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Abstract: In order to explore a new strategy to characterize the texture of raw meat, based on
the ultrasonic tenderized wooden breast (WB), this study proposed stress relaxation and creep to
determine the rheological properties. Results showed that hardness was significantly decreased from
3625.61 g to 2643.64 g, and elasticity increased, after 600 W ultrasound treatment at 20 kHz for 20
min (on-time 2 s and off-time 3 s) at 4 ◦C. In addition, based on the transformation of creep data, a
new indicator, slope ε′(t), was innovatively used to simulate a sensory feedback of hardness from
the touch sensation, proving WB became tender at 600 W treatment due to the feedback speed to
external force. These above results were confirmed by the reduced shear force, increased myofibril
fragmentation index (MFI), decreased particle size, and increased myofibrillar protein degradation.
Histology analysis and collagen suggested the tenderizing results was caused by muscle fiber rather
than connective tissue. Overall, stress relaxation and creep had a potential to predict meat texture
characteristics and 600 W ultrasound treatment was an effective strategy to reduce economic losses
of WB.

Keywords: ultrasound; stress relaxation; creep; tenderness; wooden breast

1. Introduction

Consumers’ demand for healthy and high-quality products is one of the driving
forces for the development of the food industry. Improving quality and efficiency through
technological innovation has become a research hotspot. Thus, ultrasound as a “Green
Food Processing” technology has been used to produce high-quality food [1].

The common indicators for evaluating meat tenderness include shear force [2], my-
ofibril fragmentation index (MFI) [3], particle size [4] and texture profile analysis (TPA) [5].
The TPA is also known as the two-bite test. It mainly simulates the chewing movement of
the human mouth and compresses the sample twice to obtain parameters such as hardness
and springiness [6]. Obviously, TPA may not deliver the detailed texture information of
raw meat. Therefore, an alternative method of TPA should be explored to obtain the texture
parameters of raw meat.

The biochemical properties, chemical composition and cellular structure of a material
determine its response to physical and mechanical testing [7]. The physical properties of
food materials are related to sensory properties such as hardness, softness and brittleness [8].
Thus, consumers can recognize food quality through these characteristics. However, two
important rheological indicators in raw meat, that is, stress relaxation and creep, have
not been taken seriously. Compression tests are a golden standard for analyzing food
texture [9]. The stress relaxation test is a typical compression method for studying the
rheological properties of materials [10]. It mainly studies the law of the change in internal
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stress with time, which can reflect the internal structure and viscoelastic state of meat.
Creep is a phenomenon by compression in which a certain force is applied to meat, and the
deformation of meat gradually increases with time [11]. Stress relaxation and creep have
the potential to predict meat texture characteristics and taste.

In 2014, Sihvo [12] described a kind of broiler breast as WB for the first time. WB
myopathy is caused by a widespread fibrotic injury [13]. WB is hardened to the touch, and
a hardened “ridge” can be observed on the caudal tip [14]. Histology observation showed
the main characteristics of WB as necrosis and fibrosis, connective tissue infiltration, lipid
infiltration, fiber diameter increase, fiber degeneration and regeneration, and inflammatory
cell infiltration [12,15,16]. Analysis of meat quality found that shear force and compression
force in WB are significantly higher than those in the normal breast (NB) [14,17], thus
causing low consumer acceptance and economic loss. Xing [18] surveyed the incidence of
WB in China, and the proportion was approximately 61.9%. Kuttappan [16] estimated that
WB caused approximately $200 million economic losses due to trimming, drip loss, cook
loss, downgrading and discarding. It is worth studying how to reduce the economic loss
caused by WB.

Physical tenderization methods that have been widely studied include pulsed electric
field [19], high pressure [20] and ultrasound [21]. Ultrasound is acoustic energy produced
by waves with a vibration frequency that cannot be detected by humans [22]. The ul-
trasound process could transform electrical energy to vibrational energy and generate
cavitation to produce chemical, physical or biological effects [21]. In meat processing,
ultrasound was initially applied to determine fat and muscle of living cattle around the
1950s [23], and now it is a modern, novel, non-destructive, and cost-effective technique
that is used to improve meat quality [24].

Therefore, this study applies ultrasound on WB as an example to (a) analyze raw meat
texture by using stress relaxation and creep, (b) explore the best ultrasonic parameters,
(c) determine the ultrasonic tenderization mechanism of WB, and (d) give inspiration to
other tenderization methods. Through these, it can not only deepen the understanding
of the tenderization mechanism through stress relaxation and creep, but also reduce the
economic loss caused by WB.

