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Introduction
Ribosomal RNA (rRNA) transcription is a key step in the syn-

thesis of ribosomes and occurs through the control of RNA 

polymerase I (Pol I; Grummt, 2003; Moss, 2004; Russell and 

Zomerdijk, 2005). Over the last several decades, studies in uni-

cellular systems, particularly Escherichia coli and Sacharomyces 
cerevisiae, have examined the mechanisms by which rRNA 

synthesis is regulated (Nomura, 1999; Paul et al., 2004). More 

recent studies in mammalian cell culture have also identifi ed 

mechanisms via which Pol I is controlled. However, few studies 

have addressed how rRNA synthesis is regulated in vivo during 

the growth of a multicellular animal. Given that ribosome bio-

genesis links extracellular signals to the control of cell growth, 

identifying the mechanisms that operate in vivo should provide 

key insights into the control of cell and tissue growth.

Nutrient availability is a key determinant of cell and or-

ganismal growth. In eukaryotes, the target of rapamycin (TOR) 

kinase pathway is a major growth–regulatory pathway activated 

in response to nutrient availability (Wullschleger et al., 2006). 

Although biochemical and genetic analyses have defi ned the 

signaling inputs to TOR, the outputs via which TOR drives 

growth are not fully understood. An extensive literature sug-

gests that TOR controls growth by stimulating mRNA transla-

tion, particularly through the effectors ribosomal protein (RP), 

S6 kinase (S6K), and translation initiation factor 4E–binding 
protein. But these targets are unlikely to explain all the effects 

of TOR in vivo. For example, Drosophila melanogaster TOR 

mutants are lethal and have marked growth defects, whereas 

S6K and 4E-binding protein mutants are viable and have mild 

growth phenotypes (Montagne et al., 1999; Oldham et al., 2000; 

Zhang et al., 2000; Miron et al., 2001). Hence, other down-

stream targets and metabolic processes must additionally con-

tribute to the effects of TOR in vivo.

Studies in yeast and mammalian cell culture indicate that 

regulation of rRNA synthesis is a conserved TOR function 

(Zaragoza et al., 1998; Powers and Walter, 1999; Hannan et al., 

2003; Tsang et al., 2003; Claypool et al., 2004; James and 

Zomerdijk, 2004; Mayer et al., 2004; Li et al., 2006). A few 

studies have described mechanisms by which TOR can affect 
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Pol I activity; however, these have yielded confl icting results. 

Studies in yeast and mammalian cell culture reported that TOR 

regulated the ability of a conserved transcription factor, transcrip-

tion initiation factor IA (TIF-IA; or Rrn3p, the yeast homologue 

of TIFI-IA), to recruit Pol I to rDNA (Claypool et al., 2004; Mayer 

et al., 2004). But another paper on mammalian cells found that 

TIF-IA is dispensable for TOR-dependent regulation of rRNA 

synthesis and suggested that a different Pol I factor, upstream 

binding factor (UBF), was a target of TOR signaling (Hannan 

et al., 2003). Finally, a recent paper showed that TOR associates 

with the rDNA in yeast, suggesting that regulation of Pol I by 

TOR is direct (Li et al., 2006). TOR may therefore control rRNA 

synthesis through multiple mechanisms. Whether or not TOR reg-

ulates rRNA synthesis in vivo in animals and what mecha nisms 

may operate in this context have not been examined.

Here, we examine the role of the D. melanogaster homo-

logue of the conserved Pol I factor TIF-IA in the control of ribo-

some synthesis and growth. We show that TIF-IA is required for 

rRNA synthesis and cell and organismal growth and that TIF-IA 

functions downstream of the TOR pathway in vivo. We also 

provide evidence that stimulation of rRNA synthesis by TIF-IA 

can control the levels of other ribosome components.

