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Could simplified stimuli change how the brain performs visual
search tasks? A deep neural network study

David A. Nicholson
Emory University, Department of Biology,

O. Wayne Rollins Research Center, Atlanta, Georgia

Astrid A. Prinz
Emory University, Department of Biology,

O. Wayne Rollins Research Center, Atlanta, Georgia

Visual search is a complex behavior influenced by many
factors. To control for these factors, many studies use
highly simplified stimuli. However, the statistics of these
stimuli are very different from the statistics of the
natural images that the human visual system is
optimized by evolution and experience to perceive.
Could this difference change search behavior? If so,
simplified stimuli may contribute to effects typically
attributed to cognitive processes, such as selective
attention. Here we use deep neural networks to test
how optimizing models for the statistics of one
distribution of images constrains performance on a task
using images from a different distribution. We train four
deep neural network architectures on one of three
source datasets—natural images, faces, and x-ray
images—and then adapt them to a visual search task
using simplified stimuli. This adaptation produces
models that exhibit performance limitations similar to
humans, whereas models trained on the search task
alone exhibit no such limitations. However, we also find
that deep neural networks trained to classify natural
images exhibit similar limitations when adapted to a
search task that uses a different set of natural images.
Therefore, the distribution of data alone cannot explain
this effect. We discuss how future work might integrate
an optimization-based approach into existing models of
visual search behavior.

Introduction

Visual search is a complex real-world behavior
that we engage in constantly throughout our day.
To understand the many factors that influence this
behavior (Wolfe & Horowitz, 2017), scientists carry out
controlled laboratory experiments. Laboratory visual
search tasks are also commonly used to investigate
cognitive processes such as attention (Eckstein, 2011;
Geisler & Cormack, 2011; Lindsay, 2020; Peelen &
Kastner, 2014; Wolfe & Horowitz, 2017) and reward
(Anderson, 2016; Maunsell, 2004). A key element of

these controlled laboratory experiments is the use of
highly simplified stimuli (Wolfe, 1998). These simplified
stimuli are designed to experimentally manipulate one
factor proposed to influence search behavior while
controlling for other factors. This approach has a
clear strength. It allows researchers to derive formal
mathematical models that are tightly linked to these
simplified stimuli, and then arbitrate between models
based on the predictions each model makes (Eckstein,
1998; Palmer, 1994; Palmer et al., 2000; Palmer et al.,
2011; Wolfe et al., 2010). One possible drawback of
this approach is that the features of the simplified,
controlled stimuli have very different statistics than
the natural images that the human visual system has
been optimized by evolution and experience to perceive.
Recently in neuroscience there has been renewed
concern and discussion about whether simplified
behavioral experiments and stimuli may actually limit
our ability to understand brain function (Juavinett
et al., 2018; Krakauer et al., 2017). Within studies
of visual search, the difference between laboratory
stimuli and real-world scenes has been recognized,
leading to the development of models for “real-world
attention” (Peelen & Kastner, 2014). There is even work
asking how to design optimal feature detectors given
the statistics of natural stimuli (Geisler et al., 2009).
That said, we are not aware of any previous work that
tests the idea that the difference between simplified
search stimuli and natural images may actually give rise
to some of the behavior observed during controlled
laboratory search experiments. Here we test this idea
with deep neural networks (DNNs). DNN models are
optimized with large datasets of natural images to
perform perceptual tasks such as image classification,
and have recently become state-of-the-art models
for understanding cognitive functions like object
recognition. Below, we further motivate this approach
using DNNs, but first we briefly review studies of visual
search behavior.

To address the question of whether the statistics of
stimuli used in visual search tasks may change behavior,
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Figure 1. Set size effects are a hallmark finding from laboratory visual search tasks. (a) An example of the simplified displays
commonly used in visual search tasks. In the top row of (a), the target is absent and in the bottom row it is present. Displays in each
row also have different set sizes (total number of items including target and distractors): on the top row of (a), the set size is two and
in the bottom row it is four. (b) Schematic depiction of set size effects, redrawn from (Wolfe et al., 2010) and (Eckstein, 1998)). Effect
size varies based on the features that distinguish targets from distractors (shown in columns). In the left column of (a), the target can
be distinguished from distractors by a single feature, namely, color; in the middle column, by a conjunction of features, namely, color
and orientation (the target is a vertical red bar); in the right column, by a spatial configuration of multiple features.

we consider two experimental paradigms. The first
paradigm was designed to study the mechanisms of
visual selective attention (Eckstein, 1998; Eckstein et
al., 2000; Eckstein, 2011; Palmer et al., 2000; Treisman
& Gelade, 1980; Wolfe, 1994; Wolfe et al., 1989;
Wolfe & Gray, 2007), using highly simplified stimuli:
typically a two-dimensional array of items like those
shown in Figure 1. Stimuli like these were originally
developed to test feature integration theory (Treisman
& Gelade, 1980). One reason for the appeal of this
theory was that it was tractable to test with these

simplified stimuli (Nakayama & Martini, 2011), using a
standardized paradigm (Wolfe, 1998) that has formed
the basis of hundreds if not thousands of studies.
Participants search the array of items for a target
that is distinguished from distractors by one or two
parametrically defined features, such as hue, luminance,
or orientation. On each trial, the participant reports
whether a target is present (Figure 1a, bottom row)
or absent (Figure 1a, top row) among the distractors,
and the reaction time is measured. The reaction time is
then plotted as a function of set size, the total number
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of items: distractors plus target when present. When
reaction time increases as the number of distractors
increases, i.e., as a function of set size, this is called
a set size effect (Figure 1b, top row). Some studies
show each display only briefly, to control for other
factors such as eye movement, and these studies may
use accuracy as the behavioral measure instead of
reaction time (Figure 1b, bottom row). More generally,
then, the term set size effect describes any change in a
behavioral measure of target detection that depends
on increasing the set size. Schematic depictions of
results that would indicate set size effects are shown
in Figure 1b. Typically, a function is fit to the data,
and the fit parameters are used to determine whether a
given feature does or does not produce a set size effect.
For example, as can be seen in the schematized results
in in Figure 1b, the slope is steeper for stimuli where the
target is distinguished from distractors by a conjunction
of features (middle column) compared to the slope
for stimuli where the target is distinguished from
distractors by a single feature. These set size effects are
taken as evidence for different types of computations
thought to be involved in selective attention (Eckstein,
2011; Poder, 2017; Wolfe & Horowitz, 2017).

The second experimental paradigm we consider uses
images that are referred to as scenes (Henderson et
al., 2009; Neider & Zelinsky, 2008; Rosenholtz, 1999;
Torralba, 2005; Wolfe et al., 2011). While the first
paradigm was designed specifically to ask how visual
search behavior depends on low-level features specified
by the experimenter, such as color or orientation,
the second is meant to interrogate how search takes
place in real-world images. A body of work in this
area directly address questions raised by the selective
attention literature: how can the concepts of items
(Hulleman & Olivers, 2017) and set size (Neider &
Zelinsky, 2008) be applied to scenes? Attempts to
operationally define the concept of set size for a scene
have found that the set size effects are much smaller,
indicating that search of real-world scenes is much more
efficient (Wolfe et al., 2011). This finding is surprising,
given that models of selective attention predict that
the visual system would need to process many more
low-level features in cluttered scenes (Peelen & Kastner,
2014). Various mechanisms have been proposed to
explain these differences in search behavior across tasks
(Katti et al., 2017; Neider & Zelinsky, 2008; Peelen
& Kastner, 2014; Wolfe et al., 2011). There is general
agreement that search of scenes is made more efficient
by contextual information not present in simplified
search displays (Eckstein, 2017; Wolfe & Horowitz,
2017).

