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Abstract: The main osmoadaptive mechanisms of extremely halophilic archaea include the “salt-in”
strategy and the “compatible solutes” strategy. Here we report the osmoadaptive mechanism of
an extremely halophilic archaea H. kocurii 2020YC7, isolated from a high salt environment sample.
Genomic data revealed that strain 2020YC7 harbors genes trkA, trkH, kch for K+ uptake, kefB for K+

output, treS for trehalose production from polysaccharide, and betaine/carnitine/choline transporter
family gene for glycine betaine uptake. Strain 2020YC7 could accumulate 8.17 to 28.67 µmol/mg
protein K+ in a defined medium, with its content increasing along with the increasing salinity from
100 to 200 g/L. When exogenous glycine betaine was added, glycine betaine functioned as the primary
osmotic solute between 200 and 250 g/L NaCl, which was accumulated up to 15.27 mg/mg protein
in 2020YC7 cells. RT-qPCR results completely confirmed these results. Notably, the concentrations
of intracellular trehalose decreased from 5.26 to 2.61 mg/mg protein as the NaCl increased from
50 to 250 g/L. In combination with this result, the transcript level of gene treS, which catalyzes the
production of trehalose from polysaccharide, was significantly up-regulated at 50–100 g/L NaCl.
Therefore, trehalose does not act as an osmotic solute at high NaCl concentrations (more than 100 g/L)
but at relatively low NaCl concentrations (50–100 g/L). And we propose that the degradation of cell
wall polysaccharide, as a source of trehalose in a low-salt environment, may be one of the reasons for
the obligate halophilic characteristics of strain 2020YC7.

Keywords: halophilic archaea; Halorubrum kocurii 2020YC7; osmoprotectant strategy; potassium;
glycine betaine; trehalose

1. Introduction

Halophilic archaea are microorganisms that can live in a high-salt environment, such
as salt lakes, salt farms, pickled food, and other environments [1]. Due to the NaCl
concentration being 2.5–5.2 M, most halophilic archaea are classified as extremely halophilic
microorganisms [2]. To live in hypersaline environments, osmoadaptive strategies are
employed by extremely halophilic microorganisms through increasing the osmotic activity
of cytoplasm, which is of general biological interest.

It has been reported that halophilic archaea can survive in a high-salt environment
due to the high proportion of acidic amino acids, the synthesis of bacterioruberin (a C50
carotenoid) and two osmoadaptive strategies. A high proportion of acidic amino acids,
causes the intracellular proteins to bind more K+ [3–5]. Bacterioruberin could increase
the rigidity of cell membranes by reducing fluidity as well as exert an anti-stress effect
and was regulated by salinity [6–8]. The main osmoadaptive mechanisms included the
“salt-in” strategy and the “compatible solutes” strategy [2,5,9–11]. The “salt-in” strategy is
based on the input of K+, which balanced the high concentration of Na+ in the high-salt
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medium [12,13]. Series of enzymes and transport systems are activated and/or induced
by K+, which acts as a signal molecule to adapt to the changing osmotic pressure [14].
Common compatible solutes in extremely halophilic archaea include amino acids and their
derivatives, polyols, carbohydrates, etc. [15,16]. Studies had shown that organic solutes
trehalose and glycine betaine were widespread in the extremely halophilic archaea by de
novo synthesis or uptake from environment [17,18]. Trehalose is an important component
that has both osmoadaptive regulation and cell protection effects in halophilic archaea [19].
There are 5 pathways for the biosynthesis of trehalose, including OstAB, TreS, TreP, TreY and
TreT pathway, respectively [20]. The OstAB pathway is ubiquitous in halophilic archaea,
such as Halococcus saccharolyticus, Halogranum salarium, Natrinema pellirubrum, etc. And
halophilic archaeal species with ostAB gene have lower optimal growth salinity than those
lacking this pathway [19]. Glycine betaine is another widely used solute by many species,
including most archaea, bacteria, plants and humans, etc [21,22]. The de novo synthesis
pathway of glycine betaine generally used choline or glycine as a precursor [23,24].