Results and discussion
Tif-IA is required for cell and organismal 
growth
A recessive lethal P-element line, KG06857, was available from 

a public stock center. This line contains a P-element insertion in 

the 5′ region of the TIF-IA gene, which reduced TIF-IA mRNA 

expression in homozygote L1 larvae compared with the wild type 

(Fig. 1 A, left). Tif-IAKG06857 homozygote (Tif-IA−/−) larvae had 

low levels of pre-rRNA synthesis (Fig. 1 A, right). Phenotypi-

cally, Tif-IA−/− mutant animals developed through embryogenesis 

and hatched at the normal time. But as larvae, they failed to 

develop and exhibited a growth arrest phenotype, surviving for 

up to 8 d as arrested L1 larvae (Fig. 1 B). This growth arrest pheno-

type was fully reversed by ubiquitous expression of a TIF-IA 

cDNA transgene in mutant larvae using the GAL4–upstream 

activator sequence (UAS) system (Fig. S1 A, available at http://

www.jcb.org/cgi/content/full/jcb.200709044/DC1). Using the 

hsFlp–GAL4 method, mosaic expression of TIF-IA cDNA in the 

larval fat body of Tif-IA−/− larvae led to a cell-autonomous rescue 

of growth (Fig. 1 D). Conversely, mosaic expression of a TIF-IA 

RNAi construct in wild-type larva cells autonomously inhibited 

growth in the fat body (Fig. 1 E). Thus, the developmental arrest we 

observed in the Tif-IA−/− mutants was caused by a cell-autonomous 

defect in growth. We also found that RNAi-mediated knockdown 

of TIF-IA in cultured D. melanogaster S2 cells reduced cell size 

and caused cells to accumulate in G1 phase of the cell cycle 

(Fig. S1 B). Thus, TIF-IA activity is necessary for proper rRNA 

synthesis and cell growth during development.

A recent study reported that loss of TIF-IA in mouse cells 

induced p53-dependent cell cycle arrest and cell death (Yuan 

et al., 2005). These fi ndings are consistent with the emerging 

view that nucleolar disruption triggers a p53-dependent check-

point in mammalian cells (Horn and Vousden, 2004). We stained 

larval tissue from D. melanogaster Tif-IA mutants with an anti-

cleaved caspase 3 antibody and found no signs of apoptosis 

(unpublished data). Moreover, the growth arrest phenotypes ob-

served in TIF-IA−/− larvae were not suppressed by genetic dele-

tion of the D. melanogaster homologue of p53 (Fig. 1 C). This 

is in contrast to mammalian cells, where the apoptosis and cell 

cycle arrest induced by loss of TIF-IA was reversed by loss of 

p53 (Yuan et al., 2005). These studies suggest that the link be-

tween nucleolar viability and p53 function may not be present 

in D. melanogaster. This may be because Mdm2 and Arf, the 

factors thought to link disruption of the nucleolus to p53 acti-

vation in mammalian cells, have no obvious homologues in 

D. melanogaster.

Overexpression of TIF-IA is suffi cient to 
increase pre-rRNA synthesis
Ubiquitous overexpression of TIF-IA in whole larvae, using a 

da-GAL4 driver, increased levels of pre-rRNA as measured by 

quantitative RT-PCR (Fig. 1 F). Similarly, expression of TIF-IA 

in the posterior compartment of the wing imaginal disc also in-

creased pre-rRNA levels as measured by in situ hybridization 

(Fig. 1 G). We used l-[methyl3-H]methionine to carry out pulse-

chase labeling of RNA and observed normal rates of rRNA pro-

cessing in TIF-IA–overexpressing larvae (Fig. S2, available at 

http://www.jcb.org/cgi/content/full/jcb.200709044/DC1). Hence, 

the increases in pre-rRNA levels we observed were caused by a 

specifi c effect on rRNA transcription and did not simply refl ect a 

block in rRNA processing. Thus, TIF-IA overexpression alone is 

suffi cient to increase Pol I transcriptional activity in vivo.

