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Abstract

Advanced glycation end products (AGEs) have long been considered as potent molecules promoting neuronal cell death
and contributing to neurodegenerative disorders such as Alzheimer’s disease (AD). In this study, we demonstrate that AGE-
albumin, the most abundant AGE product in human AD brains, is synthesized in activated microglial cells and secreted into
the extracellular space. The rate of AGE-albumin synthesis in human microglial cells is markedly increased by amyloid-b
exposure and oxidative stress. Exogenous AGE-albumin upregulates the receptor protein for AGE (RAGE) and augments
calcium influx, leading to apoptosis of human primary neurons. In animal experiments, soluble RAGE (sRAGE), pyridoxamine
or ALT-711 prevented Ab-induced neuronal death in rat brains. Collectively, these results provide evidence for a new
mechanism by which microglial cells promote death of neuronal cells through synthesis and secretion of AGE-albumin,
thereby likely contributing to neurodegenerative diseases such as AD.
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Introduction

Alzheimer’s disease (AD) is the one of the most prevalent

neurodegenerative diseases in humans. After the early observa-

tions on the activated microglia and its relation to AD [1–3],

numerous reports indicated that chronic inflammatory processes

contribute to the pathology of AD [4,5]. One of the main central

hypotheses is that the activated microglial cells cause neuronal

damage and contribute to neurodegenerative changes in AD.

After a pilot study of Human Brain Proteome Project, we

recently reported that albumin can be synthesized in microglial

cells in the brain. We also demonstrated that the synthesis and

extracellular secretion of albumin from microglial cells is enhanced

upon microglial activation following Ab1–42 exposure [6]. We

initially proposed that albumin production would be beneficial to

the cells by suppressing Ab polymerization with enhancement of

its clearance [6]. However, the precise role of albumin synthesized

in the brain is still unknown.

Glycation reaction represents a post-translational modification

process between free reducing sugars and free amino groups in

many proteins. Advanced glycation end-products (AGEs), irre-

versible adducts of the Maillard reaction, have been demonstrated

to accumulate in the brain during the course of ageing [7]. In fact,

several reports showed increased AGE levels in the brains of AD

individuals, suggesting pathological roles of AGEs in neurodegen-

erative disorders including AD, where markedly activated

microglial cells and Ab deposition colocalized with AGEs [8–

24]. However, despite these reports, the pathological role and

detailed mechanism of AGEs in promoting neuronal cell death

and neurodegeneration are poorly understood. We hypothesized

that secreted AGEs promote death of neuronal cells through

activating the stress-activated protein kinases, which further

activate cell-death associated Bcl-2 homolog proteins, in the

primary neuronal cells and the brains from AD individuals. The

aims of this study were to determine whether human primary

microglial cells synthesize AGEs as AGE-albumin and to

investigate the mechanism by which secreted AGE-albumin

promotes death of primary neuronal cells, rat brains treated with

Ab1–42 peptide and human brains from AD individuals. Our

results demonstrate that AGE-albumin is not only synthesized in

microglial cells but also promotes death of neuronal cells in

primary culture, Ab1–42-exposed rat brains, and the brains of AD

individuals, ultimately contributing to neurodegeneration.
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Results

1. Ubiquitous Distribution of AGE-albumin in the Brains
of Human AD Individuals and Ab-exposed Rats

To study the mechanisms by which AGE-albumin synthesis is

increased while how it promotes neuronal cell death, we first

investigated the distribution of AGE and albumin in HMO6

microglial cells. Surprisingly, most AGEs were co-localized with

albumin, suggesting that AGE-albumin could be a major AGE

product in microglial cells of the brain (Fig. 1A). To further

demonstrate the co-localization of AGE with albumin, we

performed double immunohistochemical staining in human

HMO6 microglial cells before and after Ab treatment. AGE

levels were markedly increased after Ab exposure and most AGEs

were co-localized with albumin. In addition, the tissue levels of

AGE and albumin were strikingly elevated, and AGE was co-

localized with albumin in Ab–treated rat brains and human brains

of AD individuals compared with control rat and human brains,

respectively (Fig. 1A). Densitometric analysis indicated a 17.9-fold

increase in AGE-albumin in the brains of individuals with AD

(n = 5) compared to samples from normal individuals (n = 5)

(Fig. 1B). Interestingly, the double-labeled AGE-albumin immu-

noreactive material was highly localized in the vicinity of cells with

apoptotic nuclei. This strongly indicates that AGE-albumin may

be directly involved in cell death in the brain. Immunoblot analysis

of whole cell lysates revealed that the rate of AGE-albumin

synthesis in HMO6 microglial cells was markedly and concentra-

tion-dependently increased following Ab exposure (Figs. 1C, D).

Moreover, immunoblot analysis of rat brain before and after Ab
treatment revealed that the amount of AGE-albumin increased

significantly in cerebrum but not in cerebellum after Ab treatment

into the rat entorhinal cortex (Figs. 1E–H).

2. Synthesis and Secretion of AGE-albumin in Microglial
Cells

Because of the elevated levels of AGE-albumin in 3 different

experimental models, we further investigated the cell-specific

distribution of AGE-albumin in the human primary brain cells.