Here we test whether the differences in visual
search behavior across these two paradigms might be
explained in part by a mismatch between the statistics
of simplified stimuli used in some tasks and the
statistics of natural images that the visual system is

optimized to process. To test this idea, we turn to DNN
models. Due to recent successes in engineering DNNs,
many researchers in cognition and neuroscience are
again making use of these models (Marblestone et al.,
2016; Richards et al., 2019; Saxe et al., 2020). DNNs
are optimized to perform machine-learning tasks using
large datasets, similar to how the visual system is
optimized by evolution and development. DNNs are
uniquely suited to address the questions we ask here
about how the statistics of stimuli interact with the
tasks for which the visual system is optimized. There are
two strengths of our approach. The first is that we can
ask how a model being optimized for one task might
constrain how it performs other tasks. As others have
argued (Kell &McDermott, 2019), this approach can be
seen as analogous to ideal observer models, which have
been applied successfully to visual search (Geisler, 2003;
Geisler & Cormack, 2011; Kell & McDermott, 2019).
Ideal observer models provide insights by adopting a
normative approach: proposing a closed-form optimal
solution for tasks, and then asking how real-world
behavior deviates from the behavior dictated by the
optimal solution. Obviously, DNN models do not
provide a closed-formed optimal solution for tasks, but
the optimization perspective has yielded a significant
body of empirical evidence that DNNs perform “near
ideally” (Firestone, 2020; Kell & McDermott, 2019),
at least as measured with a test dataset that models do
not see during training. A second strength of DNNs as
models is that they are image computable (Geisler &
Cormack, 2011; Yamins et al., 2014), meaning that they
accept any image as input. This allows us to measure
model behavior across stimulus types. It is difficult if
not impossible to compare behavior across stimulus
types with selective attention models that are specified
(Cooper & Guest, 2014) in terms of items (Hulleman &
Olivers, 2017) or human-defined features (Palmer et al.,
2000).

Although DNN models as a whole are appropriate
to address questions about optimization, it is unclear
which type of model and machine learning task to use.
Previous work modeling visual search tasks with DNNs
has made use of models designed for two distinct
computer vision tasks: single-label image classification,
and object detection. Single-label image classification
is a computer vision task where models assign natural
images to a single class, for example, “cat” or “car.”
This task can be mapped directly to a yes/no paradigm
where a participant classifies an image as “target
present”or “target absent.”ADNN architecture known
as convolutional neural networks has rapidly become
the state of the art for this task. Previous studies have
used this family of models to study the experimental
paradigm associated with selective attention and have
reported set size effects (Poder, 2017; Põder, 2020,
2021). Additionally, the use of convolutional neural
network is motivated by previous findings that these
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models predict behavior during object recognition
tasks (Schrimpf et al., 2018; Yamins & DiCarlo, 2016),
and other authors have suggested a link between
object recognition and visual search (Cohen et al.,
2017; Nakayama & Martini, 2011). However, previous
work on visual search has also used DNN models of
object detection targets (not to be confused with the
cognitive ability of object recognition) (Eckstein et al.,
2017). It makes sense to consider DNNs for object
detection as models of visual search; by definition,
visual search involves localizing an object, whereas
localization is not typically considered when studying
object recognition. In contrast with DNN models
for image classification that assign a single label to
an image, object detection models produce bounding
boxes around many objects of interest. Typically,
DNN models for object detection tasks include a
convolutional neural network “backbone,” with
additional engineered components that use the output
of the network to produce candidate bounding boxes.
Past studies find that DNN models of object detection
employ different strategies than humans (Eckstein et al.,
2017). Despite this, it is important to understand which
model designed for which task—image classification or
object detection—can best address the questions we ask
about optimization.

Below, wemeasure the behavior of DNNs performing
laboratory search tasks with simplified stimuli and with
real-world scenes and ask how that behavior depends
on the types of images used to optimize network
parameters. To achieve this goal, we use methods from
deep learning to adapt pretrained DNNs to new tasks.
First, we test how both object detection models and
image classification models behave when they are first
trained on natural images and then adapted to a visual
search task using simplified stimuli. Consistent with
previous work, we find that object detection model
performance is at ceiling across set sizes, whereas image
classification models exhibit set size effects. We then
test whether the set size effect exhibit by DNNs for
image classification depends on the dataset they are
optimized with, before being adapted to the visual
search task. This approach produced results consistent
with the idea that the mismatch between the statistics
of natural images and simplified stimuli may contribute
to performance limitations that participants exhibit in
laboratory search tasks. We then ask whether the set
size effects disappear when adapting DNNs in the same
way to perform the same task with a separate dataset of
natural images. Surprisingly, we observe similar set size
effects, in contrast with previous studies of search of
natural scenes. As we discuss, these results suggest that
the optimization viewpoint can contribute to models
of visual search behavior, but this work will require
careful comparison with the predictions of existing
models.

General methods

Neural network architectures

In experiments with DNNs for single-label
image classification, we utilize four neural network
architectures that have been used previously in studies
of object recognition, to increase the likelihood that our
results are general and not an artifact of any specific
architecture. All the models we test are convolutional
neural networks (Krizhevsky et al., 2012), where the
nonlinearity applied after each layer is the rectified
linear activation function (Glorot et al., 2011). Two
of the models, AlexNet (Krizhevsky et al., 2012) and
VGG16 (Simonyan & Zisserman, 2014), represented
key advances in image classification by the computer
vision community and were later used in some of the
first papers that leveraged DNNs as models of object
recognition (Cadieu et al., 2014; Khaligh-Razavi &
Kriegeskorte, 2014). The paper describing AlexNet
(Krizhevsky et al., 2012) was one of the first to
successfully apply deep convolutional neural networks
to the task of single-label image classification of
the ImageNet dataset (Deng et al., 2009). VGG16
improved on the performance of AlexNet by increasing
network depth while using much smaller convolutional
filters, particularly in the earlier layers (Simonyan
& Zisserman, 2014). The other two architectures,
CORnet-S and CORnet-Z, are two DNNs developed to
achieve good performance under a metric that captures
a model’s ability to predict brain activity and behavior
during object recognition tasks (Kubilius et al., 2018;
Schrimpf et al., 2018). The four convolutional blocks
of the CORnet models are meant to correspond to the
visual hierarchy in the primate ventral pathway: V1,
V2, V4, IT. CORnet-Z (“zero”) is the simplest version
of the CORnet architecture, akin to AlexNet with
only a single fully-connected layer, whereas CORnet-S
(“skip”) makes use of skip connections like those in the
ResNet architecture (He et al., 2016) to achieve shallow
within-area recurrence. All four architectures make use
of an adaptive average pooling layer (He et al., 2015) so
that they are image size agnostic. In the next section we
provide details of how these DNNs were trained and
how we adapted them to visual search tasks.

