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Despite advances in cancer treatments, surgery remains one of the most important
therapies for solid tumors. Unfortunately, surgery promotes angiogenesis, shedding of
cancer cells into the circulation and suppresses anti-tumor immunity. Together this
increases the risk of tumor metastasis, accelerated growth of pre-existing micro-
metastasis and cancer recurrence. It was theorized that regional anesthesia could
influence long-term outcomes after cancer surgery, however new clinical evidence
demonstrates that the anesthesia technique has little influence in oncologic outcomes.
Several randomized controlled trials are in progress and may provide a better
understanding on how volatile and intravenous hypnotics impact cancer progression.
The purpose of this review is to summarize the effect of the anesthesia techniques on the
immune system and tumor microenvironment (TME) as well as to summarize the clinical
evidence of anesthesia techniques on cancer outcomes.

Keywords: anesthesia, analgesia, cancer recurrence, metastasis, general anesthesia (GA), regional anesthesia -
palliative care - cancer pain, opioids, total intravenous anaesthesia (TIVA)
INTRODUCTION

Cancer is a major global health concern since it is the second cause of death after cardiovascular
disease (1). According to the World Health Organization, an estimated 19.3 million new cancer
cases were recorded in 2020 with almost 10 million cancer deaths worldwide (2). In addition, given
the unprecedented effects of the COVID-19 pandemic on the health care system, many patients
received a delayed diagnosis and treatment (including surgery) which will significantly impact their
cancer prognosis. The American Cancer Society estimates an additional 25.7 million new cancer
cases worldwide and 16.3 million cancer deaths by 2040 (3). This upward trend may be secondary to
earlier cancer diagnosis and improvement in prevention and treatments.

Cancer treatment may involve a combination of chemotherapy, radiotherapy, immunotherapy
and surgery. The latter is also used to provide diagnosis and palliative therapy for solid tumors.
While surgical excision continues to be the gold standard treatment for cancer, accumulative
evidence (mostly from preclinical studies) has suggested that surgery itself and multiple
perioperative events (i.e., blood transfusion, analgesics and anesthetics) might accelerate the
progression of minimal residual disease, formation of new metastatic foci and cancer recurrence
(4). In this review, we will focus on key mechanisms that allow surgery to provide suitable
conditions for shedding, implantation and subsequently proliferation or circulating tumor cells
(CTCs). Additionally, we will provide a comprehensive review of the pre-clinical data on the effect
of anesthesia technique (total intravenous anesthesia [TIVA] versus volatile anesthesia) and
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analgesia (regional versus opioid based techniques) on cancer
cells, the TME and immunosurveillance. Lastly, we will
summarize the clinical data regarding the effects of the
anesthesia techniques on cancer outcomes including survival.
THE ROLE OF SURGERY IN CANCER
PROGRESSION

Surgery Triggers Inflammation Followed
by Immunosuppression
Cancer metastasis is the major cause of morbidity and mortality,
and in fact it accounts for 90% of deaths in cancer patients (5). In
order to successfully colonize a distant site CTCs must complete
a sequence of events before they become clinically detectable
metastasis. The development of metastasis therefore requires;
1) escape of tumor cells from primary tumor, 2) intravasation,
3) circulation in the blood stream, 4) extravasation through
endothelial cells into the surrounding tissue, and 5) survival
and proliferation in the TME by induction of angiogenesis and
immune escape (Figure 1) (6). Also, an essential step on the
metastatic process is the epithelial-mesenchymal transition
(EMT). EMT allows the transformation of epithelial cancer
cells into mesenchymal cancer cells (7). This phenotypic
transformation enables mesenchymal cells to migrate, invade
and resist apoptosis as they colonize distant sites. Cumulative
evidence indicates that surgery increases the shedding of tumor
cells into the circulation (8) and activates the sympathetic
nervous response which ultimately triggers inflammation
followed by immunosuppression (Figure 2) (9).