Nutrition and the TOR pathway regulate 
rRNA synthesis in vivo
We next examined the control of TIF-IA function, focusing on 

the TOR pathway as a potential regulatory input. TOR activity 

can be suppressed in larvae by starvation for dietary protein 

(Oldham et al., 2000). We found that protein starvation induced 

a marked decline in levels of both total rRNA (Fig. 2 A) and 

pre-rRNA synthesis (Fig. 2, B and C). We also saw a similar re-

duction in rRNA synthesis in both homozygous TOR mutant 

larvae (Fig. 2 D) and larvae that had been fed the TOR inhibitor 

rapamycin for 24 h (not depicted). In contrast, Gal4-mediated 

overexpression of the small G protein Rheb, an upstream activa-

tor of TOR, was suffi cient to increase pre-rRNA synthesis in 

whole larvae (Fig. 2 E). Similarly, en-Gal4–driven expression 

of Rheb in the posterior compartments of larval wing imaginal 

discs also increased rRNA synthesis (Fig. 2 F). Finally, Rheb 

overexpression increased nucleolar size, which is an index of 

ribosome biogenesis, as measured by staining with fi brillarin, a 

nucleolar protein (Fig. 2 G). Thus, the TOR pathway is both 

necessary and suffi cient for regulating rRNA synthesis in devel-

oping D. melanogaster tissues.

TIF-IA functions downstream of the TOR 
pathway
We examined whether TIF-IA might function as a downstream 

target of the TOR pathway. TIF-IA acts by binding Pol I and re-

cruiting it to the rDNA promoter (Bodem et al., 2000; Moorefi eld 
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Figure 1. TIF-IA is required for cell and organismal growth. (A) Levels of TIF-IA mRNA and pre-rRNA were measured by quantitative RT-PCR, using RNA 
isolated from either wild-type or Tif-IA−/− mutant larvae. Data were corrected for levels of GPDH mRNA. Data are mean (± SEM) fold changes compared 
with wild type (n = 6). (B) Tif-IA−/− mutant larvae are growth arrested. Images of Tif-IA heterozygote (+/−) and Tif-IA homozygous mutant larvae (−/−) 
at different stages (48–120 h) of larval development are shown. (C) Loss of p53 has no effect on the growth arrest phenotype seen in TIF-IA mutant larvae. 
Images of TIF-IA+/−; p53−/− (top) or Tif-IA+/−; p53−/− (bottom) larvae at 120 h of development are shown. (D) The hsFlp–GAL4 system was used to gener-
ate mosaic expression of GFP-marked cells overexpressing TIF-IA (arrowheads) in the larval fat body of Tif-IA−/− mutant animals (red, phalloidin; blue, 
DAPI). Bar, 25 μm. (E) The hsFlp–GAL4 system was used to generate mosaic expression of both GFP and a TIF-IA RNAi construct in the polyploid cells of 
the larval fat body (arrowheads; green, GFP; red, phalloidin; blue, DAPI). Bar, 25 μm. (F) quantitative RT-PCR was used to measure levels of pre-rRNA in 
either control larvae or larvae overexpressing UAS–TIF-IA under the control of the da-GAL4 driver. Data were corrected for levels of GPDH mRNA. Data are 
mean ± SEM. *, P < 0.05 versus control (n = 7–8). (G) An en-GAl4 driver was used to express a TIF-IA cDNA in the posterior compartment of the develop-
ing larval wing imaginal disc. Levels of pre-rRNA were then measured in wandering L3 wing discs by in situ hybridization using a probe to the ETS region 
of the pre-rRNA precursor. Posterior is to the right. Bar, 50 μm.
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et al., 2000; Miller et al., 2001; Claypool et al., 2004; Mayer 