2. Materials and Methods
2.1. Materials

Samples of one bird were judged as moderate WB only if both right and left breasts
of this bird met with the moderate WB criterion (fillets that were hard throughout but
flexible in the mid to caudal region) [25]. A total of 450 right breasts with moderate WB
characteristics were selected to conduct our following research. After collection, breast
samples were packed and placed in ice and transported to the laboratory. The cranial
region of WB was trimmed off to remove all surface connective tissue and adipose. The
cranial region was cut into 52 ± 2 g small cube (5 cm × 4 cm × 3 cm), and each cube
was packed in individual bags. On 12 h postmortem, cubes were placed into a −20 ◦C
refrigerator to be used up in 30 days. All cubes were thawed (24 h, 4 ◦C) before sonication.
Analytical grade chemicals and reagents were used in this research.

2.2. Sample Preparation

The cubes immersed in 4 ◦C ultrapure water for 20 min without ultrasonic treatment
were used as the control group (Control). Other samples were treated at 300, 600, 900, and
1200 W with a 20 kHz ultrasonic processor (YM-1500Y, Shanghai Yuming Instrument Co.,
Ltd., Shanghai, China) in 4 ◦C ultrapure water for 20 min (2 s on-time and 3 s off-time).
During sonication, the 22 mm ultrasonic probe was inserted 2 cm into the water surface,
and the beaker was wrapped in ice. The schematic diagram and detail of the ultrasound
process are shown in Figure 1. After each treatment, the samples were immediately stored
in ice for further use.
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Figure 1. The schematic diagram of the ultrasound process, (a): Front view of ultrasound process;
(b): The front detail of the ultrasound process.

2.3. Shear Force

A C-LM3B tenderization analyzer (Northeast Agricultural University, Harbin, China)
was used to conduct shear force tests according the method of Xing [18]. Cubes were
packaged in plastic bags individually and then heated in 80 ◦C water bath until the
core temperature reached 75 ◦C. After the samples were cooked, they were rinsed with
running water to room temperature (25 ◦C) and wiped dry. Each cooked cube was cut into
3 cm × 1 cm × 1 cm slices parallel to the muscle fibers for the tests. The shear force (N)
shown in the digital display when the slices were cut perpendicular to the muscle fibers
was recorded. Each slice was cut two times, and 30 samples were used per treatment.

2.4. Stress Relaxation and Creep

Before tests were conducted, the linear viscoelastic regime was determined by loading
different strain and stress. The stress relaxation and creep of raw WB were determined
through a texture analyzer (XT Plus, Stable Micro Systems Ltd., Godalming, UK) using a
P50 probe. The cubes were cut to 2.5 cm × 2 cm × 2 cm. For stress relaxation tests, the
compression strain was 30%; for creep, the compression force was 200 g. Other parameters
were set as follows: 3.00 mm/s pre-test speed, 1.00 mm/s test speed, 3.00 mm/s post-test
speed, 60 s time, and 5.0 g trigger force.

2.5. Myofibril Fragmentation Index (MFI)

MFI was measured with reference to Hopkins [26] with some modifications. Exactly
0.3 g of raw meat was weighed and added with 4.5 mL of MFI buffer (0.1 M KCl, 7 mM
KH2PO4, 18 mM K2HPO4, 1 mM EDTA·2Na, pH 7.0, 4 ◦C). The mixture was homogenized
(Precellys Evolution Super Homogenizer, Bertin Technologies, Montigny-le-Bretonneux,
France) twice at 10,000 rpm, 20 s each time. Then, the homogenate was filtered through
two layers of medical gauze and centrifuged (Avanti J-E, Beckman Coulter, Inc., Brea, CA,
USA) at 1000× g and 4 ◦C for 10 min. The centrifugal pellet was collected and added with
5 mL of MFI buffer and centrifuged twice. The precipitate was dissolved with 3 mL of
buffer, and the myofibrillar protein (MP) solution for MFI was obtained and measured
using biuret method with BSA as the standard protein. The protein concentration was
adjusted to 0.5 mg/mL. The absorbance at 540 nm was determined immediately. MFI
values were obtained by multiplying the absorbance at 540 nm by 200.
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2.6. Particle Size of MP

