disease features. Below, we describe the methods in more detail:

1. CATAPULT (Singh-Blom et al., 2013): Train a bagging sup-

port vector machine classifier over gene–disease pairs;
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each gene–disease pair is represented by features corres-

ponding to the number of paths of increasing lengths in

the combined network given by:

C=
G �P

�P
T �Q

" #
; ð3Þ

where �P includes the gene–disease associations matrix P

and phenotypes of other species discussed in Section 3.2,

and �Q is set to the disease similarity matrix Q corres-

ponding to human disease nodes and 0 elsewhere. This

method was shown to outperform a number of graph-

based inference methods such as PRINCE (Vanunu et al.,

2010), RWRH (Li and Patra, 2010) and ProDiGe

(Mordelet and Vert, 2011).

2. Katz on the combined network (Singh-Blom et al., 2013):

The method computes similarities between a pair of

nodes based on how many paths of different lengths con-

nect the pair. The similarity between nodes i and j in the

combined network Equation (3) is given by:

SKatz Cð Þij=
Xk
l=1

�l Cl
� �

ij
;

where Cl
ij gives the number of paths of length l connect-

ing nodes i and j in the network C. Typically, a small

value of k is used (node similarity is better captured by

shorter paths). Letting k=3, we can write the matrix of

scores between gene and disease nodes as:

SKatz
ij =�P+�2ðGP+PQÞ

+�3 �P �P
T
P+G2P+GPQ+PQ2

� �
:

The parameter � (typically set to a small value like 0.01)

dampens the contribution from paths of higher lengths.

This method is closely related to RWRH (Li and Patra,

2010).

3. Matrix completion on the combined network: We con-

sider matrix completion on the combined network C in-

stead of the bipartite network P; the low-rank model

C �WHT suggests that the factors W and H should ex-

plain not only the gene–disease associations, but also the

observed gene interactions, other species phenotypes and

disease similarities. Letting the size of the matrix C to be

N�N, the optimization problem we solve is:

min
W;H2RN�k

X
ði;jÞ2W

ðCij �WT
i HjÞ

2+�
X
ði;jÞ=2W
ðCij �WT

i HjÞ
2

+�ðkWk2F+kHk
2
FÞ:

A large value of � biases the estimation of the unobserved

entries in the different biological networks comprising C

toward 0 (reflecting the assumption that the true under-

lying biological networks are sparse). Of course, setting

�=0 corresponds to applying the standard matrix com-

pletion Equation (1) on C. In our experiments, we set

�=0.2 (the best value chosen by cross-validation).

4. LEML (Yu et al., 2014) Implemented identical to IMC,

but does not use disease features.

Note that the first three methods do not use gene- or disease-

specific features such as microarray or tf–idf, respectively. For all

the matrix-completion-based methods (including LEML and

IMC), we rank the predictions using the estimated values of

the matrix (higher the estimated value Pij, more relevant is the

gene i for disease j). For the IMC method (i) we construct the

gene and disease features (fg=300, fd=200) as described in

Section 3, (ii) we use squared loss in the optimization problem

Equation (2), which we find to be the best-performing loss func-

tion in our experiments, and missing entries are treated as zeros

in the objective function, which together with squared loss results

in a fast procedure for solving Equation (2) as discussed in

Section 2.3. We set �=0.2 in the optimization problem

Equation (2) for both IMC and LEML. We use the best value

for parameters obtained by cross-validation for all the competi-

tive methods.

4.3 Overall performance

The 3-fold cross-validation results on 3209 OMIM diseases are

presented in Figure 3a. The vertical axis in the plots gives the

probability that a true gene association is recovered in the top-r

predictions for various r values in the horizontal axis. We ob-

serve that the proposed method IMC significantly dominates

every other competitive method consistently over all r values.