et al., 2004). Using the DamID technique, we examined whether 

TIF-IA localization to rDNA might be TOR regulated (van 

Steensel and Henikoff, 2000; Grewal et al., 2005). A bacterial 

DNA methylase fused to TIF-IA was used to locally mark 

TIF-IA–associated genomic loci after transfection and low-

level expression in D. melanogaster Kc cells. After isolation of 

genomic DNA and DpnII digestion, we used quantitative PCR 

Figure 2. The D. melanogaster nutrient–TOR pathway regulates rRNA synthesis and ribosome biogenesis. (A) Wild-type larvae were starved and, at the 
indicated times, total RNA was isolated from equal numbers of larvae per time point, and then levels of rRNA were quantitated from ethidium bromide–
stained agarose/formaldehyde gels. Data are mean (± SEM) percentage changes in rRNA levels relative to nonstarved animals (day 0 time point; n = 3–6 
per time point). (B) Levels of pre-rRNA were measured in fed or 4-d starved larvae by in situ hybridization. A representative image of the gut is shown for 
both samples. Bar, 25 μm. (C and D) Levels of pre-rRNA were measured by quantitative RT-PCR using RNA isolated from either wild-type or starved larvae 
(C) or wild-type or tor−/− mutant larvae (D). Data are mean (± SEM) fold changes versus fed larvae (n = 3). Data were corrected for levels of dMyc mRNA. 
(E) The hsFlp–GAL4 system was used to overexpress Rheb transgene throughout developing larvae. Levels of pre-rRNA and GAL4 (as loading control) were 
measured by Northern blot. Reference DNA fragment sizes are indicated (kb). (F) An en-GAl4 driver was used to express a Rheb transgene in the posterior 
compartment of wing imaginal discs. Levels of pre-rRNA were then measured by in situ hybridization. Posterior is to the right. Bar, 50 μm. (G) The hsFlp–
Gal4 system was used to generate cell clones coexpressing GFP and Rheb in developing wing imaginal discs. Discs were stained with an antibody to fi bril-
larin (red). The dashed line shows the clone outline. Bar, 20 μm. 
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to analyze the levels of methylated fragments. We found that 

levels of methylation were signifi cantly higher in Dam–TIF-IA–

transfected cells than in cells transfected with Dam alone 

(Fig. 3 A). This is consistent with TIF-IA associating with 

rDNA. This signal in Dam–TIF-IA–transfected cells was atten-

uated when cells were treated with rapamycin, an inhibitor of 

the TOR kinase (Fig. 3 A). These data indicate that TOR con-

trols the ability of TIF-IA to associate with the rDNA locus in 

D. melanogaster cells.

We next examined the relationship between TOR and TIF-IA 

function in animals. As described earlier, TIF-IA overexpres-

sion was suffi cient to increase Pol I activity and elevate pre-rRNA 

levels in larvae. Interestingly, we also found that TIF-IA over-

expression increased pre-rRNA levels in both protein-starved and 

rapamycin-treated larvae to the same degree as in control larvae 

(Fig. 3, B and C). Thus, TIF-IA overexpression can prevent the 

inhibition of pre-rRNA synthesis that normally results from re-

duced TOR activity. These data suggest that TIF-IA functions 

downstream of TOR in the regulation of rRNA synthesis.

Our fi ndings point to D. melanogaster TIF-IA as a growth–

regulatory target of the TOR pathway in vivo. Based on previous 

in vitro data in mammalian cells and yeast (Grummt, 2003; 

Moss, 2004), this role of TIF-IA seems to be conserved. Whether 

the mechanisms via which TOR regulates TIF-IA are also con-

served is unclear, although they may involve phosphorylation of 

either TIF-IA or Pol I (Fath et al., 2001; Cavanaugh et al., 2002; 

Mayer et al., 2004). In mammals, another Pol I–associated fac-

tor, UBF, is also regulated by growth factors (Grummt, 2003; 

Moss, 2004). However, D. melanogaster contains no obvious 

homologue to UBF, and hence the potential regulation of rRNA 

synthesis by TOR through such a factor is unclear in fl ies.