MP from WB was extracted according to Han [27] with some modifications. The raw
WB cubes were minced in a precooled mincer (Knife Mill Grindomix GM 200, Retsch, Haan,
Germany) at 3500 rpm for 30 s. Then, four times the volume ratio of standard salt solution
(SSS) (0.1 M KCl, 20 mM K2HPO4, 20 mM KH2PO4, 1 mM EGTA, 2 mM MgCl2·6H2O,
pH 7.0, 4 ◦C) was added to the meat batters and homogenized at 7000 rpm for 30 s in
an ice bath. Afterwards, two layers of medical gauze were used to filter impurities, and
the samples were centrifuged again at 2000× g for 10 min at 4 ◦C. The supernatant was
discarded, and centrifugation was repeated three times. Thereafter, 0.5% Triton X-100 was
added to SSS. Next, the precipitate was dissolved with four times the volume of 0.1 M KCl
solution and homogenized in an ice bath at 7000 rpm for 30 s. Thereafter, the mixture was
centrifuged at 2500× g for 10 min at 4 ◦C, and this process was repeated two times. Finally,
the centrifugation product was MP, which was dissolved in PBS (0.6 M NaCl, 20 mM
K2HPO4, 20 mM KH2PO4), and the concentrations were measured by biuret method with
BSA as the standard protein.

The concentrations of MP solutions were adjusted to 1 mg/mL with PBS. The mean
diameters of MP solution were analyzed using a Mastersizer 2000 instrument (Malvern
Instruments Ltd., Worcestershire, UK).

2.7. Collagen Content

Total collagen was determined by measuring hydroxyproline concentration following
the methods of Bergman and Loxley [28], Hill [29], Chang [30] and Vasanthi et al. [31]
with minor modifications. Exactly 5 g of raw meat was weighed and added with 20 mL
of 3 M H2SO4 solution in a glass tube, heated, and hydrolyzed in a drying oven (DGG-
9240A, Shanghai Senxin Instrument Co., Ltd., Shanghai, China) at 110 ◦C for 18 h. After
hydrolysis was completed, filter paper and active carbon were used to filter and decolor
the hydrolysates. The filter paper and activated carbon were washed three times with
ultrapure water. The collected water was mixed with the filtrate and diluted until 200 mL.
Then, 20 mL of diluted hydrolysate was obtained, and pH was adjusted to 8.0 using 10 M
and 1 M NaOH solutions. The hydrolysate was diluted to 250 mL with ultrapure water.
Then, 4 mL of the hydrolysate was obtained to determine the hydroxyproline content. The
total collagen content was equal to the hydroxyproline content multiplied by the factor
7.25 [32] and presented through percentage of the 5 g of meat.

The scheme of collagen solubility was modified from the methods of Fang et al. [33]
and Hill [29] with minor modifications. The 5 g of raw meat sample was placed into a
50 mL centrifuge tube and added with 15 mL of 1/4 Ringer’s solution (1.8 g NaCl, 0.25 g
KCl, 0.06 g CaCl2·6H2O, 0.05 g NaHCO3, 0.186 g iodoacetic acid) and homogenized (PD500,
Prima Technology Group Co., Ltd., London, UK) at 7000 rpm for 30 s. The mixture was
held in 77 ◦C water bath for 60 min and naturally cooled to room temperature before
centrifuged for 20 min at 3300× g. Collecting the supernatant, and 8 mL of 1/4 Ringer’s
solution was added to the precipitate and centrifuged again for 10 min at 3300× g. The
precipitate was washed, and the washing liquid was collected. The supernatant from the
two rounds of centrifugation was collected. Hydrolysis and calculation were carried out
according to the method of measuring total collagen.

2.8. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)

SDS-PAGE was performed following the method of Li [34] with some modifications.
Briefly, 1 mg/mL of MP samples (30 µL) from 2.6 was mixed with 10 µL 4 × DTT SDS-
PAGE loading buffer. Then, the mixture was heated at 100 ◦C for 10 min. The loading
mixture (10 µL) and molecular standard marker (5 µL, Thermo Fisher Scientific Co., Ltd.,
Shanghai, China) were loaded onto every precast gel lane (GenScript, 12% polyacrylamide,
15 wells). A MiniProtean electrophoresis apparatus (Bio-Rad Laboratories, Hercules, CA,
USA) was used at 4 ◦C with the following voltage: 80 V for 20 min and 100 V for 80 min.
Thereafter, the gel was stained for 40 min and decolored for 10 h by hand using a staining
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solution and decolorizing liquid (GenScript Biotech Corp, Nanjing, China). The gels were
scanned using a molecular imaging system (Gel Doc XR+, Bio-Rad Laboratories, Hercules,
CA, USA).