K+ is the first choice for osmoadaptive regulation due to the ubiquitous transport
system, high transport efficiency and good regulation effect [25]. The increase of K+ is an
early response to a high-salt environment in eubacteria [26,27]. The main osmoprotectants
change from K+ to organic compatible solutes over time, such as proline and glycine
betaine [28]. Therefore, eubacteria tend to use zwitter ionic or nonionic solutes to balance
osmotic pressure with the outside world. During the transition from moderate salinity
(around 1 M NaCl) to high salinity (2 to 3 M NaCl), the main osmoprotectant of moderately
halophilic bacterium Halobacillus halophilus was converted from glutamate to proline [29].
Furthermore, the main osmoprotectant switch from K+ to glycine betaine has also been
found in extremely halophilic bacteria Halorhodospira halophila when the K+ concentration
in the environment was less than 1 g/L [30]. Conversely, in archaea, the K+ concentration is
relatively stable in a high-salt environment, which makes K+, rather than compatible solutes,
considered as the main osmoprotectant [2,15]. In recent years, it has been found that genes
for trehalose synthesis and glycine betaine transport are widespread in halophilic archaea,
and the intracellular K+ concentration decreased after the addition of glycine betaine [17].
This raises the question of whether a complex switching mechanism of osmoprotectants
also exists in halophilic archaea.

The current researches of halophilic mechanism of halophilic archaea mainly focuses
on the physiological level detection of intracellular osmoaprotectants [17,18,31–33]. Few
gene-level and global issues were addressed and few research advances were put into
practice. In this study, the osmoadaptive mechanism of an extremely halophilic archaea H.
kocurii 2020YC7 was studied. The whole genome of H. kocurii 2020YC7 has been sequenced,
and genes related to the osmoadaptive regulation have been mined. After the addition of
trehalose and glycine betaine in different salinities, the physiological levels of trehalose
and glycine betaine have been measured, and the expression levels of related genes have
been analyzed. This study aims to perform a more systematic and in-depth exploration
of the osmoadaptive mechanism and discuss the mutual influence of each part of the
osmoadaptive mechanism.

2. Materials and Methods
2.1. Archaeal Strain and Growth Condition

H. kocurii 2020YC7 was isolated from high salt water (Northern China) and grown in
YCM1 medium (MgSO4·7H2O 20 g/L, KCl 2 g/L, sodium citrate tribasic dihydrate 3 g/L,
oxoid yeast extract 3 g/L, tryptone 5 g/L, pH = 7.0). For osmoadaptive experiments, media
YCM2 (Tris-Cl 50 mM, glucose 10 g/L, pH = 7.0) was used. The NaCl concentrations of
both YCM1 and YCM2 were 50, 100, 150, 200, and 250 g/L.

2.2. Genomic Sequencing

The genome of H. kocurii strain 2020YC7 was sequenced using PacBio Sequel platform
and Illumina NovaSeq PE150 (Novogene, Beijing, China). Genomic DNA was extracted
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with the SDS method (Lim, Lee, Yoon, Chua, & Son, 2016). The harvested DNA was detected
by the agarose gel electrophoresis and quantified by Qubit 2.0 Fluorometer (Thermo Fisher
Scientific, Waltham, MA, USA). Preliminary assembly Program SMRT Link v5.0.1 was used
to preliminary gene assembly. By the variant Caller module of the SMRT Link software,
the arrow algorithm was used to correct and count the variant sites in the preliminary
assembly results. The corrected assembly result, which was used as the reference sequence,
was blasted with Illumina data by bwa. Futhermore, the result was filtered with the base
minimum mass value of was 20, the minimum read depth of 4 and the maximum read
depth of 1000. Based on the overlap between the head and the tail, we examined whether
the chromosomal sequence formed a circle or not, then corrected the initial site by blasting
with the DNA database. Finally, the chromosome and plasmid sequences were screened
by blast with plasmid database. Six databases were used to predict gene functions. They
were GO (Gene Ontology) [34], KEGG (Kyoto Encyclopedia of Genes and Genomes) [35],
COG (Clusters of Orthologous Groups) [36], Non-Redundant Protein Database (NR) [37],
TCDB (Transporter Classification Database) [38], and Swiss-Prot [39]. A whole genome
Blast search (E-value less than 1 × 10−5, minimal alignment length percentage larger than
40%) was performed against above seven databases.

