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Abstract: In this paper, a QR-decomposition-based scheduled belief propagation (BP) detector with
interference cancellation (IC) and candidate constraints is proposed for multiple-input multiple-
output (MIMO) systems. Based on a bipartite graph generated from an upper triangular channel
matrix following linear transformation using QR decomposition, the proposed detector performs a
sequential message updating procedure between bit nodes. During this updating procedure, candi-
date constraints are imposed to restrict the number of possible candidate vectors for the calculation
of observation-to-bit messages. In addition, after obtaining the soft message corresponding to the
bit sequence in each transmit symbol, a hard-decision IC operation is performed to reduce the size
of the bipartite graph and indirectly update the messages for the remaining symbols. Therefore,
the proposed scheme provides a huge complexity reduction compared to conventional BP detectors
that perform message updating by using all related messages directly. Simulation results confirm
that the proposed detector can achieve suboptimum error performance with significantly improved
convergence speed and reduced computational complexity compared to conventional BP detectors
in MIMO systems.

Keywords: belief propagation; MIMO systems; QR decomposition; interference cancellation; candi-
date constraint

1. Introduction

In multiple-input multiple-output (MIMO) systems, signals are simultaneously sent
from multiple transmit antennas, and a receiver must estimate and detect the transmitted
signals [1,2]. Although the linear detection schemes, such as linear zero-forcing (LZF) and
linear minimum mean-square-error (LMMSE), can perform simple detection procedures
with low complexity, their accuracy is relatively poor. In contrast, optimal detection
schemes, such as maximum likelihood (ML), incur massive computational complexity that
increases exponentially with the number of transmit antennas. Therefore, many alternative
detection schemes have been investigated for MIMO systems.

Message passing (MP) algorithms are known to solve a wide variety of problems by fac-
torizing the global function of variables into a combination of simpler local functions [3–5].
Among MP approaches, belief propagation (BP) algorithms perform inference on graph-
ical models (e.g., bipartite graphs) [6], and they have been widely applied for channel
decoding problems [7,8] and detection problems [9–15]. These BP algorithms can achieve
suboptimum performance, and thereby a number of BP detectors have been developed for
MIMO systems.

In a BP detector, messages from bit and observation nodes are iteratively exchanged
based on a bipartite graph that is utilized for detection. However, the bipartite graph
for a basic MIMO system model is fully connected, that is, every bit node (observation
node) is connected to all observation nodes (bit nodes) by edges, where transmitted bits
and received signals are interpreted as bit and observation nodes, respectively. Therefore,
based on large numbers of nodes and edges, a BP detector based on a fully connected
bipartite graph for MIMO systems (referred to as the standard BP detector hereafter) incurs
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huge computational complexity that can even exceed that of ML detection [10]. Therefore,
several methods for reducing the computational complexity of the standard BP detector
have been studied.

One of the simplest approaches is the edge pruning technique [10,11]. In edge pruning,
the calculation of messages for selected edges is forcefully omitted in each BP iteration,
where the selection is performed based on a given criterion, e.g., channel gain. Although
significant reductions in complexity can be achieved, error performance is also reduced
compared to the standard BP detector. As another low complexity approach, in [14], a BP
detector with damping on the a priori probability was developed, although it is designed
for large-scale MIMO systems with spatial correlation. In addition, in [15], a BP-based deep
learning detector for low complexity detection was investigated for MIMO systems, which
requires additional overhead for training.

For general MIMO systems without incurring extra overhead, QR-decomposition-
based BP detectors (referred to as QR-BP detectors hereafter) are known to show a lower
complexity and better error performance compared with the standard BP detector [12,13].
In QR-BP detectors, QR decomposition of the MIMO channel matrix is performed, and
the unitary matrix obtained from QR decomposition is used for the linear transformation
of the basic MIMO system model. Based on the upper triangular structure of the channel
matrix following linear transformation, the bipartite graph for the linearly transformed
channel matrix contains a smaller number of edges than the fully connected bipartite
graph, which reduces the number of calculated messages. In addition, the number of
cycles in the bipartite graph is also reduced compared to the fully connected bipartite
graph without information loss on the likelihoods estimated from noisy observations
via linear transformation using a unitary matrix [16,17]. Therefore, QR-BP detectors can
obtain better performance with less computational complexity compared to the standard
BP detector. However, QR-BP detectors still incur huge computational complexity that
increases exponentially with the number of transmit antennas. Furthermore, standard BP
and QR-BP detectors employ parallel message updating procedures, that is, all messages
in the current BP iteration are updated simultaneously using messages obtained from the
previous BP iteration. Therefore, these methods require many BP iterations for convergence,
which increases complexity in practical applications further.

Therefore, to obtain additional reductions in computational complexity while ac-
celerating convergence speed and minimizing performance loss, this paper proposes a
scheduled QR-BP detector with interference cancellation (IC) and candidate constraints
(referred to as the QR-SBP detector hereafter) for MIMO systems. The aim of this study can
be summarized as below:

• The proposed QR-SBP detector is based on the bipartite graph from the upper triangu-
lar matrix obtained by the linear transformation using QR decomposition. Therefore,
similar to QR-BP detectors, the numbers of edges and cycles are reduced compared to
the fully connected graph for the standard BP detector.

• In order to accelerate the convergence speed from QR-BP detectors, the proposed QR-
SBP detector performs sequential updating of bit-to-observation and observation-to-
bit messages for each transmit symbol, which is motivated by scheduled BP decoding
algorithms for channel codes [7,8]. Therefore, the messages for the last transmit
symbol updated in the current BP iteration are utilized for updating the messages for
the next transmit symbol, which can significantly accelerate convergence.