The microglial marker, Iba-1, was generally co-expressed with

AGE and albumin. In contrast, only limited amounts of the

astrocyte marker (GFAP), the oligodendrocyte marker (Olig2), and

the neuronal marker (NeuroD) were co-localized with AGE-

albumin in human primary brain cells (Fig. 2). Based on these

results, we concluded that AGE-albumin, the most abundant

protein modified by AGE, is produced largely by microglial cells of

the human brain.

Next, we evaluated whether AGE-albumin secretion was

increased when human HMO6 microglial cells were activated

with Ab. Immunoblot analysis of whole cell lysates and ELISA

data for the culture media showed that AGE-albumin synthesis in

human microglial cells and its extracellular secretion were

significantly elevated by 1.6 times after Ab treatment time-

dependently (Figs. 3A, B). When cells were treated with the specific

antibody against albumin, the amount of AGE-albumin was

decreased regardless of Ab treatment.

3. Increased Synthesis and Secretion of AGE-albumin by
Oxidative Stress in Human Microglial Cells

We investigated whether the AGE-albumin synthesis and

secretion are directly reduced by AGE inhibitor (pyridoxamine)

or AGE cross-link breaker (ALT-711). When the HMO6

microglial cells were exposed to pyridoxamine or ALT-711, the

amount of AGE-albumin was dramatically reduced in a concen-

tration-dependent manner (Figs. 3C, D).

Next, we investigated whether the AGE-albumin synthesis and

secretion are directly induced by elevated oxidative stress. When

the HMO6 microglial cells were exposed to a strong oxidant,

hydrogen peroxide, the amount of AGE-albumin was increased in

a concentration-dependent manner (Figs. 3E, F). In contrast,

addition of an anti-oxidant ascorbic acid (Asc) dramatically

decreased the amount of AGE-albumin regardless of Ab treatment

(Figs. 3G, H). These data suggest that the amounts of both

intracellular and secreted AGE-albumin, but not albumin itself,

positively correlated with the degree of oxidative stress. Based on

these findings, we conclude that the Ab–induced synthesis of

AGE-albumin in human HMO6 microglial cells and its extracel-

lular secretion are closely related to increased oxidative stress.

4. Ab Polymerization and Increased Ab Synthesis by AGE-
albumin in Human Microglial Cells

To determine whether AGE-albumin increases Ab synthesis

and accumulation in human microglial cells compared to albumin,

we determined the amounts of Ab, beta-amyloid cleavage enzyme

(BACE), ADAM10 and APP by immunohistochemistry, immuno-

blot analysis, and ELISA respectively. BACE levels were markedly

increased in AGE-albumin-exposed HMO6 cells compared to

untreated or albumin-treated cells whereas the levels of ADAM10

or APP were unchanged (Figure S1).

We next studied the functional role of albumin or AGE-albumin

in Ab aggregation by staining with thioflavin T (ThT), which

reflects the degree of Ab aggregation. The ThT fluorescence assay

revealed that the aggregation of Ab was significantly increased by

1.6 times after addition of AGE-albumin than that with albumin

alone (used as 100% control) (Fig. 3I). ELISA analysis revealed

that the amount of Ab in culture media was dramatically increased

after HMO6 cells were exposed to AGE-albumin compared to

untreated cells or albumin-treated cells (Fig. 3J).

We also hypothesized that increased Ab accumulation may be

promoted by inactivation of a chaperone PDI (protein disulfide

isomerase), which has been shown to be inactivated by S-

nitrosylation in the brains of AD individuals, leading to Ab
accumulation [17]. Immunoblot results of the immunoprecipitated

PDI (55 kDa) revealed that the level of S-nitrosylated PDI was

increased in Ab-exposed HMO6 cells compared to that in

untreated control (Figs. 3K, L). These results suggest that AGE-

albumin increases microglial Ab synthesis and accumulation in a

vicious cycle, which further aggravates the AD conditions through

increased Ab production via up-regulating the BACE level, AGE-

albumin synthesis, and neuronal cell death.

5. Induction of RAGE (Receptor of Advanced Glycation
End Product) and Promotion of Neuronal Apoptosis by
AGE-albumin

A receptor protein for AGEs (RAGE) is known to be expressed

in neurons, while its increased level is highly correlated with

neuronal death and development of AD [16]. In addition, AGE

binds to RAGE in primary neurons [25]. Therefore, we also

assessed whether AGE-albumin can increase production of

RAGE, a strong indicator of neuronal apoptosis in AD [26,27],

leading to cell death in human primary neurons. Immunohisto-

chemical and immunoblot data showed that the amount of RAGE

was significantly increased in primary neurons exposed to AGE-

albumin compared to those untreated or treated with albumin

only (Fig. 4A).

