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Abstract

The lamin A/C (LMNA), nuclear intermediate filament proteins, is a basic component of the nuclear lamina. Mutations in
LMNA are associated with a broad range of laminopathies, congenital diseases affecting tissue regeneration and
homeostasis. Heart tissue specific transgenic mice of human LMNA E82K, a mutation causing dilated cardiomyopathy, were
generated. LmnaE82K transgenic mouse lines exhibited thin-walled, dilated left and right ventricles, a progressive decrease of
contractile function assessed by echocardiography. Abnormalities of the conduction system, myocytes disarray, collagen
accumulation and increased levels of B-type natriuretic peptide (BNP), procollagen type III a1 (Col3a1) and skeletal muscle
actin a1 (Acta1) were detected in the hearts of LmnaE82K transgenic mice. The LMNA E82K mutation caused mislocation of
LMNA in the nucleus and swollen mitochondria with loss of critae, together with the loss of nuclear envelope integrity. Most
interestingly, we found that the level of apoptosis was 8.5-fold higher in the LmnaE82K transgenic mice than that of non-
transgenic (NTG) mice. In the presence of the LMNA E82K, both of FAS and mitochondrial pathways of apoptosis were
activated consistent with the increase of FAS expression, the release of cytochrome c from mitochondria to cytosol and
activation of caspase-8, -9 and -3. Our results suggested that the apoptosis, at least for the LMNA E82K or the mutations in
the rod region of Lamin A/C, might be an important mechanism causing continuous loss of myocytes and lead to
myocardial dysfunction. It could be a potential therapeutic means to suppress and/or prevent inappropriate cardiac cell
death in patients carrying LMNA mutation.
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Introduction

The LMNA gene is alternatively spliced to produce the two

intermediate filament proteins termed nuclear lamin A/C, which

locate to the nuclear lamina, a fibrous structure underlying the

inner nuclear membrane [1]. Lamin A/C, emerin and complex

which links the nucleoskeleton and cytoskeleton (LINC) form a

variety of macro-protein complexes at the nuclear envelope and

together cross-link the nuclear skeleton to the cytoskeleton. These

protein complexes function to maintain nuclear architecture and

stability and cellular tensegrity [2–4]. The lamins play important

roles in DNA replication, chromatin organization, regulation of

gene expression, spatial organization of the nuclear pore and the

correct anchorage of the nuclear envelope proteins, cell develop-

ment, differentiation and apoptosis [5].

The mutations in the LMNA gene has been shown to cause at

least nine different autosomal recessive and dominant genetic

diseases, collectively called laminopathies [6,7]. More than 40

mutations in the LMNA gene have been shown to be involved in

the severity of the cardiac symptoms, characterized by conduction

defect, arrhythmias, left ventricular (LV) dysfunction, dilation with

heart failure or sudden death [8–13].

Lamin A/C plays a crucial role in many cellular activities, but it

is poorly understood why and how different mutants cause such

diverse phenotypes in specific tissues, but other tissues are

apparently unaffected [14], and the identification of the precise

molecular mechanisms of LMNA mutations leading to lamino-

pathies is also critical for developing new therapeutic strategies to

prevent cardiac dysfunction and sudden death.

A novel mutation E82K in lamin A/C gene has been found to

cause dilated cardiomyopathy (DCM) in a large Chinese pedigree

with 50 family members [15]. In the current paper, a heart tissue

specific transgenic mice expressing LMNA E82K was generated

and the mechanism causing dilated cardiomyopathy for this

mutation were investigated in the transgenic mice.

Results

Generation of the transgenic mice
C57BL/6J mice carrying the human LMNA E82K gene were

established (Fig. 1). Two lines of LmnaE82K transgenic mice with

high level of expression were selected among 53 founders by

western blot analysis (Fig. 1C). The LmnaE82K transgenic mice

were indistinguishable from their non-transgenic (NTG) litter-
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mates at birth and young-age. The death of the two transgenic

lines occurred from 3 months old and mortality was 15.8% (3 of

19 for founder 30) and 11.1% (2 of 18 for founder 35) at 10

months of age respectively, while no death was observed in NTG

mice.