The initial acute inflammatory stress response is mediated by
neutrophils, macrophages and monocytes at the site of injury.
These immune cells release a massive production of pro-
inflammatory cytokine including interleukin -1b (IL-1b),
interleukin-6 (IL-6), tumor necrosis factor a (TNF-a) and
neutrophils extracellular traps (NETs). All these cytokines shift
CD4+ helper cells to a th1 profile (10). The Th1 profile, generally
Frontiers in Oncology | www.frontiersin.org 2
accepted as anti-tumoral, is characterized by the secretion of
interferon gamma (INF)-g and IL-2 with regulation of the cell
mediated immunity (11). It is important to point out that the
inflammatory response is directly proportional to the degree of
surgical trauma. Human studies assessing the effect of minimally
invasive versus open surgery have shown significant differences
between the two interventions when reporting the function of
immune cells and cytokine profile(12); “Inflammatory Response
After Laparoscopic Versus Open Resection of Colorectal Liver
Metastases Data From the Oslo-CoMet Trial: Erratum,” (13). For
instance, laparotomy triggers higher concentrations of IL-6 than
laparoscopic cancer surgery(“Inflammatory Response After
Laparoscopic Versus Open Resection of Colorectal Liver
Metastases Data From the Oslo-CoMet Trial: Erratum,” (13).

The surgical inflammatory response is followed by a
compensatory anti-inflammatory response; however it can also
lead to dysregulation of the cell mediated immunity with
subsequent immunosuppression (14). IL-6 induces the release
of prostaglandin E2 (PGE2) from macrophages (15). PGE2 is a
lipid mediator that exerts its activity via PGE2 receptors (EP1-4).
EP2 and EP4 are both Gs-couple receptors that signal through the
adenylate cyclase-dependent cAMP/PKA/CREB pathways (16).
The effects of PGE2 includes the inhibition of neutrophil, natural
killer (NK) and T-cell mitogenesis (17). Furthermore,
protanglandin regulates lymphatic vessles dilatation and
therefore could enables cancer mestatasis (18). Additionally,
PGE2 inhibits the production of IL-1b, IL-6 and TNF-a and
stimulates the release of IL-10, IL-1Ra (19). This cytokine
imbalance results in a shift toward th2 profile (pro-tumoral),
which favors tumor growth by inhibiting cell-mediated
immunity (20).

The stress response to surgery is also characterized by the
secretion of cortisol and catecholamines (21). Cortisol can diffuse
the cellular membrane to bind the glucocorticoid receptor
intracellularly. This complex, then translocates into the nucleus
where it interacts with glucocorticoid-responsive elements (DNA
sequence) and different transcription factors such as NF-kB to
inhibit or promote the production of inflammatory cytokines
FIGURE 1 | Overview of metastatic cascade. This figure represents the necessary steps for successful metastasis including epithelial-mesenchymal transition,
escape of tumor cell from primary tumor, intravasation, circulation, extravasation and survival and proliferation.
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(22). For instance, cortisol has shown a dual role in oral
squamous cell carcinoma. At physiological stress levels (i.e., 10
nM) cortisol promoted the expression of IL-6 while higher
pharmacological concentration (i.e., 1000 nM) produced the
opposite findings (23). The sympathetic nervous system
directly modulates cancer cells via b-adrenoreceptors-mediated
activation of protein kinase A (PKA) (24). b-adrenoreceptors
have been found in breast, prostate, lung, esophageal and liver
cancer cells among others (25–29). The activation of b-
adrenergic signaling by epinephrine or norepinephrine triggers
an increase on cyclic adenosine monophosphate (cAMP) which
directly modulate cancer cell growth, proliferation, invasiveness,
angiogenesis and metastasis (24). One characteristic of cancer
cells is the formation of invadopodia (actin-rick protrusions)
which are formed to degrade and facilitate migration through the
extracellular matrix (30). b-adrenoreceptors activation can
promote an increase of invadopodia which correlates with
increased tumor invasion in in vivo breast cancer models.
Importantly, such effect is reversed by b-blockers (31).

Surgery Induces Angiogenesis
A critical step in the metastatic process is the development of
new blood vessels (angiogenesis). The vascular endothelial
growth factor (VEGF), an extensively studied molecules in
angiogenesis, is considered a maker of poor prognosis for some
cancers (32, 33). VEGF as well as its receptors (VGFR1 and
VGFR2) have been found in cancer cells (34). The activation of
VEFGR initiates MAPK signaling pathway with phosphorylation
of ERK and ultimately promotion of cell proliferation (35).
VEGF has been reported to be higher in cancer patients
compared to control groups even before surgery (36–39). It
has been theorized that high perioperative levels of VEGF
might explain why cancer surgery might facilitate the growth
of residual metastases disease early after surgery.
Frontiers in Oncology | www.frontiersin.org 3
Key Effectors Cells of the Immune
Response in Cancer Surgery
Neutrophils are the first line to respond to surgical trauma and
defend against invading microorganisms. However, neutrophils
have been shown to play a dual role since besides protecting from
infection, neutrophils can also lead to cancer progression and
tumor dissemination (40). Tumor associated neutrophils (TANs)
are associated with poor overall survival in many types of cancers
(41–43). Neutrophils can serve as chemotactic factor to attract
cancer cells by releasing neutrophil extracellular trap (NETs)(L.
44). Surgery triggers the formation of NETs which can promote
formation of metastasis. The inhibition of NETs after surgery
powerfully counteract their pro-metastatic effects (45).