Transfer learning

All of our experiments make use of transfer learning
(Bengio, 2012; Caruana, 1995, 1997; Kornblith et al.,
2019; “Transfer Learning,” 2021; Yosinski et al., 2014),
where DNNs are first optimized for one task, such
as single-label image classification with the ImageNet
dataset, and then adapted to a new task with these
pretrained weights.
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Training
For all four DNN architectures we study, we used

publicly available weights that had been optimized
for single-label image classification on the ImageNet
dataset. We only ever used one set of pretrained weights
per architecture and dataset, for all transfer learning
experiments described. The loss function for optimizing
those weights was standard cross-entropy loss. Loss was
minimized with a stochastic gradient descent optimizer
over minibatches.

The AlexNet and VGG16 models are the
implementations from the torchvision library (Marcel
& Rodriguez, 2010). Pretrained weights we used
for transfer learning experiments were downloaded
programmatically through the library. These weights
were trained in a fashion similar to the example script
included with that library (https://github.com/pytorch/
vision/blob/master/references/classification/train.py).
The default training parameters in that script are 90
epochs with a batch size of 32, a learning rate of
0.1, using the stochastic gradient descent optimizer,
momentum 0.9, and a learning rate scheduler
that decreased the learning rate by 0.1 every 30
epochs. The initial learning rate was decreased to
0.01 for AlexNet and VGG16, because they do not
have batch normalization that allows for a higher
initial learning rate. For the CORnet models, we
use both the implementations and the weights
available from the publicly available repository:
https://github.com/dicarlolab/CORnet. Weights were
trained with the script in that repository. The default
training parameters in that script are 20 epochs with
a batch size of 256, a learning rate of 0.1, using the
stochastic gradient descent optimizer, momentum
0.9, and a learning rate scheduler that decreased the
learning rate by 0.1 every 10 epochs.

Adaptation
To adapt DNNs to visual search tasks, we hold

fixed all parameters in the convolutional layers that
are optimized for feature extraction, while updating
parameters in the fully-connected decoding layers.
We replace the final fully-connected layer used for
image classification with a new layer that has an
appropriate number of units for the visual search task,
and then adapt the model to this task by optimizing
for performance with a training set. Again, we use
cross-entropy loss with a stochastic gradient descent.
For the visual search tasks using simplified displays,
the final layer has two output units corresponding
to “target present” and “target absent”. DNNs were
trained to assign one of these two labels to the displays.
On validation steps of training, and at test time, we
measured accuracy as simply the number of correctly
classified displays (target present or absent) divided

by the total number. For the search task using natural
images, the number of output units corresponds to the
number of classes in the dataset (20 in the case of the
Pascal Visual Object Classes [VOC] dataset we use). We
used the same transfer learning approach for this search
task by selecting one of these candidate classes as a
“target,” as described in the main text.

For each model and experimental condition, we
generated multiple training replicates (eight replicates
for experiment 1, four replicates for experiment 2).
This practice means that, for each training replicate,
we loaded the one set of pretrained weights into a
given DNN architecture and then using that one set of
weights we repeated the transfer learning procedure for
each replicate. Weights in the final fully-connected layer
were the only ones that were randomly initialized for
transfer learning experiments. In control experiments,
where we did not use pretrained weights, we randomly
initialized weights in all layers. We performed this
random initialization for each training replicate.

Validation of the method
Because our core results hinge on optimizing DNNs

with natural images and then performing transfer
learning, it was also very important to minimize the
possibility that our results were trivially explained
by issues with how we performed transfer learning.
Before explaining how we minimized this possibility,
we emphasize that the method we chose is meant
to explicitly test whether the features that DNNs
learn to extract from natural images contribute to set
size effects. Hence, we froze all weights pretrained
to extract features for image classification before
adapting weights in the decoding layers to our task
of classifying visual search displays. Clearly, freezing
weights in the feature extraction layers places a limit on
our ability to improve models’ performance. However,
even models trained with transfer learning performed
quite well as measured on the test set, as shown in
the results. We also eliminated the possibility that set
size effects arose from other factors of our training
method in preliminary experiments (Nicholson &
Prinz, 2019). In those preliminary experiments, we
examined the effect of imbalance in the dataset, the
size of the training set, and hyperparameters such as
the learning rate. Essentially, we manually searched
for the highest learning rate we could use to ensure
that optimization converged and then found that we
could combine this with early stopping to prevent
overfitting. We also increased the dataset to the largest
size possible without generating multiple examples of
the same image, to ensure performance was not due
to limited training data. Finally, we found in those
preliminary experiments that balancing the dataset
across visual search set sizes, as we did here, produced
the best accuracy. In addition, we took several steps to

https://github.com/pytorch/vision/blob/master/references/classification/train.py
https://github.com/dicarlolab/CORnet
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minimize the possibility that the results presented here
were an artifact of our training method. Those steps
included logging metrics at each step of training, then
visually assessing plots of the logged training histories
for evidence of overfitting to the training set, or failure
of the optimization to converge. In almost all cases, we
saw by plotting the loss values that the optimization
converged and that loss also decreased when measured
on a validation set that DNN models did not see
during training. (We note in the results the few cases
where models did not converge.) We also saw that the
models achieved high accuracy on the validation set
during optimization, indicating that what they learned
during training generalized to unseen data. We do not
show these training histories here because of space
considerations, but they are available in the on-line
repository of code that accompanies the paper; see
Code availability section in General Methods for link.

Validation of the models
To assess performance during and after transfer

learning, we followed good practices for machine
learning (Hastie et al., 2001). These included dividing
datasets into training, validation, and test sets. The
validation set was used to evaluate the model during
training, and the test set was withheld during training
and used to measure model behavior afterward. For the
search task using simplified displays, all DNN models
were trained on a dataset consisting of all different
types of stimuli (see, for example, columns in Figure 2),
with 1,200 samples for each type. During training,
batches were drawn randomly from this dataset,
without regard for stimulus type. All results we report
used three types, except for experiments that added
seven additional stimulus types shown in Figure 3.
Stimuli were generated with jitter in the placement of
the items, in such a way that guaranteed that there were
no repeated images (which might encourage the DNNs
to simply memorize the correct answer during training).
The maximum number of samples we could generate
was 1,200 per stimulus type without repeats, given the
parameters we used to create them. For the search task
using natural images from the Pascal VOC 2012 dataset
(Everingham et al., 2012), we split the data as was done
in Ionescu et al. (2016). That is, we used 50% of the
Pascal VOC 2012 training-validation set as our training
set, 25% as a validation set, and 25% as a test set.

Code availability

To aid with reproducibility of our experiments,
and to make them more accessible to other
researchers, we developed a separate software
library, visual-search-nets, available at https:
//github.com/NickleDave/visual-search-nets. We

also developed a tool to generate datasets of
the simplified visual search stimuli like those we
use in Figure 2 and Figure 3, in a format that is
convenient for training neural networks, available
at https://github.com/NickleDave/searchstims. All
configuration files for carrying out experiments,
and scripts for generating stimuli, analyzing results,
and creating figures, are available in the repository
corresponding to this article: https://github.com/
NickleDave/Nicholson-Prinz-JOV-DNNs-bio-vis.
Libraries, tools, and code for analysis and figures were
developed with the following Python libraries: attrs
(Schlawack, 2019), numpy (Harris et al., 2020; Walt
et al., 2011), scipy (Virtanen et al., 2019), scikit-learn
(Grisel et al., 2020; Pedregosa et al., 2011), pandas
(team, 2020; McKinney, 2010), matplotlib (Caswell
et al., 2020; Hunter, 2007), seaborn (Waskom et al.,
2020), jupyter (Kluyver et al., 2016), pingouin (Vallat,
2018), pygame (Schinners, 2019), pytorch (Paszke et
al., 2019), statsmodels (Seabold & Perktold, 2010), and
torchvision (Marcel & Rodriguez, 2010).