LmnaE82K caused dysfunction of heart in transgenic mice
Ventricular size and function of the two transgenic lines

were assessed using echocardiography. The parameters of

M-mode echocardiography from the NTG and LmnaE82K

transgenic mice at 2, 4, 6 and 8 months of age were sum-

marized in Table 1 and Table S1. LMNA E82K mutation

significantly increased the heart to body weight ratio by 10%

(Fig. 2A, n = 14, P,0.01) by gross morphology examination.

The representative M-mode echocardiograms from founder 35

at 6 months of age were shown in figure 2B. To sum up, the

LMNA E82K hearts exhibited thin-walled and dilated left and

right ventricles when compared with NTG hearts (Table 1).

LmnaE82K transgenic mice developed a progressive LV dilation

and dysfunction associated with a progressive decrease of

contractile function, evidenced by decreased LV percent

fractional shortening (FS %) which exhibited a significance

from 2 months of age compared with NTG mice (Table 1 and

Table S1, P,0.01).

Electrocardiography (ECG) measurements were performed in

mutant and NTG mice at 7 months of age (Table 2). Compared

with WT mice, the PR interval and QRS complex duration had a

tendency of increase in both of the transgenic lines, but only the

mice generated from founder 35 showed a significant increase in

the QRS complex duration (P,0.05) in 7 mice with ECG

recording. Under light microscopy, myocyte disarray, interstitial

fibrosis were observed in the LmnaE82K transgenic mice compared

with the NTG mice (Fig. 2C–E). The expression level of

hypertrophic markers, BNP, Acta1 and Col3a1, were obviously

increased in both of the two transgenic lines compared with the

NTG mice (Fig. 2F, the data from founder 35).

Morphological changes of myocytes and its nucleus in
the LmnaE82K transgenic mice

The immunofluorescence staining of LMNA protein indicated

that LMNA E82K was mislocated in the transgenic heart instead

of nuclear rim localization in the NTG heart at 7 months of age

(Fig. 3A). Ultrastructural observation indicated that enlarged

mitochondria and sarcoplasmic reticulum, and loss of nuclear

envelope integrity due to the expression of LMNA E82K existed in

the LmnaE82K mice compared with that of NTG mice (Fig. 3B

and C).

The FAS and mitochondrial pathways of apoptosis were
activated in LmnaE82K transgenic mice

Apoptosis of myocytes was detected in In situ terminal dUTP

nick end-labeling (TUNEL) assay in heart tissue from LmnaE82K

transgenic mice and NTG mice (Fig. 4A). The apoptotic index was

increased to 5.6762.94% in the transgenic mice while it was

0.6761.03% in the NTG mice (Fig. 4B, n = 3, P,0.01). We found

that the expression of FAS was upregulated significantly in the

LmnaE82K transgenic mice (Fig. 5A, n = 3, P,0.05). The expression

of procaspase-8 and the activated caspase-8 were increased 84.8%

(Fig. 5A and B, n = 3, P,0.01) and 32.4% (Fig. 5A and B, n = 3,

P,0.05) respectively. Meanwhile, the expression of procaspase-3

and the activated caspase-3 were 4.4-fold and 10.4-fold higher in

the LmnaE82K transgenic mice than that of NTG mice (Fig. 5A and

C, n = 3, P,0.001) respectively. The expression of LMNA E82K

also caused the release of cytochrome c from mitochondria to

cytosol, and results showed that 47% of cytochrome c in cytosolic

concentrations were accompanied by decreased mitochondrial

concentrations in the LmnaE82K transgenic mice (Fig. 6A and B,

n = 3, P,0.001). Meanwhile, the expression of procaspase-9 and

the activated caspase-9 were 2.9-fold and 13.5-fold higher in the

LmnaE82K transgenic mice than that of NTG mice (Fig. 6A and C,

Figure 1. Generation of the transgenic mice. (A) The LMNA E82K
transgenic construct was generated by inserting the target genes under
the control of the a-MHC heart tissue specific promoter and the
transgenic mice were created following microinjection. (B) Screening of
mouse genomic DNA by PCR for the presence of LMNA E82K gene. M:
molecular weight marker. Lane 1: positive control of LmnaE82K