2.3. Phylogenetic Analysis

Homologous gene sequence search was completed by BLAST algorithm at the Na-
tional Center for Biotechnology Information (http://www.ncbi.nlm.gov/blast/) (accessed
on 23 February 2022) [40]. Gene multiple sequence alignment was done by DNAMAN
and ClustalW Multiple Alignment program (http://www.ebi.ac.uk/clustalw/) (accessed
on 23 February 2022) [41]. The phylogenetic tree was constructed using the maximum
likelihood (ML) algorithm method by the MEGA 7 program [42]. The reliability of the
branching was tested by 1000 bootstraps.

2.4. Reverse Transcription qPCR (RT-qPCR) Analysis

The primers’ information of eight osmoadaptive -related genes was shown in Table S1,
and primers were synthesized by a company (Sangon, Shanghai, China). The 16s rRNA
gene of H. kocurii 2020YC7 was chosen as reference gene for internal standard-dization.
Each gene was normalized using the CT value of the 50 g/L group in the same group of
treatments. Total RNA extraction was completed from strains cultured for 24 h with a
bacterial total RNA extraction kit (Insight, Qingdao, China). Total RNA reverse transcrip-
tion was performed according to the protocol using a ReverTra Ace qPCR RT Msater Mix
(TOYOBO, Osaka, Japan). The total RNA extracted and cDNA reverse transcribed were
confirmed by agarose gel electrophoresis. Reverse transcription qPCR (RT-qPCR) reaction
system consisted of cDNA templates, primers, and TOROGreen 5G qPCR premix (Toroivd,
Shanghai, China). The RT-qPCR was carried out in a total volume of 20 µL, containing
10 µL TOROGreen qPCR premix, 2 µL cDNA template, 4 µL forward primer and 4 µL
reverse primer. The process adopted a two-step method. Thermal cycling conditions
were an initial denaturation step at 92 ◦C for 2 min followed by 40 cycles consisting of
denaturation at 95 ◦C for 3 s and primer annealing and strand extension at 60 ◦C for 20 s.
RT-qPCR was completed by QuantStudio 6 Flex (Thermo Fisher, Waltham, MA, USA), and
sequencing results collection and analysis were also completed by this equipment. The
results are analyzed using the ∆∆Ct method.

2.5. Determination of Biomass and Bacterioruberin Accumulation

Biomass and bacterioruberin content were both measured by UV spectrophotometry.
Biomass was measured at 600 nm absorbance in the media YCM1 with 50, 100, 150, 200,
250 g/L NaCl per 24 h. Bacterioruberin was extracted by methanol and then determined at
494 nm absorbance. The ratio of A494 to A600 was used to express the bacteriocin content of
unit cells.

http://www.ncbi.nlm.gov/blast/
http://www.ebi.ac.uk/clustalw/
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2.6. Determination of Intracellular K+, Trehalose and Glycine Betaine Concentration

The archaea cultured to the stationary phase (A600 value no longer changed with time,
about 0.5) in YCM1 media was collected and transferred to YCM2 medium after being
washed 3 times with 250 g/L NaCl solution. Cells were cultivated in different salinities in
the media YCM2 for 24 h with or without adding extra 1% trehalose and 1% glycine betaine.
Cells were lysed by ddH2O. Osmoprotectants were identified and quantified in cell-free
extracts. Concentration of intracellular K+, trehalose and glycine betaine measured using
K+ turbid assay kit, colorimetric trehalose assay kit and glycine betaine assay kit (Solarbio,
Beijing, China). The principle of K+ detection was that K+ reacted with Na2B4O7·xH2O to
produce K2B4O7·5H2O which was insoluble in water, and the turbidity was proportional to
the K+ concentration within a certain range. The detection of trehalose utilized the anthrone
spectrophotometric methods. The detection principle of glycine betaine was that glycine
betaine reacted with Reinecke salt under strong acid conditions to form a precipitate, which
can be dissolved in acetone to form a red solution with a characteristic absorption peak at
525 nm.