• Furthermore, for a smaller complexity compared to other BP detectors, the hard-
decision IC operation is applied to the effective receive signal vector by regenerating
the transmit symbols using the updated messages. Then, the sizes of the effective
system model and corresponding bipartite graph are reduced after IC. Therefore,
unlike existing BP detectors that calculate messages directly from all related messages,
the proposed scheme can reduce the number of other messages required for updating
each message, which reduces overall computational complexity.
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• In addition, for additional complexity reductions, the proposed QR-SBP detector
employs a candidate constraint strategy during the updating of observation-to-bit
messages for a given transmit symbol. Specifically, the number of candidate vectors
used for updating observation-to-bit messages is limited, which facilitates additional
complexity reduction.

As a result, the computational complexity of the proposed QR-SBP detector is ap-
proximately proportional to the square of the number of transmit antennas, where the
standard BP and QR-BP detectors have complexity that increases exponentially with the
number of transmit antennas. Therefore, compared with the conventional BP detectors, the
proposed QR-SBP detector yields a significantly accelerated convergence speed and a huge
complexity reduction.

The remainder of the paper is organized as follows. Section 2 describes the MIMO
system model. Section 3 introduces the conventional standard BP and QR-BP detectors.
Section 4 presents the detailed procedures of the proposed QR-SBP detector. Section 5
presents simulation results that verify the performance of the proposed scheme. Finally,
Section 6 concludes this paper.

Notation. Throughout the paper, the following notations are used. Lower-case and upper-case
boldface letters denote vectors and matrices, respectively. The superscripts T and H denote the
transpose and transpose-and-conjugate operators, respectively. [·, ·] and [·; ·] denote column-wise
and row-wise aggregation of elements, respectively. A(:, a : b) denotes a submatrix of A containing
its ath to bth columns and A(a : b, :) denotes a submatrix of A containing its ath to bth rows. 0a×b
and Ia denote the a× b all-zero matrix and a× a identity matrix, respectively. E[·] denotes the
expectation operation and d·e denotes the ceiling operation.

2. System Model

We consider a spatially multiplexed MIMO system in which the numbers of transmit
and receive antennas are K and M(≥K), respectively. This can represent both single-
user MIMO (e.g., a point-to-point M× K MIMO system) and multi-user MIMO (e.g., an
uplink MIMO system with K single-antenna users and M antennas at the base station)
systems. Let {bj,1, · · · , bj,KQ} denote the bit sequence for the jth transmit signal vector in
the current transmission time slot, where {bj,(k−1)Q+1, · · · , bj,kQ} is the bit sequence sent
from the k(1 ≤ k ≤ K)th transmit antenna. Q is the number of bits assigned for each
transmit symbol (i.e., the modulation order is 2Q). For modulation, we consider a 2Q-ary
constellation set X that satisfies ∑x∈X x = 0 and ∑x∈X |x|2/2Q = 1.

Without loss of generality, the index j is omitted for notational simplicity. Then,
{b1, · · · , bKQ} denotes the bit sequence in the current transmission time slot, where
{b(k−1)Q+1, · · · , bkQ} represents the bit sequence sent from the kth transmit antenna and
N = KQ is the length of the bit sequence in each transmit signal vector. Let x =

[x1, · · · , xK]
T be a K× 1 transmit signal vector for the current transmission time slot, where

each xk(1 ≤ k ≤ K) generated from {b(k−1)Q+1, · · · , bkQ} is the transmit symbol at the kth
transmit antenna. Then, according to the general input-output relationship of a spatially
multiplexed MIMO system [1–4,9–15], the M× 1 receive signal vector y = [y1, · · · , yM]T

can be written as

y = Hx + n. (1)

In (1), H is an M × K full-rank MIMO fading channel matrix (i.e., rank(H) = K),
where E[|H(m, k)|] = 1 for 1 ≤ m ≤ M and 1 ≤ k ≤ K, and n is an M × 1 additive
white Gaussian noise (AWGN) vector whose elements are independent and identically
distributed complex Gaussian random variables with zero mean and variance σ2. Because
each xk is a member of X, E[xxH ] = IK.
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3. Conventional BP Detectors

In this section, the detailed procedures of the conventional BP detectors are described.
Two BP detectors closely related to the proposed QR-SBP detector, the standard BP detec-
tor [10] and QR-BP detector [12] are introduced.

3.1. Standard BP Detector

In the standard BP detector, a conventional MIMO channel matrix H is modeled as a
bipartite graph containing M observation nodes (corresponding to the received symbols
{y1, · · · , yM})) and N(=KQ) bit nodes (corresponding to the bit sequence {b1, · · · , bN}).
Soft messages are iteratively generated and exchanged between the bit and observation
nodes. Based on the use of H, the bipartite graph for the standard BP detector is fully
connected. Therefore, let αnm for 1 ≤ n ≤ N and 1 ≤ m ≤ M denote the message sent from
the nth bit node to the mth observation node, and let βmn for 1 ≤ m ≤ M and 1 ≤ n ≤ N
denote the message sent from the mth observation node to the nth bit node. In addition,
let XK,b denote the set of all possible K× 1 vectors whose elements are the members of the
constellation set X with bn = b for b = 0 and 1. Then, by using the max-log approximation
of log(ex + ey) ≈ max(x, y), each βmn for 1 ≤ m ≤ M and 1 ≤ n ≤ N can be calculated
as [10]

βmn ≈ max
x′∈XK,1

{
−|ym − hmx′|2 +

N
∑

i=1:bi=1,i 6=n
αim

}

− max
x′∈XK,0

{
−|ym − hmx′|2 +

N
∑

i=1:bi=1,i 6=n
αim

}
,

(2)

where hm is a 1× K row vector corresponding to the mth row of H and αim is the most
recently generated message from the ith bit node to the mth observation node. Note that
all αnm should be initialized to zero before the beginning of the first BP iteration.