Natural killer cells are one of the main effector cells against
cancer (46). Upon target cell recognition, NK cells mediate target
cell lysis by two different mechanisms. First, the release of
cytotoxic granules containing granzyme and perforins, and the
induction of Fas ligand and TNF-related apoptosis ligand
(TRAIL) (47). Second, activated NK cell secrete several
cytokines such as INF- g, TNF-a and chemokines (i.e., CCL3,
CCL 4 and CCL5). Accumulated evidence suggests that NK cell
cytotoxicity is decreased immediately after surgery secondary to
surgical stress. This effect can last for several weeks (48).
Additionally, the surgical stress impair the NK cells’ capacity
to secrete INF-g and therefore decreases the activation of the
cellular immunity and subsequently antitumor immune response
(49). The extent of the surgical insult impacts the function of
these cells. For instance, laparoscopically assisted surgery
resulted in better preservation of NK cell function compared to
open procedures in patients with colon cancer (50).

Lymphocytes are an essential component for maintaining
tolerance and preventing excessive inflammation. Postoperative
lymphopenia or a high neutrophil-to-lymphocyte ratio (NLR)
are independent biomarkers of cancer recurrence (51–53). NLR
FIGURE 2 | Overview of Surgical Stress Response. The figure represents the neuroendorine and the inflammatory response associated with surgery. After surgical
incision, there is an increase of cortisol and cathecholamines. Additionally, there is a profound inflammatory response folllowed by immunosupression. All these
together enables cancer cells to growth, proliferate and produce distant metastasis. NK, natural killer cell, TAN, tumor associated neutrophiles, Tregs, regulartoy T cells.
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appears to be an appealing biomarker in cancer prognosis since
its widely available, easily measured and inexpensive. A recent
meta-analysis by Cupp et al. suggested an association between
high NLR and poor cancer outcomes (54). For instance, Forget et
al. demonstrated that preoperative high NLR in patients with
breast, lung and renal cancer undergoing tumor resection was
associated with higher risk or relapse and/or higher mortality
(55). Similar findings in term of RFS and OS were found by Choi
et al. in a cohort of non-small cell lung cancer (NSCLC) patients,
however the correlation was only observed in patient with Stage I
NSCLC (56). Among lymphocytes, regulatory T cells (Tregs) are
a lso regulators of the ant i - tumor immunity (57) .
Ghiringhelli et al. reported a high Tregs cell levels that
correlated with a low number of NK cells that were also
dysfunctional in gastrointestinal stromal tumor-bearing
patients (58). Peripheral and tumor infiltrating Tregs levels are
higher in patients with breast and pancreas cancer compared to
healthy subjects. High levels of circulating tumor infiltrating
Tregs have been associated with accelerated progression and
poor prognosis of those cancers (59). While in the context of low
levels of Tregs can predict the presence of postoperative
compl ica t ions , the impact of d i fferent per iphera l
concentrations of these cells after oncological procedures is less
understood (60).

In summary, the perioperative period is critical for several
steps leading to cancer metastasis. It has been indicated that
anesthetics could also influence mechanisms such as NETs
formation, EMT and angiogenesis. In the following section, we
will summarize the preclinical and clinical evidence regarding
the effects of the different types of anesthesia techniques on long-
term cancer outcomes.
INHALATIONAL AGENTS AND
INTRAVENOUS ANESTHETICS FOR
CANCER SURGERY

Preclinical Evidence
Volatile Anesthetics
Volatile anesthetics are commonly used during oncological
surgery. There has been increasing interest in investigating the
role of volatile anesthetics on cancer recurrence and metastasis.
Preclinical data suggest that volatile agents promote the
progression of cancer by direct and indirect mechanisms.
Firstly, volatile anesthetic can directly modify (by either
promoting or inhibiting) intracellular signals involved in key
aspect of the cancer cell behavior such as proliferation,
migration, invasion and sensitivity to chemotherapeutic agents.
For instance, isoflurane (1.2%) increased the proliferation and
migration while decreasing apoptosis in glioblastoma stem cells
by regulating the expression of hypoxia-inducible factor (HIF)
(61, 62). In non-small cell lung cancer, isoflurane at 1%, 2% and
3% promoted proliferation, invasion and invasiveness via Akt-
mTOR signaling (63). In a colorectal cancer cell line, desflurane
(10.3%) induces EMT and metastasis through dysregulation of
miR-34/LOXL3 axis a well-known tumor suppressor (64).
Frontiers in Oncology | www.frontiersin.org 4
Sevoflurane (2% for six hours), in vitro, increases survival of
breast cancer cells via modulation of intracellular Ca2+