2.9. Histology Analysis

Raw WB cubes were cut into small squares with a side length of 5 mm and immediately
fixed with 3% glutaraldehyde at room temperature. After the paraffin sections were made,
they were dewaxed, stained with Masson and dehydrated. The images were obtained
through a microscope (Scope.A1, Carl Zeiss, Gottingen, Germany).

2.10. Data Analysis

15 breasts were used per indicator, and each breast was measured 3 times unless
specified. The results are expressed as averages ± standard deviations. Statistical analysis
was conducted using SAS software with one-way ANOVA and Duncan’s multiple range
tests (SAS Institute Inc., Cary, NC, USA). A p value of <0.05 was considered statistically
significant. Stress relaxation and creep data were analyzed by nonlinear fitting analysis
using Matlab R2016b software (MathWorks, Inc., Natick, MA, USA).

3. Results and Discussion
3.1. Effect of Different Ultrasound Power on Stress Relaxation of WB

Some combination models composed of spring and dashpot could describe the vis-
coelastic properties of WB. The spring represents elasticity, and dashpots are considered
to be pure viscosity. In this study, the stress relaxation behavior was described using
five-parameter Maxwell model [35]. The modulus σ(t) (Pa) was calculated by the equa-
tion below:

σ(t) = ε0

[
E0 + E1 exp

(
−t
τ1

)
+ E2 exp

(
−t
τ2

)]
, (1)

where ε0 is the initial strain (30%), E0 (Pa) is the equilibrium elastic modulus, E1 (Pa) and
E2 (Pa) are elastic modulus for each Maxwell component, τ1 (s) and τ2 (s) are relaxation
times, and E0, E1, E2, τ1, and τ2 were obtained from the fitting equation according to the
experimental stress relaxation data.

The stress relaxation diagram is shown in Figure 2. Force was applied to the meat.
When the deformation reached 30% and the deformation stopped, the stress was the
maximum value (hardness). With deformation maintained, the stress decreased with time
and eventually flattened out, which was a typical feature of stress relaxation.
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The hardness values of WB in different treatment groups are shown in Table 1, and
the trend of hardness was similar to the trend of shear force as mentioned previously. The
Control sample had the highest hardness value (3625.61 g), the 600 W treatment had the
lowest hardness (2643.64 g), and the difference between 600 and 900 W was not significant
(p > 0.05). Dolatowski et al. [36] confirmed that ultrasound had a positive effect on the meat
texture and could destroy the integrity of the muscle cells because of its mechanical effect.
In addition, ultrasound would damage the muscle fiber structure and release endogenous
protease from muscle fibers and eventually enhance tenderness [37].

Table 1. Effects of different ultrasound power on stress relaxation parameters of WB.

Ultrasound Power

Control 300 W 600 W 900 W 1200 W

Hardness (g) 3625.61 ± 148.39 a 3119.98 ± 90.70 bc 2643.64 ± 208.30 d 2901.10 ± 100.08 cd 3383.16 ± 374.68 ab

E0 (×10 Pa) 3754.58 ± 262.60 a 3213.62 ± 308.86 bc 2860.03 ± 4130.2 cd 2523.34 ± 419.06 d 3505.26 ± 260.89 ab

E1 (×10 Pa) 6618.14 ± 417.43 a 5817.28 ± 120.03 ab 5211.64 ± 887.22 b 6143.82 ± 436.91 ab 6320.61 ± 1322.57 a

τ1 (s) 2.49 ± 0.15 a 2.20 ± 0.16 b 1.71 ± 0.24 c 2.23 ± 0.16 b 2.30 ± 0.18 ab

E2 (×102 Pa) 1160.56 ± 68.74 a 964.67 ± 37.58 c 776.16 ± 59.76 d 865.42 ± 31.66 d 1061.38 ± 114.05 b

τ2 (s) 21.10 ± 0.69 a 20.15 ± 0.94 a 19.97 ± 1.50 a 18.31 ± 0.49 b 20.17 ± 1.48 a

R2 0.9992 0.9990 0.9985 0.9989 0.9991

Data presented are means and standard deviations from five times. Different letters represent a significant difference at p < 0.05.