After obtaining βmn, αnm for 1 ≤ n ≤ N and 1 ≤ m ≤ M can be simply updated as

αnm =
M

∑
i=1;i 6=m

βin. (3)

Equations (2) and (3) are performed repeatedly until a stopping criterion is satisfied
(e.g., the maximum number of BP iterations). If the soft output of the nth bit bn is required
after the tth BP iteration, then the log-likelihood ratio (LLR) ln can be obtained as

ln =
M

∑
i=1

βin = αnm + βmn ∀m. (4)

By exchanging αnm and βmn in an iterative manner, the standard BP detector can obtain
fine error performance if a sufficient number of BP iterations are performed. However, the
cardinality of XK,b in (2) is 2KQ−1(=2N−1) for both b = 0 and 1. Therefore, the computational
complexity of the standard BP detector for each iteration exponentially increases with K
and Q. In addition, because the fully connected bipartite graph is a loopy graph containing
many cycles, the convergence of the standard BP detector is not guaranteed [18]. Therefore,
the standard BP detector requires a number of BP iterations to achieve acceptable error
performance, which is impractical when considering the huge computational load of each
BP iteration.

3.2. QR-BP Detector

In the QR-BP detector, QR decomposition is performed on the original channel matrix
H and linear transformation is performed using the unitary matrix obtained from QR
decomposition. Specifically, following QR decomposition, H can be rewritten as

H = Q[R; 0(M−K)×K], (5)
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where Q is an M × M unitary matrix and R = [r1; · · · ; rK] is a K × K upper triangular
matrix with a 1× K row vector rm for 1 ≤ m ≤ K, where the first (m− 1) elements in rm
are equal to zero (i.e., rm = [01×(m−1), rm,m, · · · , rm,K]). Because [IK, 0K×(M−K)]QHH = R,
based on the multiplication of [IK, 0K×(M−K)]QH , y in (1) can be transformed as

ỹ =
[
IK, 0K×(M−K)

]
QHy = Rx + ñ, (6)

where ỹ = [ỹ1, · · · , ỹK]
T and ñ = [IK, 0K×(M−K)]QHn are the K × 1 receive signal and

AWGN vectors following linear transformation, respectively, and the new channel matrix
R can be written as

R =


r1
r2
...

rK

 =


r1,1 r1,2 · · · r1,K
0 r2,2 · · · r2,K
...

. . . . . .
...

0 · · · 0 rK,K

. (7)

Therefore, after linear transformation based on QR decomposition, the original M× K
MIMO system model in (1) with H is represented by the K × K MIMO system model
in (6) with R. Because of the upper triangular structure of R, the bipartite graph based
on (6) is not fully connected. Therefore, the numbers of αnm and βmn are reduced compared
to the standard BP detector. Specifically, corresponding to the non-zero elements of R,
βmn exists for 1 ≤ m ≤ K and (m− 1)Q + 1 ≤ n ≤ N, and αnm exists for 1 ≤ n ≤ N and
1 ≤ m ≤ dn/Qe. Then, in the tth BP iteration, each βmn is given by [12]

βmn ≈ max
x′∈XK−m+1,1

{
γm(x′)+

N
∑

i=(m−1)Q+1:bi=1,i 6=n
αim

}

− max
x′∈XK−m+1,0

{
γm(x′)+

N
∑

i=(m−1)Q+1:bi=1,i 6=n
αim

}
,

(8)

where γm(x′) = −|ỹm − r̃mx′|2 and r̃m is a 1× (K−m + 1) vector containing the non-zero
elements of rm. In addition, Xa,b for b = 0 and 1 in (8) denotes the set of all the possible
a× 1 vectors whose elements are members of the constellation set X with bn = b. Note that
the entire αnm for 1 ≤ n ≤ N and 1 ≤ m ≤ dn/Qe should be initialized to zero prior to the
first BP iteration, as in the standard BP detector.

Following the calculation of βmn, αmn can be obtained as

αnm =
dn/Qe

∑
i=1;i 6=m

βin. (9)

Similar to the standard BP detector, (8) and (9) are applied repeatedly for the QR-BP
detector until a stopping criterion is satisfied. After the tth BP iteration, the soft output of
the nth bit bn, ln, can be obtained as

ln =
dn/Qe

∑
i=1

βin = αnm + βmn ∀m ≤ dn/Qe. (10)

Therefore, instead using a fully connected bipartite graph based on H as in the stan-
dard BP detector, a bipartite graph from an upper triangular matrix R is utilized in the
QR-BP detector based on QR decomposition and linear transformation. No information is
lost by using the unitary matrix QH for the linear transformation [16,17]. Consequently,
by having fewer edges and cycles, the QR-BP detector can provide improved error perfor-
mance with reduced computational complexity per BP iteration compared to the standard
BP detector. However, because βmn is still updated in parallel using αim generated from the
last BP iteration as in (8), convergence speed is not significantly accelerated compared to
the standard BP detector [12]. Furthermore, because the maximum cardinality of XK−m+1,b
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in (8) is still 2KQ−1(= 2N−1) when m = 1, the computational complexity of the QR-BP
detector still increases exponentially with K and Q.