Implication of Microglial AGE-Albumin in AD
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Since the stress-activated MAPKs and increased mitochondrial

calcium influx are critically important in initiating apoptosis

[18,19], we monitored the changes in the respective levels of

MAPKs, Bax, mitochondrial calcium influx, and cell death rate in

the human primary neurons. Immunoblot analyses showed that

the levels of pSAPK/JNK, and Bax were significantly increased

after the human neuronal cells were exposed to AGE-albumin

compared to control (albumin alone). But p38K, pp38K, SAPK/

JNK, pSAPK/JNK and Bax levels were decreased dramatically

after the human neuronal cells were exposed to AGE-albumin and

sRAGE (Figs. 4B–D). Microscopic images showed the same

pattern of elevated levels of Bax, which are co-localized with

NeuN and DAPI-stained apoptotic neuronal cells in human AD

brains compared with normal brain tissues (data not shown). In

addition, mitochondrial imaging analysis of living cells showed

that mitochondrial calcium concentration in human neuronal cells

was increased in a time-dependent manner following exposure to

AGE-albumin (Fig. 4E).

Consistent with these results, the optical density for apoptotic

neuronal cells by apoptotic assay increased gradually in a dose-

Figure 1. Distribution and synthesis of AGE-albumin in microglial cells and rat or human brains. (A) Triple-labeled confocal microscopic
image analyses were used to study the distribution and relative levels of albumin (green), AGE (red) and DAPI (blue) in the HMO6 microglial cells and
entorhinal cortex of rat brains before or after Ab treatment as well as cerebral cortex of human brains from normal or AD individuals. HMO6 cells and
rats were treated with Ab1–42 described in the Materials and Methods section. Scale bar = 50 mm. These results represent similar images of 5
independent analyses. (B) The AGE-albumin positive particles in cortex of human AD brain were significantly different from the normal brains
(p,0.05), as determined by densitometric analysis using Zeiss Zen 2009 software. (C, D) The degree of AGE-albumin synthesis in HMO6 cells was
determined by immunoblot analysis (C) and densitometric analysis (D) after exposure to different concentrations of Ab1–42, as indicated. The level of
albumin is shown as an internal control for equal protein loading per lane. (E-H) The immunoblots of AGE-albumin in rat cerebrum (E, G) and
cerebellum (F, H), with or without Ab1–42 treatment and densitometric analyses, are shown. *, significantly different (P,0.001) from the level of AGE-
albumin without Ab1–42 treatment.
doi:10.1371/journal.pone.0037917.g001

Implication of Microglial AGE-Albumin in AD
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dependent manner after AGE-albumin exposure (mg/mL range)

(Fig. 4F). In contrast, very few neuronal cells died in the presence

of albumin alone (mg/mL range) (data not shown). Furthermore,

the apoptosis assay showed that apoptosis of neuronal cells

increased after AGE-albumin treatment, but remains same after

co-treatment with AGE-albumin and sRAGE, pyridoxamine or

ALT-711 (Fig. 4G). These data demonstrate that AGE-albumin

directly promotes apoptosis of neuronal cells through activating

the calcium-JNK-Bax pathway, as demonstrated previously in

different cell types [28,29].

6. Protection by Soluble RAGE (sRAGE) Against Ab-
mediated Neuronal Death

To investigate the protective effect of sRAGE against Ab-

mediated neuronal death, we performed in vivo analysis after

injection of Ab alone or co-injection of Ab and sRAGE (Ab/

sRAGE), pyridoxamine (Ab/pyridoxamine) or ALT-711 (Ab/

ALT-711) into rat brain. The relative levels of neurons in rat

brains were dramatically increased at 72 hours after Ab and

sRAGE, pyridoxamine or ALT-711 were co-injected compared to

those administered with Ab alone (Figs. 5A, B). We also studied

whether the activated microglia produces AGE-albumin in rat

brains. Triple labeling confocal microscopy revealed that the

relative numbers of AGE, albumin and Iba1 positive cells were

increased in Ab–injected rat brains, but decreased in Ab/sRAGE

exposed rat brains (Figs. 5C, D).

To investigate whether Ab injection induces neuronal death and

sRAGE protects RAGE-mediated neuronal death, triple labeling

confocal microscopic analysis was performed. The relative

numbers of RAGE positive neurons were increased dramatically

after Ab injection but decreased markedly after Ab/sRAGE co-

injection into rat brains (Figs. 5E, F). Consistently, the numbers of

Bax- and p-JNK-positive neurons were increased markedly after

Ab injection but decreased in Ab/sRAGE co-injected rat brains

(Figs. 5G–I).

Discussion

Many investigators reported importance of activated microglial

cells in various neurodegenerative diseases [1,2,3]. However, it is

poorly understood how activated microglia cells promote neuronal

Figure 2. Synthesis of AGE-albumin in microglial cells but not from astrocytes, oligodendrocytes or neurons from human primary
brain cells. (A) Triple-labeled fluorescent microscopic image analyses were used to demonstrate co-localization of AGE (green), albumin (red), and a
specific marker of different cells (blue) in human primary brain cells. Representative images of microglial cells (Iba1), GFAP (an astrocyte marker), Olig2
(an oligodendrocyte marker), and NeuroD (a neuronal marker) in the human primary brain cells are shown. Similar results were observed in 5
independent analyses. Scale bar = 50 mm.
doi:10.1371/journal.pone.0037917.g002