2.7. Statistical Analysis

Each experiment was repeated three times. Statistical analysis was performed by SPSS
16.0 (Chicago, IL, USA). The variation of each treatment was tested by one-way analysis
of variance (ANOVA) procedure. The differences between groups were analyzed by least
significant difference (LSD). Differences were considered significant at a probability level
of p < 0.05.

3. Results and Discussion
3.1. General Features

Growth media with different concentrations of NaCl (50, 100, 150, 200, 250 g/L)
were used for the cultivation of strain 2020YC7. The optimal growth condition for strain
2020YC7 was 150–250 g/L (Figure 1a,b). Based on this result, strain 2020YC7 is an extremely
halophilic archaea [16]. The bacterioruberin content increased with increasing NaCl concen-
trations. Compared with the 50 g/L group, the accumulation of bacteriocin in the 250 g/L
group was 1.58 times higher. (Figure 1a,c). Maximum likelihood (ML) algorithm method
was performed to build the phylogenetic tree of strain 2020YC7 (Figure 1d). Strain 2020YC7
was compared with some species of the same genus and another two strains belonging
to the same family based on the 16S rRNA sequences. Strain 2020YC7 had the highest
similarity to the H. kocurii JCM 14978 sequences with a similarity value of 100%.

3.2. Genome Features and Osmoadaptive Genes

The total length of H. kocurii 2020YC7 genome was 3,727,755 bp. The information
of the chromosome is shown in Table 1. The GC content of the chromosome was up to
68.22%, which made its DNA more stable in a hypertonic environment. The GC content
of halophilic archaea genomes was generally high, such as H. kocurii BG-1 (69.4%), H.
saccharovorum NCIMB 2081 (71.2%) and H. lacusprofundi ACAM 34 (65.3%) [43,44]. In
contrast, the NCBI data (http://www.ncbi.nlm.nih.gov/) showed that the GC content of
non-halophilic Escherichia coli was 50.4%. H. kocurii 2020YC7 contains a linear chromosome
and 3 linear plasmids. By gathering the genome information of various halophilic and
non-halophilic species, the proportion of acidic amino acids in H. kocurii 2020YC7 was
higher (17.14%) than that of non-halophilic and halophilic species (Halobacterium salinarum
NRC-1 13.20%, Haladaptatus paucihalophilus DX253 12.87%, Halobacterium hubeiense 13.97%,
Nesterenkonia alba DSM 19423 12.97%, Salinicoccus albus DSM 19776 11.50%, Staphylococcus
agnetis 10.23%, Dunaliella salina 9.15% and E. coli str. K-12 substr. MG1655 8.93%). The
higher proportion of acidic amino acids indicated that more cations for osmotic regulation
could be combined in strain 2020YC7 cells [3].

http://www.ncbi.nlm.nih.gov/


Genes 2022, 13, 939 5 of 15
Genes 2022, 13, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 1. Growth status after 48 h incubation (a) in YCM2 medium, growth curve (b) and bacterio-
ruberin accumulation (c) in YCM1 medium of H. kocurii 2020YC7 at 50, 100, 150, 200, 250 g/L NaCl 
concentration. Maximum likelihood (ML) algorithm method phylogenetic tree (d), based on 16s 
rRNA gene sequence of H.kocurii 2020YC7 (“▲” marked), and compared with Halorubrum sp. YIM 
93749 (JF449434) Halorubrum sp. strain LN27 (MN829451), Halorubrum sp. PG-1 (KJ644278), Halo-
rubrum saccharovorum strain JCM 8865 (NR_113484), Halorubrum sp. LZY-12 (KJ644292), Halorubrum 
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Figure 1. Growth status after 48 h incubation (a) in YCM2 medium, growth curve (b) and bacterioru-
berin accumulation (c) in YCM1 medium of H. kocurii 2020YC7 at 50, 100, 150, 200, 250 g/L NaCl
concentration. Maximum likelihood (ML) algorithm method phylogenetic tree (d), based on 16s rRNA
gene sequence of H.kocurii 2020YC7 (“N” marked), and compared with Halorubrum sp. YIM 93749
(JF449434) Halorubrum sp. strain LN27 (MN829451), Halorubrum sp. PG-1 (KJ644278), Halorubrum sac-
charovorum strain JCM 8865 (NR_113484), Halorubrum sp. LZY-12 (KJ644292), Halorubrum lipolyticum
strain JCM 13559 (NR_113480), H. kocurii JCM 14978 (NR_113215), Halorubrum lacusprofundi ATCC
49239 (NR_074194), Halorubrum sp. YC-9 (JN216854), Halobaculum gomorrense JCM 9908 (AB477983),
Salinigranum rubrum GX10 (GU951431).