4. Proposed QR-SBP Detector with IC and Candidate Constraints

In this section, the details of the proposed QR-SBP detector are described, where the
overall sequential procedure is illustrated in Figure 1. In the proposed QR-SBP detector,
QR decomposition and the corresponding linear transformation are performed first, as
in (5) to (7) for the QR-BP detector, before beginning the detection process. Therefore, a
bipartite graph from the upper triangular matrix R is used instead of a fully connected
graph from the original channel matrix H. Furthermore, as in the standard and QR-BP
detectors, all bit-to-observation messages αnm are initialized to zero prior to the beginning
of the detection procedure.

initialization

QRD based linear 

transformation

1st iteration 2nd iteration

Kth symbol (K−1) th symbol 1st symbol Kth symbol

message update 

for the bits in x
K

message update 

for the bits in x
K

message update 

for the bits in x
K−1

message update 

for the bits in x1

hard-decision IC hard-decision IC hard-decision IC
hard-decision IC

(can be omitted)

Figure 1. Illustration of the overall sequential procedure of the proposed QR-SBP detector.

In each BP iteration, the proposed QR-SBP detector performs a bit-by-bit message
updating procedure from the last transmit symbol (xK) to the first transmit symbol (x1). In
other words, during each BP iteration, the message updating procedure from xK to x1 is
performed sequentially for the bit sequence included in each transmit symbol, i.e., q = 1
to q = Q for b(K−1)Q+q in xK, q = 1 to q = Q for b(K−2)Q+q in xK−1, etc. At the end of the
message updating procedure for a bit sequence in xk+1, a hard decision symbol x̂k+1 is
generated and canceled based on the receive signal vector. Let ỹ(k) denote the receive signal
vector used for the message updating of the bit sequence in xk after the hard-decision IC of
x̂k+1, where ỹ(K) = ỹ because there is no IC operation. Then, ỹ(k) can be represented as

ỹ(k) = ỹ(k+1) − rk x̂k. (11)

Because of hard-decision IC operations, the effects of the symbols {xk+1, · · · , xK} do
not need to be considered for the message updating procedures of {b(k−1)Q+1, · · · , bkQ}
in xk. Specifically, if the k′(k + 1 ≤ k′ ≤ K)th column of the linearly transformed channel
matrix R is eliminated by the cancellation of xk′ , then the m′(k + 1 ≤ m′ ≤ K)th row
of the resulting R(:, 1 : k) channel matrix becomes a 1× k all-zero vector by the upper
triangular structure of R. Consequently, the m′th row of R(:, 1 : k) also does not need
to be considered during message calculation. Therefore, following the hard-decision IC
operations of {xk+1, · · · , xK}, the system model in (6) can be reformulated for the message
updating of the bit sequence in xk as

z(k) = R(k)x(k) + ñ(k), (12)

where z(k) = ỹ(k)(1 : k) = [z(k)1 , · · · , z(k)k ]T is a k× 1 effective receive signal vector with
z(K) = ỹ, x(k) = x(1 : k) = [x1, · · · , xk]

T is a k× 1 effective transmit signal vector, ñ(k) =
ñ(1 : k) is a k × 1 effective AWGN vector, and R(k) = R(1 : k, 1 : k) is a k × k effective
channel matrix defined as

R(k) =


r1(1 : k)
r2(1 : k)

...
rk(1 : k)

 =


r1,1 r1,2 · · · r1,k
0 r2,2 · · · r2,k
...

. . . . . .
...

0 · · · 0 rk,k

. (13)
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Therefore, by performing IC operations, a smaller system model can be used as k
decreases, which leads to complexity reduction during the message updating procedure
based on a smaller bipartite graph.

After the hard-decision IC operations using x̂k+1(2 ≤ k + 1 ≤ K), the message
updating procedure for b(k−1)Q+q in xk is performed sequentially from q = 1 to Q, where
the update order of the bit sequence in each symbol can be determined arbitrarily. Then,
for b(k−1)Q+q, the observation-to-bit message βmn with n = (k− 1)Q + q is sequentially

calculated from each z(k)m . The sequential updating order of βmn for a given n is from m = k
to m = 1 because an observation node with a larger m is connected to a smaller number of
bit nodes in the bipartite graph based on the upper triangular matrix R(k). When m = k,
then βmn with n = (k− 1)Q + q is initially obtained as

βmn ≈ maxB1
mn −maxB0

mn, (14)

where the set Bb
mn with b = 0 and 1 is defined as

Bb
mn =

{
γ
(k)
m (x′)+

kQ
∑

i=(m−1)Q+1:bi=1,i 6=n
αim

∣∣∣∣∣x′∈Xw,b
(k)

}
. (15)

In (15), w = k−m + 1, γ
(k)
m (x′) = −|z(k)m − r̃(k)m x′|2, r̃(k)m is a 1× w vector containing

the non-zero elements of the mth row of R(k), and Xw,b
(k) is a set of the w× 1 vectors whose

elements are the members of X with bn = b.
To reduce computational complexity further for the calculation of (14) and (15), in

addition to the hard-decision IC operation, a candidate constraint strategy is employed
in the proposed QR-SBP detector. Specifically, the cardinality of Xw,b