homeostasis (65). Secondly, volatile anesthetics could facilitate
cancer progression by inducing immunosuppression. For
example, sevoflurane and desflurane attenuated NK cell
cytotoxicity in vitro by inhibiting the expression of the
adhesion molecule leucocyte- function n associated antigen
(LFA-1) (66). In addition, isoflurane reduced the ability of NK
cells to respond to INF-g stimulation. A phenomenon that lasted
for 11 days (67). Importantly, sevoflurane, isoflurane and
enflurane at 1.5 and 2.5 MAC reduced the release of TNF-a
and IL-1b in human peripheral blood mononuclear cells (68).

Contrary to this previously cited evidence, a number of
preclinical studies indicate that volatile anesthetics might have
an anti-tumoral effect. For instance, concentration of sevoflurane
from 1.7% to 5.1% significantly inhibits invasion and migration
of lung carcinoma cells by decreasing the phosphorylation of p-
38 MAPK, reducing HIF-1a activation and downregulating
matrix metallopeptidases (MMP) 2 and MMP-9 (69–71). In
colon cancer, sevoflurane induced p53-dependent apoptosis
while suppressing cell migration and invasion by regulating the
ERK/MM-9 pathway (via miR-203) (72, 73). Lastly, sevoflurane
at clinical (2.5%) and toxic concentrations (5% and 10%)
inhibited viability, migration and invasion of osteosarcoma
cells by inactivating PI3K/ATK pathway (74).

In summary, volatile anesthetics regulate important functions
in cancer cells. Their inconsistent (pro and anti-tumoral) effects
cancer cells and those of the TME could be explained by
differences in experimental conditions such as, type of cell line,
incubation time (ranged between 30 mins and 6 hours), type and
concentration of volatile anesthetics (ranged between 0.5%-
10%). For instance, some studies treated cancer cells with very
high concentrations that are not usually employed in clinical
practice and perhaps the “anti-tumoral” effect is most likely
related to toxic concentrations of volatile anesthetics.
Propofol
Propofol based total intravenous anesthesia has gained attention
in recent years. Most preclinical studies suggest that propofol
inhibits tumor cell viability, proliferation, migration and
invasion by regulating different signaling pathways. It inhibits
proliferation, migration and invasion in colon cancer cells by
upregulating miR-124-3p and downregulating AKT3 (75). Also
in colon cancer, propofol decreases cell invasion via ERK1/2-
depenedent downregulation of MMP-2 and -9 (76). In lung
cancer cells, propofol promotes apoptosis also via ERK1/2 via
activation and upregulation of p53 (77), and decreases metastatic
cell behaviors by inhibiting HIF-1a (78) and MMPs-2,-7 and -9
(79). Similarly, it inhibits migration of breast cancer cells by
inhibiting MMP expression via NF-kB pathway (80). In glioma
cells, propofol reduced migration and invasion by blocking
PI3K/AKT pathways via mi-R-206/ROCK1 axis (81).
Moreover, propofol reduced oxidative stress and growth in
glioma cells by suppressing the Ca2+-permeable a-amino-3-
hydroxyl-5methylisoxazole-4-propionic acid (AMPA)receptor
and divalent transporter 1(DMT1) (82).
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The anti-tumoral effect of propofol in cancer progression also
entails indirect mechanisms such as the potentiation of NK cell
cytotoxicity and reduction of inflammatory response. For
instance, in colon cancer cells, propofol increased expression of
activated receptor p30 and p44 in NK cells, which promoted NK
cell activation and proliferation (83). Additionally, in esophageal
squamous cell carcinoma cells, propofol enhanced the expression
of cytotoxic effector molecules like granzyme B and IFN-g
suggesting that NK cytotoxicity was increased (84). In terms of
cytokine profile, propofol decreases pro-inflammatory cytokines
such as IL-1b, IL-6 and TNF-a (85) and inhibits PGE2 and COX
activity (86). Moreover, propofol decreased NETs formation
(through inhibition of p-ERK) without affecting neutrophil
killing capacity (87, 88).