Table 1. General features of Halorubrum sp. 2020YC7 genome.

Feature Chromosome Characteristics

Genome topology circular
Genome size (bp) 3,085,069
G+C content (%) 68.22
Protein coding genes 3513
tRNA genes 48
rRNA operons 5 s, 16 s, 23 s

Based on the genome results, a total of 34 genes related to osmoadaptive regulation
were identified in strain 2020YC7 (Table 2). The genes included Trk system (trkA and trkH)
and K+ voltage-gate channel (kch) for K+ uptake, K+/H+ antiporter (kefB) for potassium
discharge. Genes for the synthesis or uptake of trehalose and glycine betaine were also
detected in the genome of H. kocurii 2020YC7, including amylase/trehalose synthase (treS),
sugar ABC transporter (sugA), and betaine/carnitine/choline transporter (bcct). The genes
used for analysis in the article had been deposited in the NCBI database with GenBank
numbers (Table 2). Becker et al. performed a phylogenetic analysis of the osmoadaptative
strategies of extreme halophilic archaea and constructed a generalized model. The results
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showed that the Trk uptake system, the Kef anti-transporter and the NhaC anti-transporter
played a pervasive function in the osmoregulation strategy of halophilic archaea [45].

Table 2. Genes for uptake and discharge of potassium and sodium, biosynthesis and uptake of
trehalose, and uptake of glycine betaine in H. kocurii 2020YC7.

Function GenBank Number

Potassium uptake

Trk potassium uptake system
OM942767, OM942768, OM942769, OM942770,
OM942771, OM942772, OM942773, OM942774,
OM942775, OM942776, OM942777, OM942778

Potassium voltage gate channel (kch) OM942779

Potassium discharge

Cation:proton antiporter (kefB) OM942780

Sodium uptake

V-type sodium ATPase (ntp) OM942781, OM942782, OM942783, OM942784,
OM942785

Sodium discharge

Na+/H+ antiporter (nhaC) OM942786

Multicomponent Na+:H+ antiporter (mrp)
OM942787, OM942788, OM942789, OM942790,
OM942791,
OM942792, OM942793, OM942794, OM942795

Trehalose biosynthesis

Amylase/trehalose synthase (treS) OM942796

Trehalose uptake

Sugar ABC transporter permease (sugA) OM942797

Betaine uptake

Betaine/carnitine/choline transporter (bcct) OM942798, OM942799

The Trk system of H. kocurii 2020YC7 included TrkA and TrkH without TrkE [46,47].
Studies have shown that although TrkE binds ATP, ATP may only play a regulatory role
and not provide energy for the transport process [48]. In many species, the presence of TrkE
protein was not necessary and may be replaced by other ABC transporters [31,49]. TreS
can catalyze polysaccharide to maltose and then transform it to trehalose (Figure 2) [50,51].
Strain H. kocurii 2020YC7 could use other types of polysaccharides for the production of
trehalose, as no starch was detected using the iodine method in our study, which needs
further study [52].
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3.3. Osmoadaptive Mechanisms without Exogenous Compatible Solutes