(k) , |Xw,b
(k) | is limited for

complexity reduction. Let δw
(k) denote the number of surviving w× 1 vectors that should

remain after the calculation of βmn for the next observation-to-bit message β(m−1)n. Then,

after the calculation of βmn in (14), the δw
(k) elements in Xw,b

(k) with the largest values in

Bb
mn are retained and selected to reduce the number of candidates considered for the next

observation-to-bit message updating procedure. Let Yw,b
(k) denote the set containing the

δw
(k) surviving w × 1 vectors in Xw,b

(k) . Then, by initially setting Yw,b
(k) = ∅, the following

procedure is repeated δw
(k) times to select the δw

(k) surviving vectors in Xw,b
(k) :

Yw,b
(k) = Yw,b

(k) ∪ arg max
x′∈Xw,b

(k) \Y
w,b
(k)

Bb
mn . (16)

Then, the set Xw+1,b
(k) , which is used for the next observation-to-bit message β(m−1)n, is

obtained using the surviving vectors in Yw,b
(k) as

Xw+1,b
(k) =

{[
x′

y′

]∣∣∣∣x′ ∈ X, y′ ∈ Yw,b
(k)

}
. (17)

Consequently, because |Yw,b
(k) | = δw

(k), the cardinality of Xw+1,b
(k) is limited to |Xw+1,b

(k) | =
2Q · δw

(k). In this manner, the candidates for observation-to-bit message updating are
constrained by the surviving vector selection after IC, which reduces the complexity of the
proposed scheme. Equations (16) and (17) do not need to be performed for the final βmn
with m = 1(w = k) because there are no remaining observation nodes to be considered for
the updating of β1n. Furthermore, the cardinality of X1,b

(k) (i.e., the first candidate set used to

obtain βmn with m = k(w = 1) for bn) is limited to 2Q−1 because there are 2Q−1 symbols
in X for a given b(= bn). Therefore, 1 ≤ δ1

(k) ≤ 2Q−1 and 1 ≤ δw
(k) ≤ 2Q for 2 ≤ w ≤ k− 1.

Note that a higher δw
(k) can improve detection performance by including a larger number of
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candidate vectors, whereas a smaller δw
(k) can reduce complexity for the calculation of βmn,

which is the main complexity burden of BP detectors.
The procedures in (14) to (17) are performed repeatedly from m = k to m = 1 (w = 1

to w = k) to obtain all βmn for bn(=(k−1)Q+q). After obtaining the entire βmn from m = k to
m = 1 for bn, the bit-to-observation message αnm can be calculated. Considering the k× k
effective channel matrix R(k), αnm is calculated for n = (k− 1)Q + q and 1 ≤ m ≤ k as

αnm =
k

∑
i=1;i 6=m

βin, (18)

which is the end of the message updating procedures for b(k−1)Q+q. The procedures in (14)
to (18) are sequentially performed from q = 1 to q = Q for {b(k−1)Q+1, · · · , bkQ} in xk.

After obtaining all αnm and βmn for {b(k−1)Q+1, · · · , bkQ} in xk, ln for (k− 1)Q + 1 ≤
n ≤ kQ can be calculated as

ln =
k

∑
i=1

βin = αnm + βmn ∀ 1 ≤ m ≤ k. (19)

The hard-decision symbol x̂k can then be generated after obtaining all soft messages for
{b(k−1)Q+1, · · · , bkQ}, and x̂k is used in the IC operation of xk for the bits in the remaining
symbols {x1, · · · , xk−1} in the current BP iteration.

To sum up, the message updating process of the proposed QR-SBP detector can be
described as follows:

(0) (Initialization) Perform QR decomposition on H using (5) and linear transformation us-

ing (6). Further, set t := 1, all αnm to zero, and k := K. Finally, set δ
(k′)
w for 1 ≤ k′ ≤ K

and 1 ≤ w ≤ k′.

(1) (Preparation for calculating messages for the bit sequence in xk) Set q := 1 and
n := (k− 1)Q + 1.

(1.1) (Initialization for bn) Set m := k. In addition, set X1,0
(k) and X1,1

(k) using X.

(1.1.1) (Update observation-to-bit messages) Update βmn using (14) and (15).
(1.1.2) (Select surviving vectors) If m > 1, calculate X

k−(m−1)+1,b
(k) for b ∈ {0, 1}

using (16) and (17).
(1.1.3) (Check remaining observation nodes for a given bit node) Set m := m− 1.

If m ≥ 1, then go back to (1.1.1). Otherwise, go to (1.1.4).
(1.1.4) (Update bit-to-observation messages) Update all αnm for 1 ≤ m ≤ k

using (18).
(1.2) (Check remaining bit nodes for a given transmit symbol) Set q := q + 1 and

n := n + 1. If q ≤ Q, then go back to (1.1). Otherwise, go to (2).

(2) (LLR calculation and hard-decision symbol generation) Calculate ln for (k− 1)Q + 1 ≤
n ≤ kQ using (19) and generate x̂k.

(3) (Hard-decision IC and system model reformulation) If k > 1, perform hard-decision IC
with x̂k and system model reformulation using (11) to (13).

(4) (Check remaining transmit symbols) Set k := k − 1. If k ≥ 1, then go back to (1).
Otherwise, go to (5).

(5) (Check iteration stopping criterion(s)) If an additional iteration is required, then set
t := t + 1, k := K, and go back to (1).