Altogether, propofol preferentially promotes anti-metastatic
mechanism in cancer cells and those of the TME.

Intravenous Ketamine, Dexmedetomidine
and Lidocaine
Ketamine is routinely used during cancer surgery to provide
analgesia and reduce the use of volatile anesthetics and opioids.
Increasing number of studies suggest that ketamine can modify
proliferation and survival of cancer cells (89). For example,
ketamine decreased intracellular Ca2+, expression of HIF-1a,
p-AKT, p-ERK with subsequent reduction of VEGF expression
and cell migration in colorectal cancer cells. Notably, all these
changes were associated with NMDA receptor inhibition since
D-serine (NMDA activator) reversed the anti-tumoral effect of
ketamine (90). Additionally, ketamine promotes apoptosis and
inhibits cell growth proliferation in lung adenocarcinoma;
throughout CD69 expression (91), hepatic cell carcinoma;
throughout Bax-mitochondria-caspase protease pathway (92);
pancreatic carcinoma via NMDA receptor type R2a (93) and
ovarian cancer through the inhibition of long-non-coding RNAs
PVT1 expression (89).

Dexmedetomidine has also gained interest due to its sedative
and analgesic effects. In esophageal carcinoma, dexmedetomidine
inhibits tumor growth and metastasis via upregulation of miR-
143-3p and reduction of levels of epidermal growth factor receptor
8 (94). Additionally dexmedetomidine enhances immune
surveillance by inhibiting the p38 MAPK/NF-kB signaling
pathway; however, some authors have indicated that
dexmedetomidine can stimulate proliferation of cancer cells (95,
96). For instance, dexmedetomidine induced secretion of IL-6 and
promoted progression via STAT 3 activation in hepatocellular
carcinoma (97). Similarly, it promoted tumor proliferation and
migration via adrenergic signaling and upregulation of Bcl-2 and
Bcl-xL (anti-apoptotic proteins) in neuroglioma and lung
carcinomas (98). In a rodent model of breast, lung and cancer
colon, dexmedetomidine promoted tumor growth and
metastasis (99).

Lidocaine is an amide local anesthetic that has gained
popularity because of its anti-ileus effects and suggested
beneficial properties in recovery after surgery. Lidocaine
suppress tumor cells directly by modifying cancer cells
signaling. For instance, lidocaine inhibited metastasis and
Frontiers in Oncology | www.frontiersin.org 5
proliferation of lung cancer cells by up-regulating miR-539
with subsequent blocking of EGFR signaling (100).
Furthermore, lidocaine suppressed hepatocellular cell growth
and induced apoptosis (via activation of caspase- 3 and
regulation of Bax/Bcl-2 proteins through the MAPK pathway)(
101). Likewise, lidocaine inhibited cervical cancer cell growth
and induced apoptosis by modulating lrnRNA-MEG3/miR-421/
BTG1 pathway (102).

Lidocaine has shown potent anti-inflammatory properties by
decreasing both; pro-inflammatory cytokines (IL-1b, IL-6 and
TNF-a) and intercellular adhesion molecules (I-CAM)
expression (103, 104). Human studies have also confirmed this
finding in a randomized controlled trial (RCT) where
intravenous lidocaine was associated with significantly less
production of IL-1ra, IL-6 with preservation of the lymphocyte
proliferation (105). Lidocaine has also stimulated the function of
NK cells of patients undergoing cancer surgery (106). Recently, a
RCT looking at the effect of intravenous lidocaine infusion in
breast cancer patients demonstrated a decrease in postoperative
expression of NETosis (which is associated with disease
progression) and MMP3 (107). Lastly, lidocaine has shown
anti-angiogenic effects. It decreased, in a dose dependent
manner (1-10µg/ml) the expression of VEGF-A. The inhibitory
effects were the result of inhibition of VEGFR-2 phosphorylation (108).