Overexpressed TIF-IA controls the levels 
of RP mRNA
A recent study in yeast showed that constitutive Pol I activity 

could maintain rRNA transcription and synthesis of all RP 

mRNAs and 5S RNA levels under situations that normally in-

hibit ribosome synthesis, such as nutrient deprivation (Laferte 

et al., 2006). We therefore examined whether increased TIF-IA 

activity was suffi cient to regulate other aspects of ribosome 

synthesis in developing larvae. We measured levels of mRNAs 

encoding 27 different RPs and found that 21 were signifi -

cantly increased by TIF-IA overexpression (B). We also found 

that TIF-IA overexpression increased levels of 5S RNA, a 

ribo somal component that is normally transcribed by RNA 

Pol III (Fig. 4 A). Finally, we examined a selection of other 

genes encoding Pol I and III components and rRNA processing 

factors. Of these transcripts, only levels of Brf, an RNA Pol III 

factor, and two rRNA processing genes, fi brillarin and NNP-1, 

were signifi cantly increased by TIF-IA overexpression (Fig. 4 C). 

These data suggest the interesting possibility that elevation 

of TIF-IA expression not only increases Pol I activity but 

can also drive a feed-forward mechanism that couples the 

synthesis of 45S rRNA with increases in 5S RNA and RP 

mRNA levels.

Thus, both D. melanogaster and yeast appear able to co-

regulate the levels of mRNAs encoding RPs through the stim-

ulation of Pol I. How might this happen? One hypothesis is 

that cells can sense either the absolute levels of rRNA or the 

process of rRNA synthesis to trigger changes in the amounts 

Figure 3. TIF-IA functions downstream of the TOR pathway. (A) The locali-
zation of TIF-IA to rDNA was measured using the DamID technique. D. mel-
anogaster Kc cells were transfected with either Dam alone or a Dam–TIF-IA 
fusion. Cells were then treated with DMSO (control) or rapamycin for 16 h 
as indicated. Genomic DNA was isolated and digested with DpnII and 
identical amounts per sample were analyzed by quantitative PCR. Data 
represent mean (± SEM) fold changes (log scale) compared with Dam 
alone, the control cells (n = 3). (B and C) Quantitative RT-PCR was used to 
measure levels of pre-rRNA in either control larvae or larvae overexpress-
ing UAS–TIF-IA under the control of the da-GAL4 driver. In B, larvae were 
either fed for 2 d or starved for an additional day. In C, larvae were fed 
for 2 d and then transferred to new vials for 24 h with either normal food 
containing 0.1% DMSO control or food supplemented with 10 μM ra-
pamycin. Data are mean (± SEM) fold changes in pre-rRNA levels versus 
fed controls (n = 4). (B) *, P < 0.05 versus fed control; **, P < 0.05 ver-
sus starved control. (C) *, P < 0.05 versus DMSO control; **, P < 0.05 
versus rapamycin control. 
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of other ribosome components. Given that dozens of proteins 

and small RNAs are required to synthesize and process 

rRNA, changes in the activity, levels, or nuclear localization 

of any of these could be involved in the control of RP mRNA 

and 5S RNA levels. In addition, many noncoding RNAs, as 

well as the mature rRNAs themselves, are produced as a re-

sult of transcription at the rDNA locus. Thus an intriguing 

possibility is that these RNAs may contribute to the feed-

forward regulation.

Overexpressed TIF-IA is not suffi cient to 
drive protein synthesis or cell growth
We also examined whether TIF-IA overexpression could in-

crease levels of ribosome subunits, protein synthesis, and 

cell growth in developing larvae. We measured levels of 40S 

and 60S ribosome subunits in larval extracts using sucrose 

gradient fractionation. These experiments showed no marked 

differences in subunit levels between control and TIF-IA–over-

expressing larvae (Fig. 5 A). Similarly, we found no signifi cant 

change in protein synthesis caused by TIF-IA overexpression 

(Fig. 5 B). Under the same conditions, Rheb overexpression, 

which activates TOR and stimulates rRNA synthesis, induced 

a 50–80% increase in protein translation (Hall et al., 2007). 