The main characteristics of the proposed QR-SBP detector can be summarized as follows:

• The proposed QR-SBP detector is based on a linearly transformed system model
using QR decomposition, which yields smaller numbers of edges and cycles in the
bipartite graph compared to the fully connected bipartite graph used in the original
system model.
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• By using candidate constraints for choosing appropriate numbers of candidate vectors
(δk
(k)) for the calculation of observation-to-bit messages, the proposed QR-SBP detector

can achieve acceptable error performance with smaller computational complexity
compared to conventional standard BP and QR-BP detectors.

• After the end of the message updating procedures for the bit sequences in each
transmit symbol, the hard-decision IC operation is performed using the estimated
symbols. By applying the hard-decision IC operation, the size of the effective system
model and corresponding bipartite graph decreases and the messages (αnm and βmn)
for the next symbols can be updated without using the messages for the current
symbol, leading to additional complexity reduction.

• The hard-decision IC operation in the proposed QR-SBP detector is enabled by per-
forming a sequential bit-by-bit message updating procedure for each symbol. Al-
though the messages for the current symbol are not directly utilized during the
updating of the messages for the remaining symbols, they indirectly improve the
quality of the messages for the remaining symbols by generating effective receive
signal vectors using IC. Therefore, unlike conventional standard BP and QR-BP de-
tectors with parallel processing structures, the messages for one symbol can update
the messages for other symbols during each BP iteration, which can significantly
accelerate convergence.

Based on these characteristics, the proposed QR-SBP detector with IC and candidate
constraints can significantly improve convergence speed compared to conventional BP
detectors while providing significantly reduced computational complexity for detection.

In the proposed scheme, because of employing the hard-decision IC, errors in the
symbol detected earlier (e.g., x̂k) can be propagated to the remaining symbols (e.g., x̂k′

with k′ < k), as in other detectors employing hard-decision IC [1,16]. The performance
degradation from this error propagation can be minimized by employing the ordering of
transmit symbols [1], e.g., sorted QR decomposition with a proper ordering criterion for
the linear transformation [16,19].

Next, the computational complexity of the proposed QR-SBP detector is calculated and
compared to those of the standard BP and QR-BP detectors. The computational complexity
of the proposed QR-SBP detector is mainly governed by the initial linear transformation
defined in (5) to (7), the IC operation in (11), and the calculation of βmn in (14) and (15). For
the linear transformation, most of the complexity burden stems from the QR decomposition
of the original channel matrix H, which requires a complexity of O(MK2) [19]. For the
hard-decision IC operation, k complex multiplications are required to obtain z(k)(= ỹ(k)(1 :
k)), which entails a complexity of approximately O(K(K + 1)/2) for each BP iteration.
In addition, when considering both Xk−m+1,b

(k) and b ∈ {0, 1}, the number of candidate

vectors for the calculation of βmn is at most 2δ
(k)
w · 2Q. Thus, because the number of βmn

updated in each BP iteration is K(K + 1)/2, the calculation of βmn in (14) and (15) requires
a complexity of at most O(K(K + 1)δ∗2Q), where δ∗ = max δ

(k)
w ∀w, k. Therefore, the

upper bound of the computational complexity of the proposed QR-SBP detector after
tmax iterations is approximately O(MK2 + tmaxK(K + 1)/2 + tmaxK(K + 1)δ∗2Q), which is
approximately proportional to δ and K2 and exponentially increases with Q. In contrast, the
computational complexities of the standard BP and QR-BP detectors are O(tmaxMK2KQ)
and O(MK2 + tmax ∑K

k=1 k2kQ), respectively, which increase exponentially with both K
and Q. Therefore, the proposed QR-SBP detector requires much smaller computational
complexity than conventional BP detectors, especially as K increases.

5. Simulation Results

In this section, the error performance of the proposed QR-SBP detector is evaluated.
The average bit-error ratio (BER) and frame-error ratio (FER) are utilized as the error
performance metrics of the detectors in uncoded and coded systems, respectively. To obtain
reasonable average BER and FER, numerical simulations were performed until 1000 frame
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errors were counted for each signal-to-noise ratio (SNR) point, where each frame consists
of 576 bits. In addition to the proposed QR-SBP detector, the linear LZF and LMMSE
detectors as well as the standard BP and QR-BP detectors are considered as reference
schemes. Furthermore, as an optimal bound for error performance, the ML detector and
matched-filter bound (MFB) are considered for uncoded and coded systems, respectively,
where the MFB is identical to the performance of the linear MF detector with K = 1 and the
same number of receive antennas M [1]. Quadrature phase shift keying modulation with
Q = 2 is also considered. In addition, the quasi-static fading channel in which the channel
response is constant over a frame is considered. Further, the number of BP iterations for
the BP-based detectors is set to eight. For the proposed scheme, a sorted QR decomposition
with the ordering criterion to minimize the SNR of the symbol detected later (e.g., x1) is
utilized for the linear transformation [16]. Finally, δw

(k) for the proposed QR-SBP detector is
set to two, regardless of k and w, unless otherwise specified.

5.1. Uncoded Systems

Figures 2 and 3 show the average BERs of the detectors in uncoded MIMO systems
under Rayleigh fading when K = M = 4 and K = M = 8, respectively. It is shown
that the proposed QR-SBP detector outperforms the standard BP and linear detectors on
both antenna configurations. The average BER of the proposed QR-SBP detector is slightly
degraded compared to those of the ML and QR-BP detectors, particularly when K = M = 8.
However, the SNR gains of the ML and QR-BP detectors over the proposed QR-SBP detector
are marginal compared to that of the proposed QR-SBP detector over the standard BP
and linear detectors. Because the proposed QR-SBP detector with δw

(k) = 2 requires much
less computational complexity than the ML and QR-BP detectors, the proposed QR-SBP
detector can be considered as an effective detection scheme for MIMO systems.