Results

We test whether optimizing a DNN with one dataset
of images constrains its behavior when adapted to a
visual search task using a different dataset of images. To
adapt DNNs to this task, we employ methods known as
transfer learning that are often applied to DNN models
(Bengio, 2012; Kornblith et al., 2019; Yosinski et al.,
2014) (see Transfer learning in General Methods).

Comparison of image classification and object
detection models

We start by testing which family of DNN models is
appropriate to investigate this adaptation phenomenon.
To understand which family of DNN model, image
classification or object detection, would be appropriate
for our simulations, we first assessed the behavior of
both when adapted to perform a task with simplified
search displays, like those shown in Figure 1. We
compare the behavior of a Faster R-CNN model
for object detection with a VGG-16 model for image
classification. Crucially, the backbone of the Faster
R-CNN is the exact same VGG16 model pretrained
for image classification on ImageNet (this use of a
pretrained backbone is standard for object detection
models).

Results and discussion
To test the VGG16 model for single-label image

classification, we map the yes/no paradigm used in
studies of selective attention to a classification task:

https://github.com/NickleDave/visual-search-nets
https://github.com/NickleDave/searchstims
https://github.com/NickleDave/Nicholson-Prinz-JOV-DNNs-bio-vis
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Figure 2. Accuracy as a function of set size, for a single DNN architecture performing a visual search task. Representative results from
the VGG16 architecture, performing the task of classifying all search displays as “target present” or “target absent.” Each panel shows
accuracy as a function of set size, where accuracy is simply the number of correctly classified displays divided by the total number of
displays. Dashed lines indicate mean accuracy across all trials for individual training replicates, and the solid line indicates mean
across all trials and replicates. The first three rows show the results for the VGG16 models that were first optimized to classify a
separate dataset of images then adapted to this task: first row, natural images (ImageNet), second row, faces (CelebA-Spoof), third
row, x-ray images (NIH Chest X-Ray). The second three rows show results for VGG16 models that were trained only on the visual
search task: fourth row, same search displays as in the first three rows; fifth row, a dataset with seven more search display types; sixth

→
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←
row, a dataset with four more set sizes. Columns are different stimulus types (example shown at top of column with the target
present condition). Stimulus types from left to right are: red vertical line target versus green vertical line distractors; red vertical line
target versus red horizontal and green vertical line distractors; white digital two target versus white digital five distractors.

Figure 3. Summary results for four DNN architectures replicating the experiments in Figure 2. Results are summarized as a single
value, the error on stimuli with set size 1, plus a “set size effect” computed as the absolute difference between accuracy on the
smallest and largest set size. Dots indicate this summary scalar value for one training replicate, and solid lines indicate the mean
across all training replicates. Jitter is added on the x-axis to make individual dots more visible. Colors correspond to the different DNN
architectures: AlexNet (blue), VG16 (orange, same results as those shown in Figure 2), CORnet Z (green) and CORnet S (red). The top
row shows results for models that were first trained to classify a separate set of images and then adapted to the visual search task:
left column, natural images (ImageNet); middle column, faces (CelebA-Spoof); right column, x-ray images (NIH Chest X-Rays). The
bottom row shows results for models that were only ever trained to perform the visual search task: left column, exact same dataset of
search displays as used in the top row; middle column, a dataset with seven more search display types; right column, a dataset with
four more set sizes.

the model classifies each image with one of two
labels: “target present” or “target absent”. As shown
in Table 1, when adapted to this task, this VGG16
image classification model did exhibit set size effects
(top row).

To test the Faster R-CNNmodel for object detection,
we generated a dataset of the simplified stimuli
where each item in a display was annotated with a
bounding box. We considered a target item detected
when any bounding box overlapped with it by more
than 50%, as was done previously, and after initial
detection we rejected any further bounding boxes as

false positives. When testing the same VGG16 network
as the backbone of the Faster R-CNN model, we did
not observe set size effects. We found that the model
essentially achieves perfect detection of the target item,
regardless of the number of distractors, as shown in
rows 2 and 3 of Table 1. We only saw a drop in target
detection when we reduced the number of candidate
bounding boxes by an order of magnitude, raised the
objectness score threshold for each bounding box much
higher than is typically used, and raised the required
overlap for detection to a very stringent 95%. We also
repeated the analysis from (Eckstein et al., 2017) and
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Network Task

Objectness
score

threshold

No. of region
proposals
(pre-NMS)

No. of region
proposals
(post-NMS)

Overlap
threshold

Acc.
(set size 1)

Acc.
(set size 2)

Acc.
(set size 4)

Acc.
(set size 8)

VGG16 Image classification N/A N/A N/A N/A 0.99507813 0.97117188 0.89757813 0.79328125
VGG16 Object detection 0 1000 1000 0.5 1 1 1 1
VGG16 Object detection 0 100 100 0.5 1 1 1 1
VGG16 Object detection 0.95 100 100 0.5 1 0.99875 1 1
VGG16 Object detection 0.95 100 100 0.95 0.9975 0.9975 0.99625 0.985

Table 1. Accuracy of VGG16 as an image classification model, and as the backbone an object detection model.

again found with their method of detecting targets
that the Faster R-CNN performance was essentially at
ceiling for all set sizes (>99%).

These results demonstrate how object detection
models are highly engineered to allow for a very high
number of initial false positives, so that they can
successfully detect all the objects in a scene (Wenkel et
al., 2021). It is also consistent with previous work that
found that these DNNs employ different strategies than
humans performing visual search tasks (Eckstein et al.,
2017). Given that these DNNs for object detection are
so highly engineered, and have already been shown to
exhibit different strategies than humans performing
visual search tasks, we did not pursue further studies
of these models. In contrast, we found that the
exact same VGG-16 model for image classification,
pretrained on ImageNet and used as a backbone in
the Faster R-CNN, did exhibit a set size-dependent
decrease in accuracy when adapted to the yes/no
task.

Constraints on the search task imposed by
optimizing with different datasets

The comparison of models led us to proceed with
DNN models for image classification. Thus, we take
DNNs pretrained for image classification with one
of three source datasets, then adapt them to perform
the yes/no task, classifying each display as “target
present” or “target absent.” We measure the behavior
of four DNN architectures used as models of object
recognition in the primate ventral visual pathway:
AlexNet (Krizhevsky et al., 2012), VGG16 (Simonyan
& Zisserman, 2014) used in (Cadieu et al., 2014;
Khaligh-Razavi & Kriegeskorte, 2014), and CORnet
S and CORnet Z (Schrimpf et al., 2018). We chose
these four architectures as a representative sample of
DNN-based object recognition models to decrease
the likelihood that our results are an artifact of any
specific architecture. Essentially, we hold fixed all neural
network parameters in the convolutional layers that
perform feature extraction. Then we adapt parameters
in the fully-connected “decoding” layers on top of
the feature extraction layers, replacing the final layer
used for image classification with a new layer that has
an appropriate number of units for the visual search

task. We divide datasets into training, validation, and
test subsets, using the validation set to evaluate the
model during training, and using the held-out test set
to measure model behavior with data not seeing during
training.