We fi nally examined whether TIF-IA overexpression was suffi -

cient to alter cell growth or cell cycle progression in developing 

larvae. We used the hsFlp–Gal4 system to generate random 

cell clones that overexpressed TIF-IA in developing wing ima-

ginal discs. Using fl ow cytometry, we found no difference in 

either cell size or cell cycle phasing in TIF-IA–overexpressing 

cells (Fig. 5 C). Moreover, we did we not see any increase in 

clone areas between control and TIF-IA–overexpressing clones 

(Fig. 5 D). In similar assays, the activation of TOR by over-

expression of Rheb increased clone sizes by �60% (Saucedo 

et al., 2003).

Therefore, despite stimulating pre-rRNA synthesis and in-

creasing the levels of RP mRNA, TIF-IA overexpression was not 

suffi cient to drive ribosome or protein synthesis or to increase 

cell growth. These fi ndings in D. melanogaster differ from those 

in yeast, where the stimulatory effects of constitutive Pol I activ-

ity on levels of 5S RNA and RP mRNA did maintain 40S and 

60S ribosome subunit levels after inhibition of TOR (Laferte 

et al., 2006). Thus, other, possibly TOR-regulated, events limit 

production of active ribosomes in D. melanogaster. One possi-

bility is that the translational control of RP mRNAs is limiting. 

In contrast to yeast, D. melanogaster and other higher eukaryotic 

RP mRNAs contain a structural motif, the 5′-terminal oligo-

pyrimidine tract, which controls their translation and allows the 

coordinated synthesis of RPs, particularly in response to TOR 

signaling (Meyuhas and Hornstein, 2000). Other TOR-regulated 

steps, such as the maturation and nuclear export of ribosomes 

(Honma et al., 2006; Pelletier et al., 2007), may also be limiting.

One intriguing possibility is that expression of a defi ned set 

of limiting downstream TOR targets may be suffi cient to mediate 

the strong induction of protein synthesis induced by activating 

TOR in D. melanogaster. We addressed this by examining the 

 effects of coexpressing either S6K or the eukaryotic translation 

initiation factor 4E (eIF4E) with TIF-IA. Increases in both S6K 

and eIF4E activity have been suggested as key downstream effec-

tors of the TOR pathway in the control of cell growth (Wullschleger 

et al., 2006); however, we did not see any marked changes in pro-

tein synthesis (Fig. 5 E). Further studies will be required to iden-

tify the TOR effectors that are required to cooperate with TIF-IA 

to drive ribosome synthesis and mRNA translation. Nevertheless, 

given our observations in D. melanogaster and previous work in 

Figure 4. D. melanogaster TIF-IA regulates rRNA synthesis and controls the levels of other components of the ribosome. (A–C) A da-GAL4 driver was used 
to express TIF-IA ubiquitously in developing larvae. Total RNA was extracted from control and TIF-IA–overexpressing larvae. Quantitative RT-PCR was used to 
measure levels of indicated transcripts. Data are presented as fold changes compared with wild type and represent the mean ± SEM (n = 7–8). Data were 
corrected for levels of GPDH mRNA. *, P < 0.05 versus control.
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yeast, it will be interesting to examine whether the stimulatory 

effects of increased Pol I activity on levels of Pol II– and III–

dependent ribosome components are observed in mammalian cells.