Table 1 shows the stress relaxation parameters of WB under different treatments
obtained after the fitting calculation of the five-parameter Maxwell model. The deformation
difficulty of a material is reflected by the elastic modulus. A larger elastic modulus is less
likely to deform [38]. The E0, E1 and E2 of 600 W were significantly lower than those of the
Control and the 1200 W treatment (p < 0.05), indicating that 600 W ultrasonic treatment
improved the elasticity and 1200 W decreased the elasticity of WB. The change in the
elastic modulus of WB was a comprehensive result of the changes in the fiber structure
and other factors on its elastic deformation. The relaxation time was the result of the
combined effect of elastic behavior and viscous behavior and was closely related to the
binding force between the myofibrillar protein molecules. The longer the relaxation time,
the more resistant to deformation [38], the greater the binding force between myofibrillar
protein molecules, and the longer the sliding time between them. The τ1 of 600 W was
significantly lower than those of the other groups, indicating the lower strength and better
elasticity. This result may be because the protein was denatured, the binding force between
myofibrillar protein molecules became smaller, and the relaxation time became shorter.
After 600 W, elasticity gradually decreased; that may be caused by the heating effect on the
meat surface.

3.2. Effect of Different Ultrasound Power on Creep of WB

The elastic and viscous parameters can be obtained by modeling, analyzing and fitting
the creep process to understand the change in samples. The Maxwell model consists of a
spring and a dashpot in series, and the Kelvin model comprises a spring and a dashpot in
parallel. However, a certain gap exists between the two models and the actual viscoelastic
body. Thus, the Burgers model, which consists of Maxwell and Kelvin units, is widely used
in food [39]. Figure 3a showed the Burgers model creep fitting diagram. The total strain ε
(t) (mm) of the Burgers model was calculated using the following equation:

ε(t) =
σ0

E1
+

σ0

E2

[
1− exp

(
−t× E2

η2

)]
+

σ0

η1
t, (2)

where E1 (Pa) is the instantaneous elastic modulus of the Maxwell spring, E2 (Pa) is the
retarded elastic modulus of Kelvin, η1 (Pa·s) is the residual viscosity of dashpot in Maxwell
unit, η2 (Pa·s) is the internal viscosity of dashpot associated with Kelvin, and σ0 (Pa) is
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the applied compression stress. E1, E2, η1, and η2 were obtained from the fitting equation
according to the experimental creep data.
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Figure 3b shows the creep diagram. The strain applied to meat with a force of 200 g
continued to increase with time, and the deformation increased rapidly at the beginning;
with the extension of time, the growth rate slowed down and finally stabilized. Wang [40]
proposed creep strain as an indicator that describes the rigidity of a material. The softer
material with weaker resistance to deformation has a greater creep strain than the stronger
one. Among the five groups of curves, the 600 W group exhibited the greatest creep strain
and the smallest resistance.

E1 reflects the strength and E2 indicates the resistance to deformation caused by the
internal structure of material [39]. As presented in Table 2, E1 and E2 gradually decreased,
indicating that the meat structure was weakened as the power increased from Control
to 600 W. This result may be attributed to the destruction of the muscle fibers and the
release of tenderizing enzymes. However, E1 increased after 600 W, revealing that the meat
structure was reinforced. This phenomenon could be caused by heat, which strengthens the
structure of meat or enhances intermolecular bonding in MP. The retardation time (η2/E2)
of Kelvin represents a response of viscoelastic material to the instantaneous application of
constant stress [39]. The shorter the retardation time, the faster the elastic response [41]. The
retardation time of treatments was significantly higher than that of the Control (p < 0.05),
indicating that the Control had a faster elastic response than the treatments.
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Table 2. Effects of different ultrasound power on creep parameters of WB.

Ultrasound Power

Control 300 W 600 W 900 W 1200 W

E1 (×105 Pa) 3618.20 ± 186.34 a 2581.80 ± 110.64 c 1776.00 ± 129.69 e 2373.80 ± 101.95 d 3051.20 ± 149.95 b

η1 (×102 Pa·s) 4972.80 ± 160.78 a 3399.60 ± 128.01 c 2702.20 ± 160.45 e 2959.00 ± 181.04 d 3792.00 ± 228.27 b

E2 (Pa) 1389.20 ± 74.36 a 1155.80 ± 71.36 b 1118.40 ± 55.15 b 1194.00 ± 112.06 b 1191.20 ± 33.18 b

η2 (Pa·s) 2414.00 ± 14.40 c 2434.60 ± 19.77 abc 2463.80 ± 39.33 ab 2476.80 ± 52.30 a 2426.20 ± 26.88 bc

η2/E2 (s) 1.74 ± 0.10 b 2.11 ± 0.15 a 2.21 ± 0.10 a 2.09 ± 0.17 a 2.04 ± 0.06 a

R2 0.9868 0.9881 0.9893 0.9891 0.9877

Data presented are means and standard deviations from five times. Different letters represent a significant difference at p < 0.05.