transgenic mice; lane 2: negative control; lane 3: blank control; lane 5
and 6: positive LmnaE82K transgenic mice; lane 4 and 7: negative
transgenic mice. (C) The mouse lines, founder 30 and 35, with over-
expression of LMNA E82K were selected by the western blot procedure
using GAPDH as normalization.
doi:10.1371/journal.pone.0015167.g001

Table 1. Echocardiographic characteristics of NTG and
LmnaE82K transgenic mice at 6 months of age.

Parameters NTG
LmnaE82K

(line 30)
LmnaE82K

(line 35)

Number of mice 19 18 18

LVEDD, mm 3.9260.24 4.5960.29# 4.4160.23#

LVESD, mm 2.7160.28 3.5760.47# 3.4960.26#

LVEDV, mL 67.0869.60 97.34614.68# 88.74611.30#

LVESV, mL 27.9767.02 55.05617.28# 51.0369.26#

LVPWD, mm 0.6660.09 0.5660.10{ 0.5660.06{

LVPWS, mm 0.9160.09 0.7260.12# 0.7160.07#

LVAWD, mm 0.7460.07 0.6860.08 0.6160.06#

LVAWS, mm 0.9460.12 0.8360.13* 0.7760.09#

EF% 58.7666.38 48.6568.96# 45.9969.63#

FS% 30.8664.46 24.7665.38# 23.2865.08#

HR, bpm 441.72660.38 423.60655.85 437.97660.14

LV: left ventricular; LVEDD: LV end-diastole diameter; LVESD: LV end-systole
diameter; LVEDV: LV end-diastolic volume; LVESV: LV end-systole volume;
LVPWD: LV posterior wall at end-diastole; LVPWS: LV posterior wall at end-
systole; LVAWD: LV anterior wall at end-diastole; LVAWS: LV anterior wall at
end-systole; EF%: percent ejection fraction; FS%: percent fractional shortening;
HR: heart rate.
*P,0.05 versus NTG mice;
{P,0.01 versus NTG mice;
#P,0.001 versus NTG mice.
doi:10.1371/journal.pone.0015167.t001
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n = 3, P,0.001) respectively. The results suggested that LMNA

E82K mutation induced apoptosis in the heart is likely mediated

by both of the FAS and mitochondrial pathways.

Discussion

Mutations in the LMNA gene are the most common cause of

familial dilated cardiomyopathy (FDC) showing to be the severity

of the cardiac symptoms, characterized by conduction defect,

arrhythmias, LV dysfunction, and dilation with heart failure or

sudden death [8–13]. A few mice models has been created for

lamin A/C knock out or mutations. The LMNA G608G

transgenic mice targeted the expression of the Hutchinson-Gilford

progeria syndrome (HGPS) mutation in keratin-5-expressing tissue

led to a typical phenotype of HGPS [16]. LMNA H222P mutated

gene knockin mice exhibited conduction defects, chamber dilation,

increased fibrosis and lack of hypertrophy, and also showed

muscular dystrophy and death at 4–9 months of age [17]. The

patients with heterozygous for the LMNA E82K mutation showed

clinical phenotypes of heart dilation and associated with

conduction system disease at their onset age of 32 or 33 years

[15]. The two LmnaE82K transgenic mice lines exhibited chamber

dilation, increased heart weights, increased fibrosis, upregulation

of hypertrophic maker expression, nuclear structure defects and

conduction defects (Figures 1, 2, 3, Tables 1, 2), which was similar

with the phenotypes of the patients carrying the LMNA E82K

mutation.