−2 0 2 4 6 8 10 12 14 16

SNR [dB]

10
−5

10
−4

10
−3

10
−2

10
−1

1

A
v

er
ag

e 
B

E
R

LZF

LMMSE

ML

Standard BP [10]

QR-BP [12]

Proposed QR-SBP

Figure 2. The average BERs of the detectors in uncoded 4 × 4 MIMO systems under Rayleigh fading.
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Figure 3. The average BERs of the detectors in uncoded 8 × 8 MIMO systems under Rayleigh fading.
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In Figure 4, the average BERs of the BP detectors under Rayleigh fading are presented
according to the number of BP iterations. Based on its serial updating procedure, the
average BER performance of the proposed QR-SBP detector with one BP iteration is almost
identical to the cases with more BP iterations. In other words, a small number of BP
iterations can be sufficient for the convergence of the proposed QR-SBP detector in most
scenarios. In addition, although the average BER of the QR-BP detector for higher numbers
of BP iterations is better than that of the proposed QR-SBP detector, the performance of the
QR-BP detector with a small number of BP iterations can be worse than that of the proposed
QR-SBP detector, which demonstrates that the proposed QR-SBP detector requires a smaller
number of BP iterations for convergence than the QR-BP detector. Furthermore, because of
utilizing a fully connected bipartite graph, the standard BP detector exhibits the slowest
convergence speed.
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Figure 4. The average BERs according to the number of BP iterations in uncoded MIMO systems
under Rayleigh fading.

Figure 5 presents the average BERs of the proposed QR-SBP detector according to
the number of candidates (i.e., δw

(k)), where the Rayleigh fading channel is considered.
Because δw

(k) for a given w is fixed, the subscript (k) is omitted for simplicity. It is clear
that a larger δw can facilitate better error performance for the proposed QR-SBP detector
at the cost of increased computational complexity. However, when K = M = 4, the
cases of (δ1, δw(≥2)) = (2, 2) exhibit nearly identical performance compared to the cases of
(δ1, δw(≥2)) = (2, 4) (i.e., the maximum numbers of candidates for Q = 2). This implies that
the proposed QR-SBP detector can achieve acceptable error performance without using the
maximum δw for a given system configuration. It is worth noting that even the proposed
scheme with the maximum δw can provide significantly lower computational complexity
than the standard BP and QR-BP detectors, as derived in Section 4.
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Figure 5. The average BERs according to the number of candidate vectors for the proposed QR-SBP
scheme in uncoded MIMO systems under Rayleigh fading, where w ≥ 2.
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Figure 6 shows the average BERs of the ML and proposed QR-SBP detectors in
uncoded MIMO systems under various fading channels, where K = 4 and M = 8. The
Rician factor is set to 3 for the Rician fading channel, and the exponential correlation
model with a coefficient of 0.5 is considered for both transmitter and receiver correlation
matrices in the spatial correlation channel. For the Rayleigh fading channels, because of rich
scattering, the proposed QR-SBP detector achieves the near-identical error performance
to the ML detector. Meanwhile, as the channel correlation becomes severe, the average
BERs of both detectors are degraded compared with those under Rayleigh fading because
of the lack of the diversity gain, and the performance degradation of the proposed QR-SBP
detector is relatively more significant than that of the ML detector. Nevertheless, the SNR
gain of the ML detector over the proposed QR-SBP detector is marginal regardless of the
fading channel, indicating that the proposed QR-SBP detector can achieve suboptimum
error performance for various channel environments.
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Figure 6. The average BERs of the ML and proposed QR-SBP detectors in uncoded 4×8 MIMO
systems under various fading channels.

5.2. Coded Systems

In this subsection, the performance of the detectors is evaluated in MIMO systems
with channel coding. A low-density parity-check code with a rate of 0.5 and codeword
length of 576 is considered as a channel code. Multi-codeword transmission is considered
(i.e., K codewords are generated and transmitted from each transmit antenna). For the BP
detectors, iterative detection is considered [9] (i.e., the output LLR vector from each BP
iteration is used as the input for the decoder and the output LLR vector from the decoder
is used as the bit-to-observation message αnm for the next BP iteration). For the proposed
QR-SBP detector, the serial exchange of information between the detector and decoder
is considered. In other words, following the calculation of the detector LLRs of the bits
in a codeword (transmit antenna) during a BP iteration, the detector LLRs are used for
decoding and the decoder LLRs are used for the IC operation in the BP iteration for the
next codeword (transmit antenna). For the BP detectors, the number of decoding iterations
for each codeword per BP iteration is set to 10, and thereby the total number of decoding
iterations is 80. For the linear detectors and MFB, the total number of decoding iterations is
also set to 80. In addition, an iteration stopping criterion is considered, i.e., the reception
procedure of a codeword is over when the syndrome vector of the codeword after each
decoding iteration is an all-zero vector.

Figures 7 and 8 compare the average FERs of the detectors in coded MIMO systems
under Rayleigh fading when K = M = 4 and K = M = 8, respectively. It is shown that
the proposed QR-SBP detector can outperform the other schemes and achieve similar
performance compared to the MFB and QR-BP detectors in both antenna configurations.
Unlike the results for uncoded systems, the average FER of the proposed QR-SBP detector
is nearly identical to that of the QR-BP detector for iterative detection when N = K = 8.
This shows that the proposed QR-SBP detector is also suitable for iterative detection, e.g.,
turbo equalization.
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Figure 7. The average FERs of the detectors in coded 4 × 4 MIMO systems under Rayleigh fading.
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Figure 8. The average FERs of the detectors in coded 8 × 8 MIMO systems under Rayleigh fading.