Our method has close to 25% chance of retrieving a true gene

in the top-100 predictions for a disease, whereas even the second

best performing method CATAPULT has only �15%. The three

competitive methods Katz, CATAPULT and matrix completion on

the combined network which use the same information, albeit in

different ways, perform very similarly within the top-100 predic-

tions. As expected, matrix completion on C performs signifi-

cantly better than the baseline matrix completion. The

importance of using disease features cannot be emphasized

more—LEML performs significantly worse. In Figure 3b, we

present precision–recall curves for different methods. Precision

is the fraction of true positives (genes) recovered in the top-r

predictions for a disease. Recall is the ratio of true positives re-

covered in the top-r predictions to the total number of true posi-

tives for the disease in the test set. We observe a consistent

ordering of curves with respect to the standard precision and

recall measures.
Integration of multiple informative features is important for

the success of the method. However, we do see that disease fea-

tures play a dominant role in the predictive power, as most of the

OMIM diseases have a single known gene. We find that (data

not shown in plots) features obtained from gene-interactions

network are important particularly for genes that are well-

connected. Gene-expression data is highly noisy and correlated,

and therefore we rely on using a few PCA features. Not all genes

and diseases have all sets of features; genes that are not con-

nected in the gene network have some microarray expression

based features, and similarly diseases not connected in the disease

similarity network have tf–idf features. We would like to empha-

size that integrating features from different sources that bring
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in complementary information, helps improve the predictive

performance.

4.4 Effect of rank k

The key parameter in IMC is k, the rank of the model matrix

Z 2 R
300�200: The effect of rank k on the performance of the

method is shown in Figure 4. In general, we observe that per-

formance increases with k. More importantly, a small rank

k=30 yields a competitive performance—much better than

CATAPULT as compared with Figure 3a. This indicates the success

of multi-task learning approach that exploits correlations be-

tween multiple diseases and between multiple genes.

At k=100 IMC performs as good as the effective full rank

k=200. For comparison with competitive methods, we use

k=200 in our experiments.

4.5 Singleton genes

One problem that plagues the evaluation of prioritization meth-

ods are the ‘popular’ genes. Genes that are well-connected tend

to be predicted more often and therefore tend to yield inflated

recall rates. To this end, we adopt the following strategy used in

Singh-Blom et al. (2013): We look at singleton genes, i.e. genes

that have only one association in the data, and evaluate the

methods on how highly the corresponding gene associations

are ranked. Note that the genes have no known associations at

training time, and therefore the ability of a method to predict

singleton gene associations also attests to the novelty of predic-

tions. The results are shown in Figure 5a. We see that using

additional sources like the biological networks directly are help-

ful in the case of Katz and matrix completion on C and to lesser

extent in case of CATAPULT in the top 1–20. IMC attains a sig-

nificant increase in the performance around top 50–100 predic-

tions because it uses additional microarray features.

4.6 Induction on new diseases

Next, we turn to an important aspect of evaluation of the pro-

posed method—ability to make predictions for a new disease. By

new disease, we mean a disease for which there are no existing

gene associations. However, the features for the new disease may

be available. For evaluation purposes, we look at the CDF of

ranks of genes associated to diseases for which no gene associ-

ations were available at the training time (corresponding to col-

umns with no known entries). Figure 5b shows how different

methods perform on the task. The significance of using disease

features cannot be emphasized more—IMC is substantially

better than all other methods. Note that the baseline matrix

completion is missing from the plot, as it cannot make predic-

tions for diseases with no known entries.
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Fig. 3. Comparison of disease gene prioritization methods. The top panel

shows the empirical cumulative distribution function for the rank of the

withheld gene under cross validation. The vertical axis shows the probabil-

ity that a true gene association is retrieved in the top-r (shown on the

horizontal axis) predictions for a disease. The proposed method IMC is

trained with 300 gene features, 200 disease features and k=200. Katz,

CATAPULT and Matrix completion on C all use the same combined

network Equation (3). IMC (solid black) consistently and significantly out-

performs competitive methods by a large margin. The significance of using

disease features is apparent by comparing to LEML (dash-dotted blue)

Fig. 4. Performance of IMC (fg=300, fd=200) for different values of k.

The performance increases with the rank k of the parameter matrix Z.