The importance of BNP as a diagnostic and therapeutic

modality in cardiovascular disease is well known, it also acts as a

local regulator of ventricular remodeling and a modifier of cardiac

gene expression [18–20]. Acta1 is present in the developing heart

and it constitutes up to 20% of the striated actin of the adult heart.

Since Acta1 is a multifunctional protein that interacts with many

proteins involved in folding, polymerisation, contractility and

regulation of contractility, abnormal levels may affect any of those

functions [21]. In the normal adult heart, approximately 2 to 4%

of the myocardium is made up of collagen. The Col3a1 is one of

the essential components of the cardiovascular extracellular

Figure 2. The effects of LMNA E82K on heart dimensions and hypertrophic marker expression in the transgenic mice. (A) Heart
weight to body weight ratio was determined (n = 14, { P,0.01 versus NTG mice). (B) Representative M-mode echocardiographic images of the LV
long-axis of the NTG and LmnaE82K transgenic mice. (C) H&E staining patterns of the whole-heart longitudinal sections from 6 months old NTG and
LmnaE82K transgenic mice (magnification 620). (D) Magnification of H&E stained sections of LV (magnification 6400). (E) Magnification of Masson
trichrome stained sections of LV in NTG and LmnaE82K transgenic mice (magnification 6400). (F) Expression of Acta1, ANP, BNP and Col3a1 were
detected by western blot and RT-PCR procedure using GADPH as normalization.
doi:10.1371/journal.pone.0015167.g002

Table 2. ECG date for NTG and Lmna82K transgenic mice at 7
months of age.

Parameters NTG
LmnaE82K

(line 30)
LmnaE82K

(line 35)

Number of mice 6 7 7

PR interval, ms 0.026960.0019 0.029860.0028 0.029060.0036

QRS duration, ms 0.011260.0014 0.012960.0028 0.013460.0017*

*P,0.05 versus NTG mice.
doi:10.1371/journal.pone.0015167.t002
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matrix, maintaining structural and functional integrity of myocar-

dium and thought to be responsible for abnormal myocardial

stiffness and for the impaired pumping capacity of the heart [22–

23]. The expression of BNP, Acta1 and Col3a1 was unregulated

in the two LmnaE82K transgenic mice lines (Fig. 2F).

The death of the transgenic mice occurred from 3 months of age

and the mortality of the LmnaE82K transgenic mice was about

15.8% at 10 months of age, while it showed that some patients

carrying this mutation died at the age of 42 and 48 years [15],

therefore the LMNA E82K mutation caused slight mortality in

transgenic mice compared with other mutations of LMNA as

LMNA H222P, LMNA M371K and LMNA N195K [17,24,25].

LMNA E82K mutation located in the coil 1B domain of central a-

helical rod domain of the lamin A and the lamin C proteins, those

were conserved regions of the rod domain which have been shown

to play crucial roles in the assembly of intermediate filament (IF)

dimers into higher order oligomers [26]. Mutations affect this

region of IF proteins and may disrupt the interaction between the

monomers and are linked to several diseases [27]. We observed

that the assembly of the Lamin A/C was disrupted (Fig. 3A), and

the integrity of the nuclear envelope was damaged (Fig. 3C) in the

LmnaE82K transgenic mice. Members of the intermediate filament

superfamily are critical mechanical integrators of the nuclear

membrane and the cytoskeleton, protecting the cell from repeated

mechanical stress. Mutations in the lamin A/C gene may cause

cardiomyopathy by weakening nuclei, which increase the fragility

of nuclei and could be particularly harmful to muscle cells. Forces

generated during muscle contraction might potentially lead to

preferential breakage of nuclei containing a defective nuclear

lamina [14].