Methods
Source datasets: To test whether the effect we observe
was specific to models trained on natural images,
we trained models on two other source datasets,
CelebA-Spoof (Zhang et al., 2020) and the NIH Chest
X-Ray dataset (Wang et al., 2017). To train models
on the CelebA-Spoof datasets, we modified the script
from the torchvision library referenced above to
work across datasets. For the CelebA-Spoof dataset,
we used the Adam optimizer (see code repository
for parameters) and modified the number of classes
to two (real image or spoof image). For the NIH
X-Ray dataset, we modified another publicly-available
code repository to train models for multi-label
classification (https://github.com/NickleDave/
NIH-Chest-X-Rays-Multi-Label-Image-Classification-
In-Pytorch).

Results and discussion
We moved on to test more generally whether

optimizing the DNN models for image classification
with one dataset would constrain performance when
adapting them to perform the visual search task. To
perform a more general test, we took four neural
network architectures and trained each on one of
three source datasets, then adapted them to the search
task. Representative results for one neural network
architecture, VGG16, are shown in Figure 2. As can
be seen in the first three rows, when we first optimized
VGG16 to classify images—either natural images, faces,
or x-ray images—and then adapted the trained model
to the visual search task, this strategy resulted in set
size effects, where accuracy decreased as the number
of distractors increased. It can also be seen that model
performance depended in part on the source dataset;
predictions of VGG-16 models pretrained on x-ray
images were highly variable. We address this issue
further below. In contrast with these results, models
almost always achieved near-perfect accuracy across

https://github.com/NickleDave/NIH-Chest-X-Rays-Multi-Label-Image-Classification-In-Pytorch
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set sizes when randomly initialized and then trained
only to perform the visual search task, as seen in the
bottom three rows. Even when we trained them with an
additional seven simplified stimulus types (fifth row)
or when we increased the number of different set sizes
from four to seven (sixth row), the performance of
models trained only on the search task was at the ceiling
for most training replicates.

To show that these results as described hold across
neural network architectures, we present summary data
in Figure 3. In this figure, we reduce model performance
to a single number, by taking the error for stimuli
with a set size of one and adding to it the absolute
difference in accuracy between set size one and set
size eight. We combined these two values into a single
metric to capture two related phenomena we saw in the
results. The first component, error for stimuli with a set
size of one, varied across models trained on different
datasets, with a clear difference between models trained
on x-ray images “compared to models trained on”
the other two datasets (top row, Figure 3), as noted
above. The second component, the absolute difference
in accuracy between set size one and eight, provided a
measure of set size effect, similar to the slope typically
taken from linear fits to data from experiments with
human participants. We did not use the slopes because
in one case a linear fit was not appropriate for the
data (some replicates of the models trained only on
stimuli with seven set sizes produced results that were
clearly not linear) (see the right panel in bottom row of
Figure 2).

Results in Figure 3 suggest that a DNN for image
classification will exhibit behavior with some sort of
measurable set size effect when adapted to perform
the yes/no task with simplified stimuli after first being
trained on any other dataset. For models trained on
natural images from the ImageNet dataset or models
trained on faces, the set size effect was qualitatively
similar to that observed when human subjects perform
the task, with a similar ranking of stimulus type
to those reported in the literature (Eckstein, 1998;
Eckstein et al., 2000; Palmer, 1994). We also observed
evidence consistent with the idea that effects might
depend in part on the source dataset: models that were
first trained on the x-ray images had much higher error
even for a set size of 1 (Figure 3, top right panel).
Despite this, there was clearly a separable set size
effect, regardless of source dataset (Figure 3, top row).
Of course, similar set size effects could be obtained
trivially with models explicitly designed to discriminate
these features. Our goal here was to ask whether the
result could be explained in part by optimizing for the
statistics of another dataset. To clearly demonstrate this
phenomenon, we performed control experiments where
models were only ever trained on the yes/no task with
simplified stimuli. These models obtained near-perfect
accuracy (Figure 3, bottom row), indicating that the

main factor contributing to these effects was the
adaptation from another dataset. We recognize that, if
this were a real behavioral experiment, then it would
be poorly designed, because performance would be at
the ceiling in almost all conditions. We reiterate that
our goal here was simply to show how the behavior of
DNN models depends on optimization, and not to
make any broader claims about the intrinsic ranking
of stimuli and the efficiency with which they can be
searched.

Additional control experiments

We also carried out additional control experiments
that we summarize briefly. The results are provided
with the code repository associated with this article
(see the link in the General Methods) but, are not
shown because of space considerations. To rule out
the possibility that set size effects are a result of the
transfer learning method we used, we trained the
same DNNs to first classify the simplified stimuli,
where each stimulus type was one class, and then
repeated the transfer learning experiment, adapting
the pretrained models to the task of classifying all
stimulus types as either target present or target absent.
Models again achieved near-perfect accuracy, similar
to results shown in the bottom row of Figure 3,
indicating that transfer learning alone does not produce
set size effects. We also carried out transfer learning
experiments with AlexNet and VGG16 architectures
pretrained on other datasets. We tested models trained
on Stylized ImageNet, a dataset that has been used
to make DNNs less sensitive to texture, and more
responsive to shape, as humans are (Geirhos et al.,
2019). These models still exhibited set size effects. In
addition, we trained models on the Clipart domain
of the DomainNet dataset. These models again
exhibited set size effects. A final concern that might
be raised about our results is that the simplified
stimuli might change the statistics of activations
within the hidden layers of the neural networks in a
way that impedes networks’ ability to learn the task.
For example, the black backgrounds might produce
lower activations on average than the activations
produced by full-color images from ImageNet used
when training models for object recognition. To address
this concern, we carried out a control experiment
where we produced the same set of simplified stimulus
types, only with a white background instead of black,
and we repeated the training with the AlexNet model.
We again saw that AlexNet models pretrained on
ImageNet exhibited set size effects, whereas AlexNet
models trained from randomly initialized weights
were able to achieve very high accuracy on the same
task.
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Psychophysics experiment

We sought to understand what gave rise to the
difference in performance we saw when optimizing
DNNs only with simplified search stimuli versus
optimizing them with real-world, natural images.
Based on our results, we predicted that the types
of images used to optimize DNNs would impact
the models’ ability to generalize. To test this, we
adapted a psychophysics-based approach that has been
used previously when studying selective attention.
Researchers taking this approach have shown that they
can control for target–distractor similarity and still
detect set size effects (Palmer, 1994; Palmer et al., 1993,
2000). Experimentally, they vary the target–distractor
similarity across sessions, and then fit a psychometric
curve for each display set size, where performance is
a function of discriminability. Finally, they find some
fixed threshold value, e.g., the discriminability that
yielded 75% accuracy, and plot those thresholds as a
function of the set size. In this way, the analysis tests
whether set size effects persist even when behavior is
measured at a fixed discriminability threshold.