Even when k=30, IMC starts performing much better than the com-

petitive methods [compare with Figure 3a]. Curves for k=100 and

k=200 almost coincide
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4.7 Evaluation on newly discovered associations

B €ornigen et al. (2012) evaluate gene prioritization tools using 42

then recently reported associations. The evaluation is unbiased in

the following sense: cross-validation on retrospective data is

likely to yield overoptimistic performance estimate, as some of

the data sources are contaminated with knowledge from gene–

disease associations. It is important to understand the subtlety

here—the contamination can be by more indirect ways. For

example, certain gene interactions may have been discovered

precisely because of the associations with the particular disease

under evaluation. Though the associations themselves are

hidden, the other features are ‘contaminated’ with this informa-

tion. The approach therefore mimics novel discovery more

closely.

We train all the methods using all gene associations for 3209

OMIM diseases collected until August 2011. For evaluation, we

use 36 of the 42 associations curated by B €ornigen et al. (2012)

(we use the expanded set of OMIM phenotypes in our experi-

ments; six of the 42 associations correspond to collapsed pheno-

types such as ‘Complex heart defect’ which can potentially be

associated with many phenotypes in our dataset, and therefore

we choose to exclude them from evaluation). Of the 36 associ-

ations, six associations correspond to six new diseases that are

not a part of our training data. It has been a year since the paper

was published, so we supplement the data by including 84 recent

associations added to the OMIM database between August 2011

and November 2013. The total 120 associations involve 115

unique genes, of which 56 genes did not have any known asso-

ciations before. Thus, evaluation on the new associations also

helps characterize the ability of the methods to recommend novel

genes. The ranking performances of competitive methods on the

120 new associations are shown in Figure 6. We see that IMC

outperforms all the methods for most values of r and CATAPULT

is competitive. We observe a noticeable increase in performance

of all methods compared to the cross-validation results in

Figure 3. Note that the training data for this experiment consists

of many more associations than previous experiments, and in

particular all the diseases [except six new diseases from

B €ornigen et al. (2012)] have at least one known association.

Gene MUTYH for Gastric Cancer: As a concrete example,

consider the case of the OMIM disease Gastric Cancer. We
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Fig. 5. Evaluating novelty with singleton genes and induction on new

diseases. The methods are evaluated in two extreme settings: rows with

no known entries (top panel) and columns with no known entries (bottom

panel). (A) While using additional sources like the biological networks

directly are helpful in the case of Katz and Matrix completion on C, we

see a significant increase in the performance around top 50–100 predic-

tions by also using microarray features (solid black). (B) The significance

of using disease features is distinct. Note that the baseline matrix com-

pletion is missing from both the panels as it cannot make predictions for

rows or columns with no known entries (see Section 2)
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Fig. 6. Evaluating methods on 120 newly discovered associations. The

plot shows empirical cumulative distribution function of the ranks of

recently discovered associations for a few diseases (see Section 4.7). We

see that IMC outperforms all the methods for most values of r, and

CATAPULT is competitive. Note that the training data consists of many

more associations than that of Figure 3, and partly explains the notice-

able increase in performance of all methods
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observe that our method recovers the hidden gene MUTYH in
the top-100 predictions but no other method does. Notably,
MUTYH is also associated with the OMIM phenotype
Familial Adenomatous Polyposis 2. The tf–idf features for the

two diseases have a high similarity (normalized inner product)
which helps our method recover MUTYH for gastric cancer.

5 CONCLUSIONS

In this article, we have proposed a novel approach based on
inductive matrix completion for prioritizing disease genes.
Our approach combines complementary types of evidence

which is essential for generalizing to new diseases, as no single
source of data can potentially capture all relevant relations.
Comprehensive quantitative analysis of the proposed approach

substantiates the claim, as we observe that approaches that rely
on particular sources or features (such as biological networks in
case of CATAPULT or only gene features as in the case of LEML)

perform significantly worse in many cases. The inductive method
is not restricted to the types of features used in our experi-
ments—new sources of information can be incorporated easily.
Typically, prioritization strategies for finding a novel gene

related to an already well-characterized disease would differ
from those for which limited or no prior knowledge is available.
In our experiments, we find that our approach consistently per-

forms the best on almost all types of diseases and genes, well-
characterized or new, which makes our approach a suitable
prioritization tool to use for biologists.
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