Taken together, experimental evidence suggests that volatile
anesthetics might promote tumor progression by directly
modifying intracellular signals involved in key aspects of
cancer cell behavior such as proliferation, migration and
invasion. Additionally, volatile anesthetics might promote
immunosuppression. In contrast, propofol has shown anti-
inflammatory properties and potentiation of the immune
response. Data for ketamine and dexmedetomidine is
inconsistent with some studies showing promotion of tumor
progression while other showing opposite findings. On the other
hand, lidocaine has shown promising results.
CLINICAL EVIDENCE

Retrospective studies (Table 1) indicate that cancer survival
and recurrence could be affected by the anesthetic technique.
The most recent systematic review and meta-analysis by Chang
et al. included 19 retrospective observational studies of patients
undergoing surgery for various types of cancer surgery. (130)
Pool analysis of OS included 17 studies with 23,489 patients
(110, 113–119, 121–124, 126, 128, 131, 132). The study showed
that propofol-based TIVA in cancer surgery was associated
with better OS compared to volatile agents (HR= 0.79, 95% CI,
0.66-0.94, p= 0.08). Interestingly the results of the subgroup
analysis by volatile anesthetics showed that this benefit was
statistically significant only when TIVA was compared to
desflurane (HR= 0.54, 95% CI, 0.36-0.80, p= 0.03), but not
compared to sevoflurane (HR=0.92, 95% CI, 0.74-1.14, p=.436)
or other volatile agents (HR=0.83, 96% CI, 0.64-1.07, p=0.156).
In terms of RFS, the study pooled the results of 10 studies with
8,980 patients (110, 113, 114, 116, 117, 123, 124, 126, 127, 132).
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The analysis indicated no benefits in survival when using TIVA
compared to volatile agents (HR=0.92, 95% CI, 0.74-
1.14, p=0.439).

Interestingly the benefits in OS in Chang’s work were seen in
patients with gastrointestinal malignancies, which is the same
type of cancers included in another study done by Yap et al (133).
Importantly, this group of investigators found that the use of
propofol–based TIVA not only improved OS (HR= 0.76, 95% CI,
0.63-0.92, p <0.01) but also improved RFS (HR=0.78, 95% CI,
0.65-0.94, p<0.01). There are some important study limitations
that need to be highlighted when analyzing the available meta-
analyses. For example, Wigmore et al. study acknowledged the
difference in the baseline characteristics between groups, with
more ASA III/IV patients, more complex surgeries and larger
metastatic burden in the volatile anesthetics group. Nevertheless
after propensity matching to correct potential confunders, the
study groups were similar (128). Lai’s study presented the same
limitation for hepatocellular carcinoma surgery. In that study,
the desflurane group had significantly more patients with worse
preoperative functional capacity, higher scores of liver disease
and tumor grade staging compared to the propofol-based group.
Patients in the desflurane group were also more likely to have
larger tumors and receive blood transfusions which are all
independent factor associated with decreased survival (117).

It is important to point out that the systematic review
conducted by Chang et al. included studies published until
March 2020 and unfortunately did not include the largest
retrospective study done by Makito et al. (which was published
later in the same year) (109). In that retrospective study the
author investigated the effect of TIVA and volatile agents on
long-term oncological outcomes among 196,303 patients with
gastrointestinal malignancies and found that OS (HR= 1.02, 95%
CI, 0.98-1.07, p= 0.28) and RFS (HR=0.99, 95% CI, 0.96-1.03, P=
0.59) were similar between propofol-based TIVA and volatile
anesthetic groups. Similar to Makito’s work, other multiple
Frontiers in Oncology | www.frontiersin.org 6
retrospective studies showed no difference between TIVA and
volatile in terms of OS and RFS in patients with breast cancer
(114, 118, 124, 131). The lack of benefit from propofol-based
TIVA has also been described for lung (123, 134) and brain
cancer surgeries (111, 113, 125). Subsequent substudies from
RCTs in lung and breast cancer indicated the same results (134–
136). However, it is important to point out that these RCTs did
not have OS and RFS as primary outcome.

Since retrospective studies have significant limitations, RCTs
are necessary to determine whether the use of propofol-based
anesthesia modifies cancer outcomes in patients undergoing
surgery for solid tumors (Table 2). The VAPOR-C trial
(NCT04074460) has a 2x2 factorial design and will investigate
the impact of TIVA vs. inhalational agents and lidocaine vs.
placebo on DFS after lung and colorectal cancer surgery with
curative intent (stage 1-3) (138). The cancer and anesthesia study
(NCT01975064) is also investigating the effect of propofol-based
TIVA versus volatile anesthesia in breast and colon cancer
patients. Preliminary data for 1-year survival is already
available and unsurprisingly no benefit was observed in the
propofol-based TIVA group (137). The results from long-term
survival (5 years) are expected to be available for 2022-2023. The
GA-CARES trial (NCT03034096) will randomize 2,000 patients
to assess all-cause mortality and RFS in patient undergoing lung,
TABLE 1 | Retrospective trials comparing the effect of TIVA versus volatile anesthesia on long-term cancer outcomes.