Implication of Microglial AGE-Albumin in AD
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Figure 3. Synthesis of AGE-albumin in human microglial cells and its extracellular secretion. (A) The time-dependent changes in
intracellular (cell lysate) and extracellular (supernatant) AGE-albumin in HMO6 cells, treated with Ab1–42 for 1, 3, 6, 12, 24 h, were determined by
ELISA. (B) The amounts of intracellular (cell lysate) and extracellular (supernatant) AGE-albumin in HMO6 cells, exposed to 3 different conditions as
indicated, were determined by ELISA. The microglial cells were treated with: Ab1–42 alone (5 nM) for 6 h, anti-albumin antibody (ALB Ab, 1 mM) for
24 h, or Ab1–42 treatment after exposure to anti-albumin antibody overnight. (C-H) The amounts of AGE-albumin were determined by immunoblot

Implication of Microglial AGE-Albumin in AD
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analysis of the whole cell lysates of HMO6 cells exposed to different concentrations of pyridoxamine (from 0 to 1 mM) (C), ALT-711 (from 0 to 5 mM)
(D), hydrogen peroxide (from 0 to 1,000 mM) (E, F) or 5 mM ascorbic acid (G, H) for 6 h in the absence or presence of 5 nM Ab1–42 peptide. (I)
Relationship between AGE-albumin and Ab, contributing to Ab aggregation. Ab aggregation rates in HMO6 cells, treated with albumin alone or AGE-
albumin, were determined by ThT fluorescence analysis. (H) HMO6 cells were exposed to albumin (ALB) or AGE-albumin (AGE-ALB) for 24 h. The
respective amounts of Ab in the culture media from untreated and AGE-albumin-treated cells were measured by ELISA. (I, J) Increased S-nitrosylation
of PDI in HMO6 cells after treatment with Ab. Microglial cells were exposed to Ab1–42 (400 nM) for 6 h. PDI in whole cell lysates (0.4 mg protein/
sample) was immunoprecipitated with the specific antibody. The immunoprecipitated PDI was subjected to immunoblot analysis with anti-S-NO-Cys
or anti-PDI antibody. *, Significantly different from control or albumin-treated cells by densitometric analysis (p,0.05).
doi:10.1371/journal.pone.0037917.g003

Figure 4. Induction of neuronal cell death by AGE-albumin through up-regulation of RAGE, mitochondrial calcium influx, and
MAPK-Bax pathway. (A) The relative levels of RAGE (green) or DAPI (blue) in human primary neuronal cells, before or after albumin (ALB) or AGE-
albumin (AGE-ALB) treatment for 6 h, were evaluated by double confocal microscopic image analyses. Similar results were observed in 5 independent
analyses. (B) Double confocal microscopic images simultaneously show the neuronal marker (NeuroD) and relative levels of Bax (green), or DAPI
(blue) in human neuronal cells before or after AGE-ALB treatment for 6 h. (C, D) Whole cell lysates (0.01 mg protein/lane) of human neuronal cells,
before or after AGE-albumin exposure, were subjected to immunoblot analysis to determine the levels of ERK1/2, pERK1/2, p38, pp38, pSAPK/JNK,
and Bax with specific molecular weight markers (M). b-Actin was used as an internal control for equal protein loading for each lane. (E) Increased level
of mitochondrial calcium was evaluated by triple labeled confocal microscopic image analysis before (top panel) and after human neuronal cells were
exposed to ALB (middle) or AGE-albumin (bottom): calcium concentration (Fluor-3, green), mitochondria (red), or DAPI-stained nuclei (blue). Scale
bar = 50 mm. These results represent similar images of 5 independent analyses. (F, G) The rate of cell death was determined by the apoptosis assay
after human neuronal cells were exposed to different concentrations of AGE-albumin alone. (F), or 20 mg/mL AGE-albumin treatment in the absence
or presence of co-treatment with sRAGE, pyridoxamine or ALT-711 for 24 h (G).
doi:10.1371/journal.pone.0037917.g004

Implication of Microglial AGE-Albumin in AD
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Figure 5. Protection of Ab-mediated neuronal cell death by sRAGE, pyridoxamine or ALT-711 through decreasing RAGE levels. (A, B)
The relative levels of neurons in rat brains were evaluated by cresyl violet staining after Ab injection without or with sRAGE, pyridoxamine or ALT-711
co-treatment for 72 h. *, Significantly increased in Ab/sRAGE, Ab/pyridoxamine and Ab/ALT-711 co-treated samples compared to Ab treatment only
(p,0.01). (C) Triple confocal microscopic images simultaneously show the relative numbers of AGE, albumin, or Iba1 positive cells in the rat
entorhinal cortex (EC) before or after Ab or Ab/sRAGE injection for 72 h. These results represent similar images of 5 independent analyses. (D) *, The
number of the triple-labeled cells (AGE/albumin/Iba-1 positive cells) significantly increased in whole EC area of Ab injected rat brain but decreased
dramatically in Ab/sRAGE treated rat brain (p,0.01). (E) The levels of RAGE positive neuronal cells were evaluated by triple-labeled confocal

Implication of Microglial AGE-Albumin in AD
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cell damage. We recently reported that albumin can be

synthesized in microglial cells in the brain [6]. Mass spectral

analysis further confirmed the synthesis of albumin. We also

demonstrated that the synthesis and extracellular secretion of

albumin from microglial cells were elevated upon microglial

activation following Ab1–42 exposure or lipopolysaccharide [6].