The accumulation of damaged nuclei as a result of a reduction

in load-bearing properties of the nuclear lamina might be a

possible mechanism of DCM [28,29]. The alternate possibility of

mechanism for the pathogenesis was the structural weakness of the

lamina, which might be a predisposing factor to induce nuclear

damage and apoptosis [28,29]. In the lamin A/C knockout mice,

the myocyte apoptosis was observed by 2-fold higher than that of

in NTG animals [30], but we found that the level of apoptosis was

8.5-fold higher in the LmnaE82K transgenic mice than that of the

NTG mice (Fig. 4A and B). We concluded that LMNA E82K

mutation in mice, and probably in humans, disrupted integrity and

triggered apoptosis and finally resulted in DCM and heart failure.

It was possible that specialized properties of conduction system

myocytes made these more susceptible than surrounding myocytes

to pro-apoptotic signals triggered by mutated LMNA, and the

transgenic mice may developed the conduction defects [31]. Our

most interesting finding was that the expression of LMNA E82K

Figure 3. Morphological observation. (A) Immunodetection of
LMNA E82K in heart from NTG and LmnaE82K transgenic mice at 6
months of age. Lamin A/C staining appeared red showing the
localization of LMNA protein and the sections were counterstained
blue with DAPI to visualize the nuclei. Scale bar = 10 mm. (B) TEM
showed abnormal sarcomeres (white hollow arrow) and mitochondria
(white star) from LV free walls in the transgenic mice. Scale bars
= 0.5 mm. (C) The collapse and partial fragmentation in nuclear
membrane of myocytes in the LmnaE82K transgenic mice were showed.
doi:10.1371/journal.pone.0015167.g003

Figure 4. TUNEL assay. (A) Photomicrographs of heart tissue used for
TUNEL assay, arrows indicate TUNEL-positive cells (magnification6800).
(B) The quantitative analysis of apoptotic cells in the heart of mice
(n = 3, { P,0.01 versus NTG mice).
doi:10.1371/journal.pone.0015167.g004
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in heart tissues increased the expression of FAS, accompanied with

the activation of caspase-8 and caspase-3 in LmnaE82K transgenic

mice (Fig. 5A–C). The release of cytochrome c from mitochondria

to cytosol was also induced by the expression of LMNA E82K,

followed the activation of caspase-9 (Fig. 6A–C).

FAS, as a member of the death receptor superfamily, plays a

central role in the death receptor pathway [32]. After FAS ligand

binding, FAS receptors undergo trimerization and recruit FAS-

associated death domain (FADD). FAS/FADD complex binds to

the initiator caspase-8. According to the cell type, activated

caspase-8 may propagate the apoptotic signal either through a

direct activation of executioner downstream caspases or via the

release of cytochrome c from mitochondria [33–36]. The

involvement of mitochondria in apoptotic processes has already

been clearly demonstrated [37,38], that the release of cytochrome

c triggers the assembly of Apoptotic protease-activating factor

(Apaf-1) and procaspase-9 to form an apoptosome, and procas-

pase-9 is then autolyticaly cleaved to active caspase-9, which then

activates procaspase-3 to active caspase resulting in cleavage of its

substrates and apoptosis [39,40].

Loss of myocytes is a feature of the cardiomyopathic process that

contributes to progressive decline in LV function and congestive

heart failure [41,42]. Although a number of stimuli appear to trigger

the process of apoptosis in cardiomyocyte. Our results indicated that

the two major signaling pathways of apoptosis: the death receptor

pathway and the mitochondrial pathway were activated by the

expression of LMNA E82K in heart tissue.

It has been indicated that lamin A/C regulates Wnt/b-catenin

and MAPK signal pathway, and it also regulates a certain

numbers of growth factors and transcription factors, like TGF-b
and c-Fos, which regulates differentiation, proliferation and

apoptosis in many cell types [43]. The LMNA mutations have

been shown to be the severity of the cardiac symptoms, which may

cause in diverse mechanisms. The apoptosis, at least for the

LMNA E82K or the mutations in the rod region of Lamin A/C,

might be an important mechanism causing continuous loss of

myocytes and lead to myocardial dysfunction. The genetic testing

of LMNA gene should be offered, because of the high risk of

sudden death in these patients. It could be needed for new

strategies to suppress and/or prevent inappropriate cardiac cell

death in patients carrying LMNA mutation as a therapeutic means

of slowing down the loss of myocytes.