Methods
To further interrogate model behavior, we perform

psychophysics experiments with DNNs adapted to
the visual search task that uses simplified search
displays. In order to do so, we generated additional
datasets of search displays where target-distractor
discriminability varied. We tested DNNs trained on
10 stimulus types with two of those stimulus types:
(1) red vertical rectangle target versus green vertical
rectangle distractors, and (2) T rotated 90° target
versus T (not rotated) distractors. For the first stimulus
type, we varied the color of the target from green (0%
discriminable) to red (100% discriminable). For the
second type, we varied the rotation of the target, from
0° (i.e., not rotated, 0% discriminable) to 90°. We chose
12 points between 0% and 100% discriminability for
both targets, and at each point generated 256 unique
stimulus displays for all four set sizes, a total of 1,024 for
each discriminability level. Then we used these datasets
to measure accuracy at each level of discriminability.

We then fit a psychometric function to the results:

P (x) = γ + (1 − γ )
(
1 + e−(x−α)/β)−1

.

We chose this function simply because it is widely
used (Strasburger, 2001; Wichmann & Hill, 2001).
It is not meant to imply anything about how DNNs
process stimuli (e.g., as the Weibull function was used
to model a nonlinear transducer in (May & Solomon,
2013)). The function we use can be seen as a logistic
that provides a sigmoid shape, combined with the
term (x–α)/β used to standardize normally distributed

data (Hill, 2005). For the specific function we use, α is
the 75% threshold and β is a scaling factor inversely
related to the slope (Hill, 2005; Strasburger, 2001).
When reporting results we refer to β as the “slope” as
is common convention (Strasburger, 2001), although
both α and β affect the slope when the fit is performed
on a linear abscissa (May & Solomon, 2013) (not log
transformed), as we do here. To estimate parameters α
and β we fit results from the psychophysics experiments,
using the scipy.optimize.curve_fit function, with initial
values (α = 0.5, β = 0.05) and the guessing rate γ set to
performance at chance, 0.5, in all cases.

After performing the fitting, we ran a regression on
the log(threshold)–log(set size) values, as was done
in Palmer (1994) and Palmer et al. (2000). Following
their methods, we used the fit psychometric function to
determine the discriminability at which DNNs correctly
classified 75% of search displays, and used that value
of discriminability as the threshold when we ran the
regression.

Results and discussion
We hypothesized that the type of images used to

optimize DNNs would impact their sensitivity to
targets, as measured by the parameters of the fit
psychometric functions. To carry out psychophysics
experiments with the trained DNNs, we generated
additional datasets of search displays where target-
distractor discriminability varied. For each training
replicate, we measured accuracy at each level of
discriminability and then fit a standard psychometric
function to the results. In the first panel of Figure 4,
we show the results of performing these fits with
AlexNet models optimized with different types of
images. After performing the fitting, we ran a regression
on the log(threshold)-log(set size) values as was done
in Palmer (1994) and Palmer et al. (2000). When
replicating their analysis, we did not see any consistent
difference in set size effects that depended on image
types used during optimization (results not shown).
However, we did observe a clear difference in the fit
parameters. For models trained on just the simplified
stimuli, we saw qualitatively that the fits essentially
produced step functions (Figure 4, left panel, top and
middle row), whereas the fits for models trained on
any real images were more like those expected for a
well-calibrated psychophysics experiment (Figure 4,
left panel, bottom row). This qualitative difference
was matched quantitatively by a clear difference in the
values of the fit β parameter, which contributes to the
slope and shape of the fit psychometric function (May
& Solomon, 2013; Strasburger, 2001). As shown in the
second panel of Figure 4, models trained with just
simplified stimuli had β parameter values of less than
0.1, regardless of set size, whereas the models that were
first optimized to classify ImageNet images had a range
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Figure 4. Results of psychophysics experiments. (Left) Representative examples of fits of psychometric curves. All curves are from
AlexNet models with accuracy (y axis) measured on a dataset of search displays where the target is distinguished from the distractor
by color, and the discriminability was varied from 0 (both target and distractor are green) to 100 (target is red, as in the original
training set). Circular markers indicate measured accuracy. Each line is a fit to those accuracies from one training replicate. (Right) A
histogram of beta parameters from psychometric function fits. Fill colors in bars indicate source dataset DNNs were trained on, if any,
before being adapted to the task using search display stimuli: “ImageNet” models were first optimized to classify natural images,
“search stimuli (classify)” were first optimized to classify the types of simplified search displays, and “search stimuli” were only ever
trained to classify all such displays as either “target present” or “absent.”

of β parameter values up to 0.4 that varied with the set
size.

We observed a clear difference between models
trained only on the simplified stimuli compared with
models trained on natural images. This difference
could be seen in the curves and was clear from the
β parameters produced by fits. The difference in β
parameter values demonstrates that DNNs trained
on simplified stimuli alone are highly tuned to very
specific features. This outcome is not simply overfitting
in its standard sense: despite this tuning, DNNs trained
on simplified stimuli achieve near perfect accuracy
on a large test set not seen during the training time
(Figure 3). In a world of simplified search displays, these
models would generalize perfectly. By comparison,
DNNs optimized with the natural images in the
ImageNet dataset seem to be tuned more broadly.

We also carried out other analyses that like this
psychometric experiment were meant to identify
a mechanism that might explain the differences in
behavior we observed between models trained on
natural images andmodels trained on only the simplified
search displays. These analyses included measurements
of learned kernel similarity, distance between hidden
layer activations, and Rényi entropy (Wickstrøm et
al., 2019). None of them provided a measure that
consistently explained differences across neural network
architectures and training sets. We include the analyses
with the on-line code repository associated with the
article, but omit the results here. Based on these results,
we suggest that approaches from psychophysics applied
to DNNs may prove more informative than explainable
AI–type approaches, a point we return to in the
discussion.
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Figure 5. Modifying the Pascal VOC dataset to perform the same visual search task as in experiment 1. The top row shows example
images from VOC along with bounding box annotations (red and green boxes). (Left) An example that we used as a chair class.
Bounding box annotations are shown here for reference; for experiments we assigned this image a single label, “target present,” as
we did in experiment 1. (Right) An example of “target present” for the dog class, and the green boxes correspond with distractor
classes. The bottom row presents summary statistics of the dataset. As shown in the left of the bottom row, we ranked the 20 classes
by their occurrence and chose the five most frequently occurring (left side of the vertical dashed line). This gave us five candidate
“targets” with different distributions of “set sizes” in the annotation, where set size is computed as the total number of annotated
bounding boxes in each image. The resulting distributions of set sizes are shown in the right panel of the bottom row. Because there
were some candidate targets for which there were no examples with a set size of greater than five (right side of the vertical dashed
line) we only considered set sizes of one to five when analyzing results.