Since we did not know the physiological role of albumin in

microglia cells, we initially proposed that albumin production

would be protective against cell death by suppression of Ab
polymerization with enhancement of its clearance [6]. Contrary to

our expectation, we now find a detrimental role of albumin

synthesized in microglial cells. Our current results show that

albumin alone does not affect cell death rate or Ab polymeriza-

tion/aggregation. In contrast, we demonstrate that albumin

synthesized mainly from activated microglial cells is conjugated

with AGE to produce a potently toxic AGE-albumin, which

promotes Ab polymerization and death of neuronal cells in

primary culture. This conclusion was further supported by the

results obtained from animal experiments as well as brain

specimens from AD individuals compared to the corresponding

controls.

To study the mechanism by which AGE-albumin synthesis is

increased and how it promotes neuronal cell death, we first

investigated the distribution of AGE and albumin in HMO6

microglial cells and human AD brains. Surprisingly, most AGEs

were co-localized with albumin (Fig. 1), suggesting that AGE-

albumin could be a major AGE product in microglial cells in the

brain. Interestingly, the double-labeled AGE-albumin signal was

highly localized in the vicinity of the cells with apoptotic nuclei.

Based on our data of the elevated levels of AGE-albumin and co-

localization with apoptotic cells, we concluded that AGE-

albumin, the most abundant protein modified by AGE, is

produced largely by microglial cells but not other cell types in the

rat and human brains. Moreover, immunoblot analysis of whole

cell lysates revealed that the rate of AGE-albumin synthesis in

HMO6 microglial cells was markedly increased in a concentra-

tion-dependent manner following Ab exposure. Taken together,

these results strongly indicate that albumin is synthesized and

secreted mostly as AGE-albumin from microglial cells, and that

both the synthesis and secretion of AGE-albumin are significantly

increased by Ab treatment.

Ab1–42, which increases AGE-albumin synthesis, is known to

exert its toxicity through increased oxidative stress [16]. In our

data, the amounts of both intracellular and secreted AGE-

albumin, but not albumin itself, positively correlated with the

degree of oxidative stress. Based on the data from hydrogen

peroxide and ascorbic acid experiments, we conclude that Ab–

mediated increased oxidative stress is responsible for the synthesis

and its extracellular secretion of AGE-albumin in human HMO6

microglial cells.

Several studies reported that AGEs are localized in the senile

plaques and extra-cellular spaces [8,9,11,13,16,25]. In addition,

albumin was known as a potent inhibitor of Ab polymerization

and the amyloid inhibitory activity isolated from CSF and plasma

was ascribed to the presence of albumin [25], suggesting that

albumin may directly interact with Ab. Our results show that

AGE-albumin is closely associated with Ab in HMO6 microglial

cells, in neurons of Ab-exposed rat brains, and human AD brains.

But it is largely unknown whether the amount and distribution of

AGE-albumin, the most abundant and modified protein synthe-

sized in microglial cells, correlate positively with amyloid plaques.

Our data indicate that AGE-albumin increases microglial Ab
synthesis and accumulation in a vicious cycle, which further

aggravates the AD conditions through increased Ab production

via up-regulating the BACE level, AGE-albumin synthesis, and

neuronal cell death. Furthermore, our data showed that the

increased Ab accumulation is likely promoted through inactivation

of a chaperone PDI, as exemplified in the brains of AD

individuals, leading to Ab accumulation [15].

Increased level of RAGE, known to be expressed in neurons,

highly correlated with neuronal death and development of AD

[16]. In addition, AGE binds to RAGE in primary neurons [25].

Our immunohistochemical and immunoblot data showed that the

amount of RAGE was significantly increased in primary neurons

exposed to AGE-albumin compared to those untreated or treated

with albumin alone. Since the stress-activated protein kinases and

increased mitochondrial calcium influx are critically important in

initiating apoptosis [26,27], we also evaluated the effects of AGE-

albumin on the respective changes of MAPKs, Bax, mitochondrial

calcium influx, and cell death rate in the human primary neurons.

Our data demonstrate that AGE-albumin directly promotes

apoptosis of neuronal cells through activating the calcium-JNK-

Bax pathway, as demonstrated previously in other cell types

[28,29].

The sRAGE is an extracellular component of RAGE and can

inhibit AGE-RAGE interaction by binding AGE in extracellular

spaces [11,16]. Our results revealed that sRAGE protected Ab–

induced neuronal death when it was injected into rat brain

together with Ab. We also showed that the activated microglia

produces AGE-albumin in rat brains after Ab injection. Moreover,

the number of AGE-albumin positive activated microglia was also

decreased in Ab/sRAGE co-injected rat brains. The relative

numbers of neurons positive with RAGE, Bax, and p-JNK were

increased dramatically in Ab injected rat brains but markedly

decreased after Ab/sRAGE co-administration. These in vivo results

were consistent with our in vitro data observed with human

microglial cell line or human primary neuronal cells.