The relative expression levels of K+ uptake genes trkH, trkA, kch, and kefB were
detected. Results showed that the transcripts of all those genes increased with increasing
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NaCl concentrations (Figure 3a). Compared with kch, gene expression of Trk system was
more strongly affected by salinity. Especially trkH, the relative expression level in 250 g/L
group was 500 times higher than 50 g/L group. It showed the Trk potassium uptake
system played a significant role during the osmoadaptive regulation in H. kocurii 2020YC7,
which is consistent with other species of halophilic archaea [14,47,53]. The expression
level of amylase/trehalose synthesis gene treS was also examined and decreased with
the increasing NaCl concentrations (Figure 3b). The relative expressions in 50, 100, 150,
200, and 250 g/L NaCl concentration were 1.00, 0.68, 0.46, 0.50, and 0.51, respectively.
Without external supplementation, the transcripts of glycine betaine transport gene bcct
and trehalose transport gene sugA did not change (Figure 3b).
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The uptake of K+ was considered to be the most important osmoadaptive way for
halophilic archaea [17,54–59]. As is shown in Figure 4a, the intracellular K+ concentration
increased with increasing NaCl concentrations. The intracellular K+ concentration increased
significantly in cells with 150–250 g/L NaCl compared to those in cells with 50–100 g/L
(p < 0.05). The K+ concentration in 200 g/L group reached up to 28.67 µmol/mg protein
which was 7.5 times higher than that in 50 g/L group, indicating that K+ uptake was an
important way for H. kocurii 2020YC7 to regulate osmotic pressure. Since the genome
showed that H. kocurii 2020YC7 had the amylase/trehalose synthesis gene treS, we detected
the trehalose content in its cells. Trehalose concentration decreased with increasing NaCl
concentrations (Figure 4b) which was consistent with the relative expression change trend
of treS. Trehalose concentration decreased from 5.00 to 2.67 mg/mg protein during the NaCl
concentration increasing from 50 to 250 g/L. No gene related to glycine betaine synthesis
was found in the genome, and no endogenous glycine betaine was detected in the cells. It
meant that glycine betaine cannot be de novo synthesized by H. kocurii 2020YC7.

3.4. Osmoadaptive Mechanisms with Addling Exogenous Compatible Solutes

Glycine betaine was one of the most widespread compatible solutes, and was originally
discovered to be utilized by halophilic eubacteria [60–62]. Its transporters (BCCT family
of secondary transporters and QAT family of ABC transporters) were later found to be
widespread in halophilic archaea taxa and validated in H. salinarum NRC-1 [17]. We found
two copies of BCCT family transporters (OM942798 and OM942799) in the genome of
H. kocurii 2020YC7. At the same time, halophilic cyanobacteria also exist in the high
salt environment where strain 2020YC7 lived. It can synthesize glycine betaine as an
osmoprotectant and release it into the environment [12]. Therefore, we proposed that strain
2020YC7 could uptake glycine betaine released by other organisms co-lived in the high
salt environment.

When exogenous glycine betaine was supplied, the relative expression levels of potas-
sium transport genes trkH, trkA, kch and kefB still increased with the increasing NaCl
concentrations, but the amplitude of trkH decreased. (Figure 5a). We noted that with
glycine betaine, there was no difference in the expression of trkH between 200 and 250 g/L,
which was different from the treatment without exogenous addition (Figure 5a). The rela-
tive expression level of the amylase/trehalose synthesis gene treS also showed a downward
trend. In these two BCCT family gene copies, only OM942799 was detected by RT-qPCR
method. The relative expression of the glycine betaine transport gene bcct showed an
obvious upward trend with increased salinity (Figure 5b).