Visual search task with natural images

We again ask how optimizing for one dataset
constrains performance on another dataset, but with
a crucial difference: here in both cases the datasets
are of natural images. Logically, it makes sense to ask
whether we observe similar effects when applying the
exact same approach, but with two datasets that are
arguably drawn from the same underlying distribution.
Additionally, we design the task so that we can directly
compare our results with previous work on visual search
in scenes, which used an operational definition of set
size for the scenes to test for set size effects (Neider &
Zelinsky, 2008; Wolfe et al., 2011). This previous work

found that searches of natural scenes were much more
efficient than search of simplified two-dimensional
arrays of items. Here we obtain a measure of set size for
natural images by making use of a benchmark dataset
that is designed for object detection, the Pascal VOC
dataset (Everingham et al., 2012), that has also been
used in a previous study of visual search (Ionescu et al.,
2016). We compute a set size for images in this dataset
by simply counting the number of annotated bounding
boxes in each image (see examples in Figure 5). As
noted in previous work, such a measure is an imperfect
heuristic (Wolfe et al., 2011), but here it allows us to
directly compare the behavior of a single model across
the two experimental paradigms.
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Figure 6. Accuracy as a function of set size for yes/no visual search task using real-world images. As in experiment 1, the task was to
classify each image as “target present” or “target absent,” but in this case the target was a real-world class, one of “person,” “chair,”
“dog,” “car,” or “horse,” chosen as described in Experiment 2 methods and shown in Figure 5. Models pretrained to classify ImageNet
were adapted to this task using the Pascal VOC dataset, with the “target present” or “target absent” labels changed for each
simulation, according to which class was designated the target. Each panel shows mean accuracy across four training replicates.
Standard deviation was relatively small across replicates (not visible in plot). Each column shows results for one candidate target,
ranked in order from most to least frequent as in Figure 5. Each row presents results for one neural network architecture.

Methods

We sought to use the exact same visual search task
used in experiment 1 so that we could better test
whether the effects we saw can be attributed to the
difference in statistics between datasets. To achieve
this, we labeled all images in the Pascal VOC dataset
as “target present” or “target absent”, just as we did
with the simplified search displays in experiment 1.
We chose the five most frequently occurring classes in
Pascal VOC as candidate targets: person, chair, dog,
cat, and car (see bottom left panel of Figure 5). This
strategy produced five datasets that all shared the same
images but had different “target present” or “target
absent” labels each image depending on the target class,

as derived from the original Pascal VOC annotation.
We also assigned each image a set size by counting the
number of annotated bounding boxes. The set sizes
were constant across the five candidate target classes,
but the number of “target present” images for each
set size varied by candidate class. Using this definition
of set size, we could only go up to a set size of five
and still have some “target present” images for each
candidate target class, as shown in the bottom right
panel of Figure 5. Thus, we limit our analysis to set sizes
of one to five. Note also that the varying number of
images per set size across candidate target classes shows
that the datasets were not carefully balanced across set
sizes (if they were balanced, this might be expected to
minimize the possibility that the networks showed set
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Figure 7. Distribution of slopes fit to data from the two visual
search tasks. Slopes are from least squares linear regressions fit
directly to accuracy as a function of set size. Hue indicates the
dataset used in the visual search tasks.

size effects). Given these five datasets, we then adapted
DNN models trained to classify ImageNet images to
perform this task, using the exact same model weights
as in experiment 1.

Results and discussion
As before, we tested how adapting the same

four neural network architectures to a new dataset
constrained their performance. We found that DNNs
did exhibit set size effects when adapting to a different
dataset of natural images, as shown in Figure 6. There
was a clear decrease in accuracy between set sizes of
one and five for three of the candidate target classes:
person, chair, and car. However, this outcome was
not true for all candidate targets. Qualitatively, there
appeared to be no decrease in accuracy for the dog
class, and surprisingly for the cat class, the accuracy
improved slightly for larger set sizes. This behavior was
consistent across all four neural network architectures,
as can be seen across rows in Figure 6.

It is surprising that we did observe set size effects
when transferring models from one set of natural
images to another. Based on previous research on
transfer learning, it is to be expected that models
perform well when adapted to another dataset that is
in the same domain (Kornblith et al., 2019; Yosinski
et al., 2014). One alternate explanation for this result
could be the relatively limited amount of data in the
Pascal VOC dataset. We used the “train-val” split of
the 2012 version of the dataset (as was done in Ionescu
et al. [2016]), which gave us approximately 6,000

images for training. By comparison, the datasets we
generated of two-dimensional search arrays contained
at least 38,400 images (and more in cases where we
increased the number of stimulus types or set sizes).
Unfortunately, ruling out this alternate explanation
would require a much larger dataset of natural images
that are hand-annotated with bounding boxes.

Statistical comparisons between datasets

Lastly, we tested whether we could detect a statistical
difference in the effects we saw between tasks, and
whether this difference depended on the dataset that the
models were adapted to. To test for this, we considered
only models that were first trained on natural images
(the ImageNet dataset), and asked whether there was
a difference in set size effect that depended on the
dataset used in the visual search task, i.e., the simplified
search displays or natural images from the Pascal VOC
dataset. We performed simple linear regressions on
accuracy as a function of set size, and compared the
slopes from models adapted to the simplified search
displays with slopes from models adapted to the natural
images. The distribution of slopes is shown in Figure 7.
To test for a difference, we performed a nonparametric
one-sided Mann–Whitney U test. The alternative
hypothesis was that slopes for the models adapted to
the task with simplified stimuli were less than slopes
for models adapted to the task. (Note that most slopes
were negative because accuracy decreased as a function
of set size, as shown in Figure 7.) The test was not
significant (p = 0.14).

General discussion

We asked whether stimulus types used in visual search
tasks may influence performance. More specifically,
we asked whether the statistics of simplified displays
used to test theories of selective attention may be
mismatched with the statistics that the visual system is
optimized to perceive, by evolution and by experience
with natural images. To test this idea, we made use
of deep neural networks (DNNs). Because DNNs
are optimized for task performance in a data-driven
way, they make it possible to test how optimizing for
one task, using one type of stimulus, may impose
constraints on other tasks that use different types of
stimuli. In addition, DNNs are image computable,
meaning that we might be able to use them to account
for behavior across all types of images used in visual
search tasks. First, we tested which families of DNN
model were appropriate to test our hypothesis. We
found that DNNs for object detection were at ceiling
for all set sizes (Table 1), because they are carefully
engineered to detect all objects in a scene. This finding
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is consistent with previous work that found that DNNs
for objecy detection employ different strategies than
humans. In contrast, a DNN for single-label image
classification did exhibit human-like performance
limitations when adapted to the visual search task using
simplified stimuli, as has been shown in other studies. To
test the generality of this finding, we tested three other
DNN architectures for single-label image classification.
We first trained each architecture on one of three source
datasets—natural images from ImageNet, faces from
the CelebA-Spoof dataset, or x-ray images from the
NIH Chest X-Ray dataset—and then adapted them
to perform the visual search task that uses simplified
displays We found that the behavior of these DNNs
qualitatively resembled that of human participants
performing the task, resulting in measurable set size
effects (Figure 2) that are typically attributed to selective
attention mechanisms. To further test whether set size
effects resulted from optimizing DNNs with natural
images, we carried out separate experiments where
we trained the same DNN architectures on simplified
displays alone, instead of using weights pretrained for
image classification. When trained this way, the exact
same DNN architectures are capable of performing
the task with near-perfect accuracy (Figure 3). Lastly,
we tested whether this effect disappeared when we
adapted DNNs in the same way to a visual search task
where the dataset was again natural images (Figure 5).
In this case, we did still see set size effects (Figure 6),
and, when we compared slopes fit to the data from the
two different tasks (Figure 7), we were unable to find a
significant difference between the simplified stimuli and
the natural images. Taken together, our results provide
some evidence that a mismatch between statistics of
stimuli used in search tasks could contribute to visual
search behavior. However, they also suggest that other
factors in our modeling approach could produce similar
effects, such as limited data when adapting models
to the visual search task. A better understanding of
these inconsistencies will need to be resolved by more
fine-grained comparisons of DNNmodel behavior with
human behavior. Such comparisons are both necessary
and informative (Firestone, 2020; Funke et al., 2020;
Geirhos et al., 2020; Kim et al., 2020).