Type of Cancer Author Overall Survival Recurrence- Free Survival

Gastrointestinal (109) No difference No difference
Hepatocellular (110) No studied Increased with TIVA
Glioblastoma (111) No difference No difference
Breast (112) No difference No difference
Glioma (113) No difference No difference
Breast (114) No difference No difference
Gastric (115) No difference No difference
Cholangiocarcinoma (116) Increased with TIVA No difference
Hepatocellular (117) Increased with TIVA Increased with TIVA
Breast (118) No difference No difference
Breast, Liver, Lung and Gastrointestinal (119) No difference No difference
Appendiceal (120) No difference No difference
Gastric (121) Increased with TIVA No studied
Colon (122) Increased with TIVA No studied
Lung (123) No difference No difference
Breast (124) No difference No difference
Glioblastoma (125) No difference No difference
Esophageal (126) No difference No difference
Breast (127) No difference No difference
Breast, Sarcoma Gastrointestinal and Urologic (128) Increased with TIVA No studied
Ovarian (129) No studied Increased with volatile anesthetic
December 20
TABLE 2 | Randomized control trials comparing the effect of TIVA versus volatile
anesthesia on long-term cancer outcomes.

Type of Cancer Author Overall Survival Recurrence- Free Survival

Breast (137) *No difference No published yet
Breast (135) No difference No difference
Breast (136) No difference No difference
Lung (134) No difference No difference
21 |
*Preliminary data from 1 year OS.
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bladder, esophagus, pancreas, liver, gastric and biliary duct cancer
surgery with propofol-based anesthesia or volatile anesthetics.

The effect of intravenous lidocaine on cancer outcomes was
recently investigated in pancreatic surgery. A retrospective study
of more than 2,239 patients assessed the effect of intraoperative
lidocaine (bolus injection of 1.5 mg/kg followed by continues
infusion 2mg/kg/hour) and suggested that intravenous lidocaine
was associated with prolonged OS (HR=0.616, 95% CI, 0.290-
0.783, p=0.013), but not DFS (HR=0.913, 95% CI, 0.821-1.612,
p=0.011) (139).

In conclusion, the current evidence is weak to indicate that
propofol-based general anesthesia provides any oncological
benefit to patients with cancer requiring surgery.
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REGIONAL ANESTHESIA COMPARED
TO GENERAL ANESTHESIA
FOR CANCER SURGERY
Regional anesthesia (RA) techniques including peripheral nerve
blocks and neuraxial anesthesia were associated with a reduction
in cancer recurrence in preclinical and observational studies. it
was originally theorized that RA could improve oncological
outcomes after cancer surgery since RA decreases the neuro-
endocrine response to surgical trauma, opioid consumption and
the use of volatile anesthetics (140–142). Additionally, RA
preserves the function of the immune system and has a direct
inhibitory effect on cancer cells (143, 144).
TABLE 3 | Retrospective trials assessing the effect of regional anesthesia on long-term cancer outcomes.

Type of Cancer Author Intervention Overall Survival Cancer Recurrence

Colon (145) Epidural No benefit from RA No benefit from RA
Colon (146) Epidural No benefit from RA Benefit from RA
Colon (147) Epidural Benefit from RA No reported
Colon (148) Epidural Benefit from RA No reported
Colon (149) Epidural Benefit from RA No benefit from RA
Colon (150) Epidural No benefit No benefit
Colorectal (151) Epidural Benefit from RA No reported
Colon (152) Epidural No reported No benefit
Breast (153) Loco-regional anesthesia No benefit from RA No benefit from RA
Breast (154) Paravertebral block No benefit from RA No benefit from RA
Breast (155) Paravertebral block No benefit from RA No benefit from RA
Breast (156) Paravertebral block No reported No benefit from RA
Breast (157) Epidural

Paravertebral block
No reported No benefit from RA

Breast (158) Paravertebral block No reported Benefit from RA
Prostate (159) Spinal No reported No benefit from RA
Prostate (160) Epidural No benefit from RA No benefit from RA
Prostate (161) Spinal No reported No benefit from RA
Prostate (162) Spinal No benefit from RA No benefit from RA
Prostate (163) Spinal No reported No benefit from RA
Prostate (164) Epidural No benefit from RA No benefit from RA
Prostate (165) Epidural No reported No benefit RA
Prostate (166) Epidural No benefit from RA Benefit from RA
Prostate (167) Epidural No reported Benefit from RA
Ovarian (129) Epidural No reported Benefit from RA
Ovarian (168) Epidural No benefit from RA No benefit from RA
Ovarian (169) Epidural No benefit from RA No benefit from RA
Ovarian (170) Epidural Benefit from RA No reported
Ovarian (171) Epidural No reported Benefit from RA
December 2021 | Volum
TABLE 4 | Randomized control trials assessing the effect of regional anesthesia on long-term cancer outcomes.