In summary, our current data show for the first time that AGE-

albumin, the most abundant form of brain AGEs, is synthesized in

microglial cells and secreted into extracellular space. The rate of

AGE-albumin synthesis is markedly increased by Ab treatment

and increased oxidative stress while its elevated levels are

frequently observed in the human brains of AD individuals

compared with controls. AGE-albumin also promotes Ab aggre-

gation in microglial cells. Furthermore, AGE-albumin promotes

the calcium-JNK-Bax-mediated apoptosis in primary neurons

from AD individuals (Figure S2). Our results, therefore, provide a

new mechanistic insight by which microglial cells play an

important role in promoting neuronal death in human primary

cells from AD individuals and Ab-exposed rat brains by

synthesizing and secreting potentially toxic AGE-albumin. Finally,

AGE-albumin could be an excellent biomarker as a therapeutic

target for neurodegenerative diseases including Alzheimer’s

disease.

microscopic image analysis in entorhinal cortex of control, Ab, or Ab/sRAGE injected rat brains. (F) *, The number of RAGE positive neuronal cells
significantly increased in Ab injected rat brain but decreased dramatically in Ab/sRAGE treated rat brain (p,0.01). (G-I) The number of Bax or pSAPK/
JNK positive neurons was evaluated by confocal microscopy. (H, I) *, The number of Bax positive neuronal cells (H) or pSAPK/JNK positive neuronal
cells (I) significantly increased in Ab injected rat brain but decreased dramatically in Ab/sRAGE treated rat brain (p,0.01). Scale bar = 50 mm.
doi:10.1371/journal.pone.0037917.g005

Implication of Microglial AGE-Albumin in AD
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Materials and Methods

Cell Culture
For in vitro studies, an immortalized human microglial cell line

(HMO6) was used. HMO6 cells were grown in Dulbecco’s

modified Eagle’s medium (DMEM, Gibco) containing a high

glucose concentration supplemented with 10% heat-inactivated

fetal bovine serum (FBS, Gibco) and 20 mg/ml gentamycin

(Sigma-Aldrich). These cells were maintained at 37uC under 5%

CO2. HMO6 cells were exposed to Ab1–42 (Sigma-Aldrich) at

concentrations from 0 up to 400 or 5 nM. For inhibition studies,

HMO6 cells were exposed to pyridoxamine (Sigma-Aldrich) for

3 h at concentrations from 0 up to 1 mM or ALT-711 (BioTrader)

for 1 h at concentrations from 0 up to 5 mM before 5 nM Ab1–42

treatment. HMO6 cells were then harvested 6 h after Ab1–42

treatment for further analysis.

Primary Culture of Human Neuronal Cells
Primary human neuronal cells were prepared from human

brain tissues. The brain tissue collection and usage were approved

by the Ethics Committee of the Seoul National University College

of Medicine, Seoul, Korea. Human primary neurons were

prepared as previously described [30]. In brief, small pieces of

human brain cortexes were incubated with phosphate-buffered

saline (PBS) containing 0.25% trypsin and 40 mg/ml DNase I for

30 min at 37uC. Dissociated cells were suspended in 5%

decomplemented serum in high glucose-containing minimal

essential medium with Earle’s salts, 1 mM sodium pyruvate, and

2 mM glutamine. All glial cells were removed and these neuronal

cells were maintained at 37uC under 5% CO2 for further

experiment.

Human Neuronal Cells
Primary human neuronal cells were purchased from Science-

Cell Research Laboratories (HN 1520). Human neuronal cells

were grown in Neuronal Medium (NM 1521) according to the

manufacturer’s suggestion for 2 days before AGE-albumin

treatment.

AGE-albumin and Ab
AGE-albumin (A9810) and monomeric Ab1–42 (A8301) were

purchased from Sigma-Aldrich. Oligomeric Ab was produced

from monomeric Ab by the previously published method [31,32].

Immunocytochemistry (ICC)
Cells were grown on Lab-Tek II slide chambers (Nunc), rinsed

with PBS, fixed in methanol for 15 min, and rinsed again with

PBS. The fixed cells on slide chambers were incubated overnight

at 4uC with the following primary antibodies: rabbit anti-AGE

antibody (1:200, Abcam), mouse anti-human-albumin antibody

(1:200, R&D System), anti-BACE antibody (1:50, Santa Cruz),

anti-ADAM10 antibody (1:200, R&D System), anti-APP antibody

(1:200, Chemicon), anti-RAGE antibody (1:50, Santa Cruz), or

anti-mitochondria antibody (1:50, Abcam). After overnight incu-

bation, the primary antibodies were washed with PBS three times

and the slides were incubated for 1 h at room temperature with

one of the following secondary antibodies: Alexa Fluor 633 anti-

mouse IgG (1:500, Invitrogen), Alexa Fluor 488 anti-rabbit IgG

(1:500, Invitrogen), or Alexa Fluor 555 anti-goat IgG (1:500,

Invitrogen). After washing the secondary antibodies with PBS

three times at 10-min intervals, coverslips were mounted onto glass

slides using the Vectashield mounting medium (Vector Laborato-

ries), and examined under a laser confocal fluorescence micro-

scope (LSM-710, Carl Zeiss).