This need to further test empirically points to
potential weaknesses of our findings. One weakness of
our approach here is that the DNN models we used
cannot account for other behavioral measures, the most
crucial of which is reaction time. We discuss how to
extend DNN models to account for reaction times
below. Here we point out that, even though we cannot
account for reaction times directly, our results at least
suggest that DNN models have the potential to account
for behavior across visual search tasks. While we cannot
make strong claims about our findings across tasks,
these results do suggest DNNs can address a weakness
of selective models of attention, which usually neglect

the problem of feature extraction, and so are not
easily extended to account for behavior across multiple
stimulus types. It should be said there are models of
visual search that do propose explicit feature extraction
mechanisms (Akbas & Eckstein, 2017; Zelinsky, 2008),
including the modeling of localization and spatial
uncertainty (Burgess & Ghandeharian, 1984; Swensson
& Judy, 1981), which is neglected by commonly used
DNN models. Future work modeling visual search with
DNN architectures should draw from that literature.

Another weakness of our findings relates to the
set size effects we observed when analyzing DNN
behavior. Set size effects alone do not provide
sufficient support for any mechanism that claims to
account for performance limitations (Kristjánsson,
2015; Nakayama & Martini, 2011). For this reason,
researchers have turned to multiple measures, such
as comparisons between distributions (Wolfe et al.,
2010), to arbitrate between the proposed mechanisms.
It is very possible that measuring multiple aspects
of the behavior of the DNN models we tested here
may reveal differences in how they solve visual search
tasks compared to humans. The results we obtained
by performing psychometric experiments on trained
DNNs (Figure 4) hint at this. A similar approach may
prove useful in future studies.

A first step toward addressing some of the potential
weaknesses of DNN models we have just outlined
would be to extend these models so that they also
produce reaction times. This practice would enable
researchers to test whether a single model accounts
for results not just across stimuli, but also across the
different protocols for performing visual search tasks.
There are several methods for extending DNN models
so they produce reaction times. The first would be
to use recurrent neural networks, which carry out a
computation for a specified number of time steps t,
as has been done for studies of object recognition
(Kar et al., 2019; Kietzmann et al., 2019; Nayebi
et al., 2018; Spoerer et al., 2017). In general, these
studies find that recurrence conveys an advantage
in terms of predicting neural activity and behavior.
Another solution would be to add computations
to DNNs from modeling studies of visual search,
computations that also produce reaction times, such
as a winner-take-all or diffusion-drift mechanisms
(Moran et al., 2013; Narbutas et al., 2017). Although
these mechanisms could be applied to DNN models,
the models would always produce the same reaction
time given a particular image, because DNN output is
deterministic (at least, at inference time, ignoring things
like stochastic dropout often used during training).
In contrast, human subjects produce a distribution
of reaction times across trials (Wolfe et al., 2010).
Addressing all of these factors may require adopting a
different theoretical framework. For example, building
models within the Neural Engineering Framework



Journal of Vision (2022) 22(7):3, 1–22 Nicholson & Prinz 17

(Eliasmith & Anderson, 2003; Eliasmith & Stewart,
2011) would make it possible to augment DNNs
tested here (Rasmussen, 2019) with winner-take-all
mechanisms (Gosmann et al., 2017) and variable neural
activity (Bekolay et al., 2014; Hunsberger et al., 2014;
Hunsberger, 2018), both of which are thought to be
important for visual search behavior but are missing
from standard DNN models.

As stated in the Introduction, our experiments were
mainly concerned with whether the stimulus type used in
visual search tasks might change behavior in a way that
is attributed to other factors, such as selective attention
mechanisms. Others have argued that one way to
reconcile results across experimental paradigms would
be to explicitly incorporate probabilistic computations
into models of visual search behavior (Eckstein, 2017).
Our results are wholly consistent with the claim that
visual search behavior across experimental paradigms
can be accounted for by probabilistic models, without
invoking causal cognitive processes like attention
(Anderson, 2011; Hommel et al., 2019; Vincent,
2015). Within such a modeling framework, the set size
effects we observed would be explained by the priors
learned from the datasets used to optimize models
before adapting them to visual search tasks. While
we acknowledge this, we insist that it is important to
understand how the visual system being optimized for
one aspect of behavior imposes constraints on other
aspects (Kell & McDermott, 2019), and we suggest
that data-driven optimization provides a tractable
method to address this question. Our results represent
a first glimpse of such an approach. We presented
evidence consistent with the idea that the visual system
being optimized for the statistics of natural images
might impose constraints when faced with a task that
uses stimuli drawn from a different distribution. It
is also clear from our results that there are very real
differences between the way DNNs are optimized for
machine learning tasks and the way the visual system
is optimized by evolution and experience. Future work
will need to better align data-driven optimization of
models with what is known about development of the
visual system (Smith & Slone, 2017). More broadly, the
study of visual search behavior may benefit from direct
comparison of predictions made by models we tested
here with existing models. The ready availability of
user-friendly software for building DNNs has increased
usage of these models. In contrast, there are many
descriptions of well-known conceptual models of visual
search behavior (Wolfe, 2020; Wolfe, 1994, 2021; Wolfe
et al., 1989; Wolfe & Gray, 2007), but very few widely
available computational implementations (Moran et
al., 2013, 2016) of those same models. A virtuous cycle
of implementing these models and comparing their
behavior with that of DNN-based models would drive
theory forward (Guest & Martin, 2020) and permit a
more nuanced understanding of what we mean when we
say that visual search behavior is “optimal” (Eckstein,

2017; Geisler, 2011; Geisler et al., 2009; Geisler &
Cormack, 2011; Kell & McDermott, 2019; Richards et
al., 2019; Vincent, 2015).

Conclusions

We asked whether stimulus types used in visual
search tasks may influence performance, because of
how well they match the statistics of the natural images
the human visual system is optimized to process. To
test this idea, we leveraged the strengths of DNN
models that are optimized for task performance with
large datasets of images. We demonstrated that DNNs
exhibit a hallmark effect seen when participants search
simplified stimulus types often used in laboratory tasks,
and this effect results from optimizing DNNs with
another dataset before adapting them to the visual
search task. However, we observed similar behavior
when adapting DNNs trained on natural images to a
visual search task that used a separate dataset of natural
images. Our findings are consistent with the idea that
optimization for one task can impose constraints on
other tasks, but they also raise questions about how
optimization of DNNs is different from development
of the visual system, that will need to be addressed by
future work.

Keywords: visual search, selective visual attention,
object recognition, neural networks, deep learning
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