Materials and methods
Fly stocks
UAS–TIF-IA transgenic lines were generated by cloning a full-length TIF-IA 
cDNA into the pUAST vector and transforming w1118 fl ies. The following 
other fl y stocks were used: ywhshsFlp122;+;Act>CD2>GAL4,UAS-GFP, 
da-GAL4, en-GAL4, UAS-Rheb (Saucedo et al., 2003), tor ∆/CyO (Zhang 
et al., 2000), UAS-S6K, and UAS-eIF4E. Flies were maintained on stan-
dard fl y food. For protein starvation experiments, larvae were maintained 
on standard fl y food for 2 d and then starved by fl oating on 20% sucrose/
PBS solution. For rapamycin experiments, larvae were maintained on stan-
dard fl y food for 2 d and then switched to food supplemented with either 
rapamycin or DMSO control.

S2 cell culture and double-stranded RNAi
RNAi experiments in S2 cells were performed as described previously 
(Hall et al., 2007). Flow cytometry was performed on S2 cells after 3 d of 
RNAi treatment as described previously (Hall et al.,2007).

Flow cytometry and clonal analysis in wing imaginal discs
The hsFlp–Gal4 system was used to induce GFP-expressing cell clones in 
the larval wing imaginal disc at 72 h after egg deposition. At wandering, 

fl ow cytometry was performed on dissociated imaginal wing disc cells as 
described previously (Grewal et al., 2005). Flow cytometry profi les were 
compared between GFP-expressing cell clones and non–GFP-expressing 
surrounding cells, which served as internal controls. To measure clone 
areas, GFP-marked cell clones were induced at 72 h after egg deposition, 
and wing discs were fi xed and clone areas measured at wandering larval 
stage 3 (L3).

In situ hybridization and immunostaining
In situ hybridizations were performed as described previously, using 
digoxigenin-labeled probes to the external transcribed spacer (ETS) region 
of rRNA (Grewal et al., 2005). Immunostaining was performed as 
described previously (Grewal et al., 2005). The monoclonal antibody to 
fi brillarin was used at a dilution of 1:500. All secondary antibodies used 
were Alexa Fluor 488 or 568 dye labeled (Invitrogen).

Microscopy
The images in Fig. 1 E were obtained on an optical sectioning microscope 
(DeltaVision RT; Applied Precision) consisting of a stand (IX-70; Olympus) 
fi tted with a camera (Coolsnap HQ cooled CCD; Photometrics) and an oil 
immersion objective (UAPO 40×/1.35; Olympus). Images were decon-
volved on a Linux workstation (Dell), using the SoftWoRx software package 
(Applied Precision). Other images were captured by a digital camera 
(DC480; Leica) and IM50 software (Leica) using either a stereomicroscope 
(MZ12; Leica; Fig. 1, B and C; and Fig. S1 A) or a microscope (DMRB; 
Leitz) with 40× objectives (Fig. 1, D and G; and Fig. 2, B, F, and G). Micros-
copy and image capture was done at room temperature and captured 
images were processed using Photoshop 7.0 (Adobe).

Figure 5. Overexpression of TIF-IA is not 
suffi cient to drive ribosome synthesis, mRNA 
translation, or cell growth. (A) 40S and 60S 
ribosome particles were separated by sucrose 
gradient centrifugation and their levels deter-
mined by measuring absorbance at 260 mm. 
(B) Using a da-GAL4 driver, levels of protein 
synthesis were measured in either control lar-
vae or larvae in which TIF-IA was ubiquitously 
overexpressed (+ TIF-IA). Data represent the 
mean (± SEM) percentage change in radio-
labeled amino acid incorporation compared 
with control larvae. (C) Flow cytometry profi les of 
wing imaginal disc cells. Cell cycle phasing (left) 
or cell size (right) comparisons of GFP-marked 
TIF-IA–overexpressing cells (gray traces) with sur-
rounding nonmarked wild-type cells (black traces) 
are shown. (D) Data represent the mean (± SEM) 
percentage changes in clone area in either con-
trol or TIF-IA–overexpressing cell clones in the wing 
imaginal disc (n = 200). (E) Using a da-GAL4 
driver, levels of protein synthesis were measured 
in control larvae and larvae in which a UAS–
TIF-IA transgene was ubiquitously overexpressed 
(+ TIF-IA). In addition, either UAS-S6K (+S6K) 
or UAS-eIF4E (+eiF4E) transgenes were co-
expressed. Data represent the mean (± SEM) per-
centage changes in radiolabeled amino acid 
incorporation compared with control larvae.
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RNA analysis
All Northern blot experiments were performed according to the manufac-
turer’s protocols (DIG nonradioactive nucleic acid labeling and detection kit; 
Roche). Total RNA was extracted from larvae using TRIzol (Invitrogen). For all 
experiments, equal numbers of similarly sized and developmentally staged 
larvae were used per experimental group. For pulse-chase labeling of rRNA, 
larvae were inverted in Ringer’s solution and incubated in Ringer’s contain-
ing 50 μCi/ml L-[methy l3-H]methionine (GE Healthcare) for 30 min. Larvae 
were then chased in Schneiders D. melanogaster media (Invitrogen) contain-
ing excess cold methionine. RNA were then analyzed by Northern blot. Blots 
were sprayed with EN3HANCE (PerkinElmer) and exposed to fi lm.