Materials and Methods

Generation of the transgenic mice
The GRA substitution of LMNA cDNA (IMAGE: 2822703)

that results in the E82K mutation in the protein was induced using

the QuikChange site-directed mutagenesis kit (Stratagene, USA)

and the sequence was confirmed by DNA sequencing. The

mutated cDNA was cloned into an expression plasmid under the

a-MHC promoter. The transgenic mice were generated by

microinjection method [44]. Genotyping of transgenic mice was

facilitated by the polymerase chain reaction (PCR) using the

primers, 59 AGAAGGAGGGTGACCTGATAG and 59 AC-

CAGGTTGCTGTTCCTCT. The desired 490 bp fragment of

the transgenic gene was amplified for 35 cycles at condition of

94uC for 30 s, 57uC for 30 s and 72uC for 30 s. The expression of

Figure 5. Determination the expression of FAS and caspases. (A) The expression of FAS, caspase-8 and caspase-3 were measured by western
blot from the hearts of NTG and LmnaE82K transgenic mice, and a representative experiment was shown. (B–C) The quantitative analysis of caspases
using GADPH as normalization (n = 3, *P,0.05 versus NTG mice; { P,0.01 versus NTG mice; #P,0.001 versus NTG mice).
doi:10.1371/journal.pone.0015167.g005
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the target gene was analyzed by western blot analysis using

antibody to human LMNA (Santa Cruz). All the mice were bred in

an AAALAC-accredited facility and the use of animals was

approved by the Animal Care and Use Committees of The

Institute of Laboratory Animal Science of Peking Union Medical

College (GC08-2001).

Light and electron microscopy
For light microscopy, cardiac tissue from mice at 6 months of

age was fixed in formaldehyde and mounted in paraffin blocks.

Sections were stained with Hematoxylin and Eosin (H&E) or

Masson trichrome. For electron microscopy, cardiac tissue was

routinely fixed in 2.5% glutaraldehyde in 0.1 M phosphate buffer

(pH 7.4) and postfixed in 1% osmium tetroxide buffer for 1 hr.

The sections were stained with uranyl acetate and lead citrate and

examined under a JEM-1230 transmission electron microscope.

Echocardiography
Mice were lightly anesthetized by intraperitoneal injection of

tribromoethanol at a dose of 18 ml/kg body weight. M-mode

echocardiography was performed at 2, 4, 6 and 8 months of age

for each transgenic mouse with a 30 MHz transducer (Vevo770,

Canada) [44,45].

Electrocardiography
Mice were fixed in the supine position on a heating pad to

maintain core body temperature, and limb leads were place

subcutaneously in accordance to chosen preferential derivation

(lead II). Traces were recorded using a digital system (ADInstru-

ments, USA) connected to a bioamplifier. The traces were

analyzed using the LabChart software package (ADInstruments,

USA) by an investigator who was blinded to the genotypes of the

mice.

Reverse transcription polymerase chain reaction (RT-PCR)
Total RNA was isolated from mice heart tissues using TRIzol

Reagent (Invitrogen). First-strand cDNA was synthesized accord-

ing to the Superscript III reverse transcriptase manufacturer’

protocol (Invitrogen). The expression level of mRNA for ANP,

BNP and Col3a1 was carried out by the RT-PCR and GAPDH

was used as normalization (For ANP, 59- ATGGGCTCC-

TTCTCCATCAC and 59- TTATCTTCGGTACCGGAAG-

CTG; For BNP, 59- ATGGATCTCCTGAAGGTGCTGTC

and 59- CTACAACAACTTCAGTGCGTTAC; for Col3a1, 59-

GGCAGTGATGGGCAACCT and 59- TCCCTTCGCACCG-

TTCTT; for GAPDH, 59- CAAGGTCATCCATGACAACT-

TTG and 59- GTCCACCACCCTGTTGCTGTAG).