Animals
Thirty adult male Sprague-Dawley rats (230–350 g) were used

in this study. The rats were maintained on a 12-h light-dark cycle,

had access to food and water ad libitum, and were acclimated for at

least 1 week prior to usage. All animal experiments were approved

by the Institute Animal Care and Use Committee of Lee Gil Ya

Cancer and Diabetes Institute of Gachon University and

conducted humanely.

Entorhinal Cortex Ab or sRAGE (Soluble RAGE) or ALT-711
Injection

Animals were anaesthetized with ketamine HCl (0.75 mg/kg

body weight) and xylazine (1 mg/kg body weight) prior to surgical

procedures. For in vivo treatments, Ab1–42 peptide was dissolved in

the artificial cerebrospinal fluid (ASCF, from Tocris Bioscience) at a

concentration of 400 mM and kept at 4uC until use. Ab1–42 was

injected into the entorhinal cortex (EC) with the aid of a stereotaxic

instrument, following the midline incision of the scalp skin. The skull

was pierced with a biological electric drill at the bregma (posteriorly,

8.3 mm; laterally, 5.4 mm) and the needle (30 gauge) on a 5 mL

Hamilton syringe was lowered vertically until it reaches the target

areas (depth, 4.5 mm). Three microliters of 200 mM Ab1–42 diluted

in ASCF or 3 mL of ASCF (as a negative vehicle control) were

injected slowly at the rate of 1 mL per minute with an automatic

microinjector. Then the syringe was removed slowly and surgical

wounds were sutured with wound clips followed by topical treatment

with antibiotics. To determine the protection by sRAGE or ALT-

711, five rats were co-injected with Ab1–42 and 3 mL of 6.7 nM

sRAGE or 3 mL of 40 mM ALT-711.

Tissue Preparation
Most rats were allowed to recover for a total of 3 days post

injection. After full recovery, all rats were re-anaesthetized by the

same manner and perfused trans-cardially with 100–200 mL of

heparinized saline at 18uC followed by 400 mL of 4% parafor-

maldehyde-lysine periodate in 0.1 M sodium phosphate buffer

(pH, 7.4). The brains were removed, placed in the same fixative

for 4 h at 4uC, and then transferred into ice-cold 0.1 M

phosphate-buffered saline (PBS) containing 20% sucrose. The

brains were cut in a transverse plane at 10 mm thickness with a

freezing microtome and were stored at 280uC until use.

Immunohistochemistry (IHC)
Human brain tissues from normal adults and AD individuals

were obtained from the Brain Bank of Seoul National University

Hospital and the Brain Bank of Niigata University Hospital. The

collection and use of human brain tissues were approved by the

Institutional Review Board of Clinical Research Institute, Seoul

National University Hospital and Niigata University Hospital,

respectively. Brain tissues were fixed in 4% paraformaldehyde in

0.1 M neutral phosphate buffer, followed by cryoprotection in

30% sucrose solution overnight, and then 10 mm sections were

prepared with a cryostat (Leica CM 1900). Paraffin-embedded

brain tissues were cut into 4 mm-thick sections, deparaffinized with

xylene, and rehydrated with a series of graded ethanol. Normal

goat serum (10%) was used to block non-specific protein binding.

Other staining methods were the same as described in the

immunocytochemistry.

Enzyme-linked Immunosorbent Assay (ELISA)
The amounts of AGE-albumin or Ab in the extracellular culture

media and cell lysates were determined by double ELISA using

rabbit anti-Ab, anti-AGE antibody and mouse anti-human ALB
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antibody. Six biological replicates were used, and each sample was

measured in duplicate. We coated the 96-wells by incubation with

an anti-ALB antibody (1:800, Abcam). The unbound anti-ALB

antibody was washed with 16PBS three times at 10 min intervals.

Filtered extracts using Amicon filter (cut-off 3 kD) from culture

media or cell lysates were then added into each well and incubated

for 1 h to be captured by the bound anti-ALB antibody. The

unbound proteins were washed off from each well by washing with

16PBS three times at 10 min intervals. After washing the

unbound ALB, the second anti-AGE antibody (1:1000, Abcam)

was added to each well to allow interaction with AGE of the

captured ALB-AGE. The unbound anti-AGE antibody was then

washed off with 16PBS three times before HRP conjugated anti-

rabbit secondary antibody (1:1000, Vector Laboratories) was

incubated for additional 1 h. After washing the unbound HRP-

conjugated secondary antibody, color was developed by incuba-

tion with 3,39, 5,59-tetramethylbenzidine (TMB) for 15 mins, and

reaction stopped with an equal volume of 2 M H2SO4.

Absorbance in each well was measured at 450 nm using an

ELISA plate reader (VERSA Max, Molecular Devices).

Co-immunoprecipitation
Whole cell lysates from HMO6 before and after Ab treatment

were prepared with RIPA buffer containing 1 M Tris (pH 7.5),

5 M NaCl, 10% NP-40, 10% deoxycholate and protease inhibitor

cocktail (Calbiochem). The experiment was repeated three times.