Figure 9 shows the average numbers of BP iterations of the BP detectors for conver-
gence in coded MIMO systems under Rayleigh fading when K = M = 4 and K = M = 8,
where the average number of BP iterations for convergence is computed based on the
BP iteration in which the iteration stopping criterion defined by the syndrome vector is
satisfied. The standard and QR-BP detectors exhibit similar convergence speeds when
K = M = 4, and the QR-BP detector exhibits a faster convergence speed than the standard
BP detector when K = M = 8. Meanwhile, similar to the results in Figure 4 for uncoded
systems, the proposed QR-SBP detector exhibits the fastest convergence speed, especially
when K = M = 8 in the high-SNR region. This verifies the effectiveness of the proposed
QR-SBP detector in terms of convergence speed.
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Figure 9. The average number of BP iterations in coded MIMO systems under Rayleigh fading.
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6. Conclusions

This paper proposed and investigated the QR-SBP detector for MIMO systems. The
proposed QR-SBP detector utilizes IC and candidate constraints in a scheduled manner,
which have not been considered in existing BP detectors for MIMO systems. By employing
IC and candidate constraints in a scheduled manner, the proposed QR-SBP detector can pro-
vide suboptimum error performance with significantly reduced computation complexity
and accelerated convergence speed compared to the conventional standard BP and QR-BP
detectors. Specifically, the proposed QR-SBP detector has a complexity approximately
proportional to the square of the number of transmit antennas, which is a huge reduction
compared to the standard BP and QR-BP detectors with the complexity that increases expo-
nentially with the number of transmit antennas. In addition, simulation results verify that
the proposed QR-SBP detector can achieve suboptimum error performance with a small
number of BP iterations, while the standard BP and QR-BP detectors require a number of
BP iterations for convergence. Therefore, the proposed QR-SBP detector can be considered
as an effective suboptimum detector for MIMO systems.

Throughout the paper, it is assumed that the proposed QR-SBP detector uses fixed
numbers of candidate vectors for observation-to-bit message updating. This can be opti-
mized according to the obtained messages and target system configuration. Furthermore,
instead of the hard-decision IC operation, the soft-decision IC operation can be utilized to
obtain a better error performance. In addition, in spite of the complexity reduction from
the conventional BP detectors, the complexity of the proposed QR-SBP detector is still high
for the cases of high-order modulation and large-scale MIMO systems, which needs to be
reduced for such cases. These topics can be discussed in future works.
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Abbreviations
The following abbreviations are used in this manuscript:

MIMO Multiple-input multiple-output
LZF Linear zero-forcing
LMMSE Linear minimum mean-square-error
ML Maximum likelihood
MP Message passing
BP Belief propagation
QR-BP QR-decomposition-based BP
IC Interference cancellation
QR-SB Scheduled QR-BP with IC and candidate constraints
AWGN Additive white Gaussian noise
LLR Log-likelihood ratio
BER Bit-error ratio
FER Frame-error ratio
SNR Signal-to-noise ratio
MFB Matched-filter bound



Sensors 2021, 21, 3734 15 of 16

Mathematical Symbols
The following mathematical symbols are used in this manuscript:

K Number of transmit antennas
M Number of receive antennas
Q Number of bits assigned for each transmit symbol
N Number of bits included in each transmit signal vector
X 2Q-ary constellation set
y M× 1 receive signal vector
H M× K MIMO channel matrix
hm mth row of H
x K× 1 transmit signal vector
n M× 1 AWGN vector
bn nth bit among the bit sequence in each x
αmn Message from the nth bit node to the mth observation node
βmn Message from the mth observation node to the nth bit node
XK,b Set of K× 1 vectors whose elements are the members of X with bn = 0 or 1
ln LLR of bn
Q M×M unitary matrix with H = Q[R; 0(M−K)×K ]

R K× K upper triangular matrix with H = Q[R; 0(M−K)×K ]

rm mth row of R
r̃m 1× (K−m + 1) vector containing the non-zero elements of rm
ỹ K× 1 receive signal vector for the QR-BP detector
ñ K× 1 AWGN vector for the QR-BP detector
x̂k A hard decision symbol of xk
ỹ(k) K× 1 receive signal vector for the message updating of the bit sequence in xk
z(k) k× 1 effective receive signal vector for xk in the proposed QR-SBP detector
x(k) k× 1 effective transmit signal vector for xk in the proposed QR-SBP detector
ñ(k) k× 1 effective AWGN vector for xk in the proposed QR-SBP detector
R(k) k× k effective channel matrix for xk in the proposed QR-SBP detector
Bb

mn Set to update βmn with b = 0 and 1 in the proposed QR-SBP detector

r̃(k)m 1× w vector containing the non-zero elements of the mth row of R(k)

Xw,b
(k) Set of w× 1 vectors for xk whose elements are the members of X with bn = b

δw
(k) Number of surviving w× 1 vectors in Xw,b

(k)

Yw,b
(k) Set containing the δw

(k) surviving w× 1 vectors in Xw,b
(k)

δ∗ Maximum δ
(k)
w for all w and k

tmax Number of maximum BP iterations
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