In poultry plants, the hardness of WB is usually determined by the touch of the
experienced grader’s finger. How does the brain interpret the feedback of hardness when
the finger presses on the meat? This present work assumed that this phenomenon is related
to the change in the speed of pressing the meat. The faster the speed, the softer the meat.
In the image, the speed is the slope, and the slope can be obtained by deriving the function.
The slope ε′(t) formula is as follows:

ε′(t) =
σ0

E2

[
exp

(
−t× E2

η2

)](
E2

η2

)
+

σ0

η1
, (3)

Figure 3c shows the ε′(t) diagram. The slope decreased rapidly with time from
approximately 1.6 at the beginning, revealing that the deformation rate became smaller.
Then, the rate of decrease slowed down between 10–20 s. The slope of the Control first
started to become gentle, and 600 W was the last. After 20 s, the slope of the 600 W group
was maintained at 0.015, which was the highest among all groups, while that of the Control
was the lowest. The slope of the treatment was always higher than that of the Control,
indicating that the treatment group was softer, easier to deform and corresponded to the
result of hardness.

Given that the creep recovery stage was a straight line without any characteristic
points, the recovery phase was not explored.

3.3. Effect of Different Ultrasound Power on Shear Force of WB

Shear force measurement is the basic indicator of meat tenderness. As shown in
Figure 4a, ultrasound had significant (p < 0.05) effects on the WB tenderness, which was
proven by the low forces under ultrasound. Previous findings [14,42] suggest that the
shear force of NB is approximately 19–23% lower than that of WB. Compared with Control,
the shear force of the sample significantly decreased from 23.53 N to 17.09 N (p < 0.05)
under 600 W and decreased by 27%. This result meant that ultrasound can reduce the shear
force of WB to a level close to or lower than that of NB. A similar report was published
by Alarcon-Rojo [2], who proposed that ultrasound could reduce the shear force of meat.
The mechanical effect produced by ultrasound that caused the physical destruction of
myofibrillar protein may be the main reason. In addition, the cavitation damaged the cell,
thus releasing tenderizing enzymes and enhancing enzyme activity. The promoting effect of
salt-soluble protein enrichment from the meat center to the surface may be also responsible,
and this protein transfer was considered as a key role in meat tenderization [43]. However,
as the shear force increased to 900 W and 1200 W, the heat generated simultaneously
with the effect of ultrasound might have a cooking effect on the meat, causing protein
denaturation and shrinkage [44,45].
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3.4. Effect of Different Ultrasound Power on MFI of WB

The MFI value of meat represents the integrity of myofibril and reflects meat tender-
ness [46]. The high MFI value indicated the structure of myofibril was destroyed severely,
which was related to the improved tenderness. As shown in Figure 4b, the MFI values
significantly increased from 35.10 in the Control to 52.80 in the 1200 W treatment (p < 0.05).
This phenomenon could be expounded by cavitation and mechanical action of ultrasonic
waves [3], causing powerful damage to the muscle fiber protein during the process.

3.5. Effect of Different Ultrasound Power on Particle Size of WB

The decrease in the particle size of the myofibril contributes to the reduction of shear
force [47]. The values of particle size from treatments were significantly smaller than
those of the Control (p < 0.05) as shown in Figure 4c. The smallest average particle size
was 1215.00 observed in 600 W (p < 0.05), and the mean particle increased to 1728.60
at 1200 W (p < 0.05). Changes in particle size are mainly caused by cross-linking and
aggregation within the protein molecule [48]. The significant decrease in particle size might
be due to the cavitation effect and the physical effect caused by ultrasound that interrupted
the noncovalent bonds between MPs. The increase in particle size might be due to the
formation of aggregates. The larger the ultrasonic power, the more the hydrophobic groups
were exposed, and the hydrophobic interactions between the molecules cause the protein
to polymerize, thereby increasing the particle size [49].