After exogenous glycine betaine was added, both intracellular K+ and trehalose con-
centrations decreased significantly compared to the treatment without any exogenous
compatible solutes in 150–250 g/L NaCl (p < 0.05) (Figure 4a,b). Intracellular glycine be-
taine was detected in the cells of H. kocurii 2020YC7. And the glycine betaine concentration
increased with increasing NaCl concentrations, with a maximum of 15.27 mg/mg protein
detected at 200 g/L (Figure 4c). Combined with expression analysis of potassium and
glycine betaine transport genes, it was speculated that when the NaCl concentration was
higher than 200 g/L, osmoadaptative functions of some K+ were replaced by exogenous
glycine betaine. The changes of K+ concentration showed that the osmoadaptative mech-
anism of H. kocurii 2020YC7 was the combination of glycine betaine and K+, rather than
relying entirely on a single substance when the K+ concentration was 2 g/L. “Compatible
solute” strategy was more flexible than “salt-in” strategy in terms of osmoregulation. There-
fore, microorganisms that can utilize compatible solutes to cope with osmotic stress can
adapt to a wider range of salinity [63]. This allowed the main osmoadaptative mechanism
to switch from K+ uptake to glycine betaine transport in the presence of glycine betaine in
strain 2020YC7. Due to the presence of glycine betaine in its natural growth environment,
it was the result of evolution that H. kocurii 2020YC7 did not have the ability to synthesize
glycine betaine like other halophilic archaea species but had evolved a powerful BCCT
family transport system.
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Figure 5. The relative expression levels of potassium uptake genes trkH, trkA, kch and output gene
kefB (a), amylase/trehalose synthesis gene treS, compatible solutes transport genes sugA and BCCT
family gene (b) in different salt concentration with adding exogenous glycine betaine.

Due to the presence of sugA in the genome, we also added exogenous trehalose for ex-
periments. When added trehalose, the relative expression of potassium transport genes trkH,
trkA, kch, kef B still showed an upward trend. The relative expression of amylase/trehalose
synthesis gene treS also decreased with the increase of NaCl concentration. The expression
of the trehalose transport gene sugA was not significantly changed in 50–200 g/L salinity
groups (p > 0.05), whereas had a 2.5-fold increase in 250 g/L NaCl concentration group
compared to 50 g/L group (Figure 6b).
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kefB (a), amylase/trehalose synthesis gene treS, compatible solutes transport genes sugA and BCCT
family gene (b) in different salt concentration with adding exogenous trehalose.

Unlike glycine betaine, the addition of trehalose did not significantly decrease the
intracellular K+ concentration at 50, 100, 200, 250 g/L NaCl groups (p > 0.05) (Figure 6a,b).
This indicated that H. kocurii 2020YC7 was not inclined to absorb trehalose for performing
osmotic regulation in conjunction with K+. These results suggested that strain 2020YC7
preferred to transport glycine betaine rather than trehalose from the environment. The
decreased trehalose concentration with increasing salinity has been validated in H. pau-
cihalophilus [17] and H. hamelinensis [18]. These studies suggested that the reason for the
decrease of trehalose content with NaCl concentration was that the energy cost of synthesiz-
ing trehalose was higher than other osmoadaptive mechanisms [12,17]. However, combined
with the changing trend of K+ concentration after the addition of trehalose, trehalose did
not act as an osmoadaptative solute at high NaCl concentrations (more than 100 g/L) but at
relatively low NaCl concentrations (50–100 g/L). Trehalose was derived from polysaccha-
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rides in strain 2020YC7. In a low-salt environment, polysaccharide breakdown caused cells
collapse, then trehalose was released. This explained why strain 2020YC7 cannot survive
in a low-salt environment from another perspective.

In total, the osmoadaptive strategy of H. kocurii 2020YC7 was first “K+ - in”, second
glycine betaine uptake, and finally, the de novo biosynthesis of trehalose via treS. The
osmoadaptative mechanism of H. kocurii 2020YC7 was summarized as Figure 7.
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4. Conclusions

Uptake of K+ and glycine betaine and biosynthesis of trehalose were the main os-
moadaptive mechanisms in halophilic archaea H. kocurii 2020YC7. The transporters
of K+ and glycine betaine were activated at an external NaCl concentration between
100–150 g/L. Uptake of K+ was the main osmoadaptative mechanism employed by
2020YC7 at 100–200 g/L NaCl. With exogenous addition of glycine betaine, glycine be-
taine functioned as the primary osmotic solute while intracellular K+ declined between
200 and 250 g/L NaCl. The intracellular content of trehalose was significantly increased at
50–100 g/L NaCl, indicating the enhanced degradation of polysaccharides in a relatively
hypotonic environment.
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