Quantitative RT-PCR
Total RNA was extracted from larvae using TRIzol. For all experiments, 
equal numbers of similarly sized and developmentally staged larvae were 
used per experimental group. Reverse transcriptions and quantitative PCR 
were performed as previously described (Van Gilst et al., 2005). Levels of 
pre-rRNA were measured using primers to the ETS region of rRNA. Data 
were corrected for levels of either glycerol 3–phosphate dehydrogenase 
(GPDH) or dMyc mRNA, which were statistically unchanged between con-
trol and experimental groups. All data were analyzed by Student’s t tests.

Ribosome subunit analysis
Control and TIF-IA–overexpressing larvae were lysed in a dissociating buffer 
lacking MgCl2. Lysates were loaded on 5–56% sucrose gradients, and ribo-
some subunits were separated by centrifugation at 38,000 rpm for 4 h at 
4°C using a rotor (SW41; Beckman Coulter). Ribosome subunits were quan-
tifi ed by measuring the A260 of fractions collected from the gradients.

Protein synthesis assays
L3 larvae were inverted in Ringer’s solution and incubated in Ringer’s 
containing 15 μCi/ml of tritiated amino acid mix (GE Healthcare) at room 
temperature for 1 h. Carcasses were then washed in cold Ringer’s and 
lysed. Equal amounts of protein per sample were then extracted from ly-
sates using strataclean resin (Stratagene). Protein-bound resin was washed 
and transferred to scintillation buffer. 1-min counts were obtained with an 
LS6500 (Beckman Coulter).

DamID
Cell culture, transfections, and genomic DNA extraction and digestion 
were performed as described previously (Grewal et al., 2005). Cells were 
transfected with either hs-dam or hs-dam–TIF-IA. Cells were harvested at 
48 h after transfection. All experiments were done in the absence of heat 
shock, allowing for low levels of dam and dam–TIF-IA expression through 
leaky transcription from the hs promoter. Methylation levels were measured 
by quantitative real-time PCR. Equal amounts of genomic DNA were 
digested with DpnII, which cuts nonmethylated DNA. Equal amounts of 
digested DNA were analyzed by quantitative PCR using primers that fl ank 
putative GATC–Dam methylation sites (nt 11,848–11,851 from GenBank/
EMBL/DDBJ under accession no. M21017; primers: left, A A A C C G C A A A-
A G G C T C A T T A ; right, G C A C A C G T C C C A T A A G G T T C ). Hence, the level of 
PCR signal gives an indication of methylation.

Online supplemental material
Fig. S1 shows that TIF-IA expression is suffi cient to rescue Tif-IA−/− mutant 
larvae to complete viability. Fig. S2 shows that rRNA processing is normal 
in TIF-IA–overexpressing larvae. Online supplemental material is available 
at http://www.jcb.org/cgi/content/full/jcb.200709044/DC1.
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