3.6. Effect of Different Ultrasound Power on Collagen Content of WB

The effects of ultrasound power on the collagen content and collagen solubility of WB
are shown in Figure 5a,b. Collagen content is closely related to the tenderness of meat [50]:
the greater the collagen solubility, the more tender the meat [51]. The results of collagen
test were similar to those of Lyng [52,53]: ultrasound had no significant effect on collagen
content and solubility. The reason may be that there are more connective tissues in WB
than in NB, so the intensity of ultrasound cannot effectively destroy collagen. Another
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reason may be that lipid infiltration in WB hindered the transmission of enough energy,
which did not change collagen content and solubility.
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3.7. Effect of Different Ultrasound Power on SDS-PAGE of WB

The effects of ultrasound power on SDS-PAGE of WB are shown in Figure 5c. The
use of ultrasound treatment mainly decreased the intensity of the myosin heavy chains
(lanes 1, 2, 3, 4 and 5) and a new band appeared at approximately 15 kDa. With the
increase in ultrasonic intensity, the damage to MHC also increased, which indicated that
the temperature and pressure created by ultrasound caused the proteins to unfold, leading
to the degradation of myofibril protein. The decrease in shear force was related to the
degradation of myofibril structure, which indicated that the tenderness of the meat was
improved. Rawdkuen et al. [54] found that the degradation of myosin plays an important
role in the tenderization of meat. Sawdy et al. [55] also confirmed that the degree of
fragmentation of myosin heavy chain is highly correlated with meat tenderness. The more
fragments formed by hydrolysis, the better the meat tenderness. However, the heating
effect caused the evaporation of water and the shrinkage of the structure [56], which
decreased the tenderness at 900 W and 1200 W.

3.8. Effect of Different Ultrasound Power on Histology of WB

Histological observations (Figure 6) show some typical characteristics of WB, including
that round, variably sized fibers were separated from each other or replaced by connective
tissue [57] and necrotic fibers [58,59].
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Figure 6. Effect of different ultrasound power on histology of WB. Masson staining of tissue. From left to right are the
Control, 300 W, 600 W, 900 W and 1200 W groups. (A–E): longitudinal section of myofibril, scale bar = 200 µm; (a–e):
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In the longitudinal section of the myofibril (A–E), the untreated WB fibers were
thick and relatively intact. After treatments, the complete fibers were broken into small
pieces, and the fiber diameter decreased. With the enhancement of ultrasonic power, more
cavities were observed and more damaged fiber with increased space also appeared. In
the transverse section of the myofibril (a–e), similar results were found. In the Control, the
fibers were relatively close and intact. As the ultrasound power increased, it also showed
the space and cavities increased. The fiber cell membrane was broken, and the tissue
content was released. Cavitation effect caused muscle fibers to break along the Z line [5],
enhanced the activity of enzymes [56], promoted the destruction of the fiber structure, and
resulted in the tenderization effect.

The connective tissue was not damaged as indicated in histology analysis (I–V). How-
ever, in the Figure 6E, the connective tissue showed shrinkage and curved because of
heat [60], indicating the tenderness decreased. Another point that must be taken into
account was the enzyme denaturation and protein oxidation, which can increase tough-
ness [5,61].

4. Conclusions

Stress relaxation and creep showed that the hardness of the WB treated with 600 W
ultrasound decreased and its elasticity increased. Analysis of shear force indicated that
the 600 W ultrasonic power can significantly tenderize WB as shown by the results of
the decreased shear force valve, as well as increased MFI and, decreased particle size.
However, the meat became hard at treatments higher than 600 W because the heating effect
caused water loss, connective shrinkage and even the protein oxidation. In a word, stress
relaxation and creep not only predicted texture change of WB after ultrasound, but also
had the potential to be applied in meat quality analysis. The 600 W ultrasound treatment
was an effective strategy to reduce economic losses of WB.

Author Contributions: Conceptualization, Z.L.; methodology, Z.L.; data curation, Z.L.; formal
analysis, Z.L.; writing—original draft, Z.L.; writing—review and editing, Z.Y., Y.Z.; software, T.L.,
X.Z.; visualization, Z.Y., Y.Q.; resources, P.W., X.X.; supervision, P.W.; project administration, P.W.,
X.X.; funding acquisition, P.W., X.X. All authors have read and agreed to the published version of the
manuscript.
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