Type of Cancer Author Intervention Overall Survival Cancer Recurrence

Lung (172) Epidural No benefit from RA No benefit from RA
Thoracic and Abdominal (173) Epidural No benefit from RA No benefit from RA
Breast (135) Paravertebral block No reported No benefit from RA
Breast (174) Paravertebral block No benefit from RA No benefit from RA
Breast (175) Paravertebral block No reported No benefit from RA
Colon (176) Epidural No benefit from RA No benefit from RA
Colon .(177) Epidural No benefit from RA No benefit from RA
Colon (178) Epidural Benefit with RA No reported
Prostate (179) Epidural No reported No benefit from RA
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CLINICAL EVIDENCE

Thus far, the evidence regarding the potential benefits of RA in
long-term outcomes originates from preclinical, retrospective,
post hoc analysis of RCT and few RCTs (Tables 3, 4). The most
recent RCT enrolled 400 patients to investigate the effect of
combined epidural-general or general anesthesia alone in
patients undergoing video-assisted thoracoscopic lung cancer
resection. The primary outcome was RFS. Secondary outcomes
were OS and cancer-specific survival. The median follow-up was
after 32 months. Results indicated that epidural-anesthesia for
major lung surgery did not improved RFS (HR=0.90, CI 95%
0.60-1.35, p=0.068), cancer–specific survival (HR=1.08, CI 95%
0.61-1.91, p=0.802) or OS (HR=1.12, CI 95% 0.6401.96, p=0.697)
compared to general anesthesia alone (172),

The effect of combined epidural-general was also investigated
in a large RCT including patients (n= 1,712) undergoing major
non-cardiac thoracic or abdominal surgery. The median follow-
up time was after 5 years. Again, mortality (HR=1.07, CI 95%
0.92- 1.24, p=0.408), cancer-specific survival (HR=1.09, CI 95%
0.93-1.28, p=0.290) and RFS (HR=0.97, CI 95% 0.84-1.12,
p=0.692) was similar between combined epidural-general
anesthesia and general anesthesia group. (173) In the setting of
breast cancer surgery, two RCTs also failed to demonstrate any
benefits from paravertebral blocks in terms of cancer outcomes
in patients undergoing breast cancer surgery (135, 174). Other
RCTs looking at the effect of RA on colon and prostate cancer
surgery also failed to demonstrate any benefits in cancer
outcomes (177, 179).

There are multiple RCTs in progress to determine the effects of
RA compared to general anesthesia on cancer progression. The
studyNCT03597087will assessRFSandPFS inpatientsundergoing
transurethral resection of bladder tumors under spinal anesthesia.
NCT03245346will investigate the effect of epidurals onOSandRFS
in patients undergoing pancreatic cancer surgery. This trial will also
assess the inflammatory neuro-endocrine response by measuring
norepinephrine, epinephrine, cortisol and IL-6, IL-8 levels and by
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measuring the neutrophil-lymphocyte ratio. Lastly, NCT02786329
will investigate the effect of epidural anesthesia in patients
undergoing lung cancer resection.

In conclusion, a growing body of evidence from RCTs
consistently demonstrates that cancer-specific mortality and
cancer recurrence are not improved by the use of regional
anesthesia during oncologic surgery.

CONCLUSION

Cancer surgery remains the standard of care for patients with solid
tumors. Despite curative intent, 90% of cancer mortality is
secondary to cancer metastasis. Preclinical data suggest that the
perioperative stress response to surgical trauma creates a window of
opportunity for accelerated tumor growth andmetastasis. This effect
seems to be secondary to changes in signaling pathways in both-
TME and immune response. Total intravenous anesthesia and
regional anesthesia have been proposed as strategies to counteract
the inflammatory response and the associated immunosuppression
associated with cancer surgery. Unfortunately, the majority of the
data looking at the relationship of these techniques and cancer
outcomes originates from retrospective studies. Whether volatile
anesthetics have a deleterious effect of cancer recurrence and
survival remains a controversial issue. RCTs are in progress and
will explore a causal relationship between volatile anesthetic and
cancer outcomes. As far for regional anesthesia, RTCs have
consistently shown lack of benefit of this technique in regards to
cancer survival and recurrence.
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