Whole cell lysates (0.5 mg protein) were incubated with 5 mg of

anti-AGE (Abcam) or anti-protein disulfide isomerase (PDI) for

4 h followed by overnight incubation with protein G-agarose in

500 ml PBS overnight at 4uC. The agarose beads were precipitated

by centrifugation at 14,000 rpm for 5 min, and washed three

times with 1 ml washing buffer containing 50 mM Tris–Cl and

500 mM NaCl (pH 8.0). The immunoprecipitated proteins were

resolved on a 4–12% polyacrylamide gel (Invitrogen), and

subjected to immunoblot analysis with the respective antibody as

follows: anti-AGE antibody (1:1000, Abcam), anti-albumin anti-

body (1:1000, Abcam), anti-PDI antibody (1:200, Santa Cruz), or

anti-S-NO-Cys antibody (1:200, Sigma).

Immunoblot Analysis
Whole cell lysates were prepared with RIPA buffer containing

4% CHAPS. Proteins from each group were separated in 4–12%

polyacrylamide gels (Life Technology) and transferred to nitrocel-

lulose membranes. The primary antibodies used were: anti-BACE

(1:200, Santa Cruz); anti-ADAM10 (1:1,000, R&D System); anti-

APP (1:1,000, Chemicon); anti-RAGE (1:200, Santa Cruz), and

anti ß-actin (1:1,000, Cell Signaling).

ThT Fluorescence Assay
ThT fluorescence assays were performed with synthetic Ab1–42

(Sigma-Aldrich) as described previously with constant shaking for

2.5 h at 37uC. Albumin and AGE-albumin were added at 10 mM

each. ThT emission fluorescence was measured at 483 nm

(450 nm excitation) with a Perkin-Elmer luminescence spectro-

photometer LS-55. Fluorescence values for albumin- or AGE-

albumin-exposed cells were normalized to the DMSO-treated

negative control and expressed as percentage relative fluorescence.

Apoptosis Detection Assay
HT Titer TACS Assay kit (R&D systems) was used to detect

apoptotic neuronal cells after AGE-ALB treatment by following

the manufacturer’s protocol. Briefly, human neuronal cells grown

in 96-well plates were fixed with 4% formaldehyde for 7 min

followed by proteinase K incubation for 15 min. The neuronal

cells in each well were then labeled with TdT (Terminal

deoxynucleotydil transferase) for 60 min and washed to remove

the excess TdT reagent. The cells were incubated with

Streptavidin-HRP for 1 h, followed by removal of the unbound

Streptavidin-HRP, the HRP enzyme reaction was performed by

TACS-Sapphire. By stopping the reaction with 5% phosphoric

acid, apoptotic cells in each plate were determined by fluoro-

cytometry at 450 nm.

Calcium Imaging
Primary human neuronal cells were grown on Lab-Tek II glass

slide chambers (Nunc). After 2 days of cell culture, cells were

incubated with 4 mM Fluo-3 dye (Life Technology) for 40 min at

37uC. After incubation with Fluo-3 dye, the cells were subjected to

image analysis with a laser confocal fluorescence microscope (LSM

710, Carl Zeiss). Upon adjusting proper fields, 100 ng/ml of AGE-

albumin was carefully added into the slide chamber to record any

changes in intracellular calcium levels during the first 20 min.

Densitometry and Statistical Analysis
The densitometric intensity of each immunoreactive band was

determined by using a gel digitizing Image-Pro software. All data

in this report represent the results from at least 3 independent

experiments, unless stated otherwise. Statistical analyses were

performed using the Student’s t test and p,0.05 was considered

statistically significant.

Supporting Information

Figure S1 Increased Ab synthesis through up-regulation of

BACE following AGE-ALB treatment. (A) The relative amounts of

APP, ADAM10, or BACE were studied by immunoconfocal

microscopic image analysis after HMO6 cells were treated with or

without AGE-albumin (AGE-ALB). Scale bar = 50 mm. (B, C)

Whole cell lysates (0.01 mg protein/lane) were used to determine

the levels of BACE, ADAM10, and APP in HMO6 cells before or

after AGE-ALB treatment by immunoblot analysis. b-Actin level is

shown for comparable protein loading per lane. (D, E) Whole cell

lysates (0.01 mg protein/lane) of HMO6 cells after AGE-albumin

exposure were prepared and used for immunoblot analysis to

determine the levels of Ab.

(PDF)

Figure S2 A proposed model of AGE-albumin mediated

neuronal cell death and its contribution to AD. The schematic

diagram illustrates the synthesis in microglial cells and extracel-

lular secretion of AGE-albumin, which induces neuronal cell death

and ultimately contributes to neurodegeneration. AGE-albumin

synthesis and secretion in microglial cells is increased upon Ab
treatment. Consequently, elevated amounts of AGE-albumin are

ubiquitously distributed in the brain cortex of AD individual.

AGE-albumin then increases RAGE expression and mitochondri-

al calcium influx, leading to apoptosis in primary neurons. The

microglial cells may also play an important role in neuronal cell

death in AD by synthesizing and secreting AGE-albumin, which

promotes Ab production and aggregation in microglial cells.

Taken together, AGE-albumin promotes death of primary

neuronal cells, and of neurons in rat brains, and human brains,

likely contributing to neurodegenerative diseases including AD.

(PDF)
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