Western blot
Total protein lysates from mice heart tissues were prepared by

homogenizing with lysis buffer (50 mM Tris, pH 7.4, 150 mM

NaCl, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS,

1 mM EDTA, and protease inhibitor cocktail). After performing

SDS-PAGE and transfer to nitrocellulose (Immobilon NC;

Millipore), the membranes were incubated overnight with

antibody to Lamin A/C (Santa Cruz); Acta1 (Abcam); FAS

(Santa Cruz); caspase-3 (Cell Signaling); caspase-8 (Cell Signaling)

or caspase-9 (Cell Signaling). After incubation with the appropri-

ate secondary antibody for 1 h at room temperature, antibody

binding was detected with a HRP-conjugated immunoglobulin G

Figure 6. Detection of cytochrome c release and activation of caspase-9. (A) Mitochondrial cytochrome c release and the expression of
caspase-9 were measured by western blot from the hearts of NTG and LmnaE82K transgenic mice, and a representative experiment was shown. (B–C)
The quantitative analysis of cytochrome c and caspase-9 using GADPH as normalization (n = 3, #P,0.001 versus NTG mice).
doi:10.1371/journal.pone.0015167.g006
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(Santa Cruz) using a chemiluminescent detection system (Wester-

nblotting luminal reagent, Santa Cruz). GAPDH was served as

normalization.

Immunofluorescence
The sections of hearts were prepared in a standard pathological

procedure. The sections were dewaxed, rehydrated, unmask the

epitope, blocked, then incubated with anti-lamin A/C monoclonal

Ab (Santa Cruz) overnight at 4uC Sections were washed with PBS

and incubated with DyLight-conjugated, affinity-purified anti-

mouse IgG (KPL) for 1 hr at room temperature, and all slides were

counterstained with 300 nM 4,6-diamidino-2-phenylindole

(DAPI, Invitrogen). After washing with PBS, sections were

mounted in ProLong Gold antifade reagent (Invitrogen). Images

of the sections were collected and analyzed under confocal laser

scanning microscopy (Leica TCS SP2, Germany).

TUNEL assay
TUNEL assay was performed in sections using an In Site Cell

Death Detection Kit (Roche Diagnostics GmbH, Mannheim,

Germany) principally according to the manufacturer’s instruc-

tions. The sections of heart tissues were incubated with the

TUNEL reaction mixture for 1 hr at 37uC in a dark, humidified

chamber. Labeled DNA was visualized with an anti-fluorescein

antibody conjugated with peroxidase (POD) using 3,39-diamino-

benzidine (DAB) as the chromogen. Sections were then washed,

counterstained with hematoxylin. For negative control, TdT was

omitted from the reaction mixture. Six images per heart (3 hearts

per genotype group) were acquired, and positive cells were

counted individually. Results were expressed as the percentage of

apoptotic cells among the total cell population.

Detection of mitochondrial cytochrome c release
A whole mouse heart from mice were excised and washed in

cold PBS and the cytosolic and mitochondria fractions were

derived following the Mitochondrial/Cytosol Fractionation Kit

manufacturer’s protocol (DBI Bioscience). The cytochrome c

content in cytosol and mitochondria was detected by western blot

analysis using antibody to cytochrome c (Cell Signaling). GAPDH

was served as normalization.

Statistical Analysis
Data was analyzed with unpaired two-tailed Student’s t-tests for

two groups, or one-way ANOVA for multiple groups followed by a

Tukey’s post hoc analysis. Data were expressed as mean 6 SEM

from individual experiments. Differences were considered as

significant at P,0.05.
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end-systole; EF%: percent ejection fraction; FS%: percent

fractional shortening; HR: heart rate. *P,0.05 versus NTG mice;
{ P,0.01 versus NTG mice; #P,0.001 versus NTG mice.
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