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ABSTRACT: Over 2.5 million neonatal dried blood spots (DBS)
are stored at the Danish National Biobank. These samples offer
extraordinary possibilities for metabolomics research, including
prediction of disease and understanding of underlying molecular
mechanisms of disease development. Nevertheless, Danish neonatal
DBS have been little explored in metabolomics studies. One
question that remains underinvestigated is the long-term stability of
the large number of metabolites typically assessed in untargeted
metabolomics over long time periods of storage. Here, we
investigate temporal trends of metabolites measured in 200 neonatal
DBS collected over a time course of 10 years, using an untargeted
liquid chromatography tandem mass spectrometry (LC-MS/MS)
based metabolomics protocol. We found that a majority (71%) of
the metabolome was stable during 10 years of storage at −20 °C. However, we found decreasing trends for lipid-related metabolites,
such as glycerophosphocholines and acylcarnitines. A few metabolites, including glutathione and methionine, may be strongly
influenced by storage, with changes in metabolite levels up to 0.1−0.2 standard deviation units per year. Our findings indicate that
untargeted metabolomics of DBS samples, with long-term storage in biobanks, is suitable for retrospective epidemiological studies.
We identify metabolites whose stability in DBS should be closely monitored in future studies of DBS samples with long-term storage.
KEYWORDS: Neonatal metabolome, dried blood spots, metabolomics, biobank, mass spectrometry

■ INTRODUCTION
Newborn screening programs are an important part of the
health care system in many countries, during which infants are
screened for a number of treatable congenital disorders shortly
after birth using dried heel prick samples.1 Apart from their
crucial role in health care, biobanked neonatal dried blood
spots (DBS) have the potential to become an important
resource for research related to early diagnosis and detection of
diseases. Over 2 million neonatal heel prick samples are stored
at the Danish National Biobank at Statens Serum Institut and
made accessible to researchers worldwide (https://www.
danishnationalbiobank.com/). These samples derive from the
population-wide screening for inborn errors of metabolism
(IEM), which in Denmark has been performed since 1975.
Blood for neonatal screening is usually drawn from the heel,
absorbed onto filter paper, and dried for 3 h at ambient
temperature before analysis and biobank storage.2 Compared
to traditional whole blood sampling, DBS samples are less
invasive and require less sample volume. DBS samples also
have a distinct matrix paper composition and are made of
whole blood, which, in conventional blood sampling, is
separated into plasma or serum and blood cells and clots.
Therefore, both cellular and extracellular compounds are

present in DBS, offering multiple opportunities for clinical
practice and research.

All of the biobanked DBS samples can be linked to Danish
registry data, containing diverse health and social records, such
as disease incidence, surgical procedures, age, sex, education, or
ethnicity,3,4 thus providing extraordinary opportunities for
research into early diagnosis and detection of diseases. LC-MS-
based metabolomics studies in particular could offer unique
opportunities to describe potential metabolic etiologies of
various diseases. This could provide clinicians with a
retrospective tool to investigate disease onset as well as
providing researchers with an opportunity to conduct
longitudinal cohort studies. Nevertheless, Danish neonatal
DBS have been little explored in metabolomics studies. One
question that remains underinvestigated is the long-term
stability at −20 °C, for up to a decade or longer, of the large
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number of metabolites typically assessed in an untargeted
metabolomics study. Long-term stability of DBS samples has
been studied to a lesser extent than the corresponding liquid
blood drawings, despite being a crucial aspect in order to
ensure valid analytical results. DBS samples stored at ambient
temperature are prone to considerable short-term changes.5

For instance, in a panel of 13 amino acids and carnitine species,
storage at an ambient temperature for 5−15 years resulted in
significant changes in concentrations for all metabolites except
valine, ranging from 2 to 28% per year.6 In particular,
acylcarnitines appear to be sensitive to degradation at ambient
temperature.7 Conversely, storage at −20 °C or lower
significantly reduced time-dependent metabolite changes in
concentrations in a study comparing the 2-year stability of
metabolites in DBS at ambient temperature, −20 °C, and −80
°C.8 However, only a few studies have studied the stability of
the DBS metabolome, as measured using untargeted
metabolomics. It has been shown that only a minority of the
metabolome in DBS from rats were unstable during one year of
storage at −20 °C.9 On the other hand, during storage times of
up to five years at −20 °C, one study found considerable
variation in a majority of 6000 measured metabolite features.10

Further studies, investigating longer storage times, are needed
in order to confirm these findings.

In this study, we used an untargeted liquid chromatography
tandem mass spectrometry (LC-MS/MS) based metabolomics
protocol to identify long-term temporal trends in the
untargeted metabolome in DBS samples stored at the Danish
National Biobank at −20 °C from one to 10 years. By
analyzing DBS samples from different individuals that are
matched for factors that previously have been identified to
cause major variation in the neonatal metabolome, we aim at
detecting temporal trends that reflect the storage time rather
than biological differences.

■ MATERIAL AND METHODS
Study Design. We retrieved a cohort of 200 neonatal DBS

stored over a time period of 10 years at −20 °C (2010−2019)
at the Danish National Biobank. Metabolomic profiles were
acquired in December 2020, thus resulting in storage times
between 1 and 10 years. Twenty neonatal DBS were retrieved
for each year (10 females, 10 males). Our group previously
identified gestational age,11 season, and age of the infant at
dried blood spot sampling12 as major drivers of variation
observed in the neonatal DBS metabolome. Furthermore,
sampling protocols and transport time may vary from hospital
to hospital. Therefore, to control for variation introduced by
other sources than storage time, we selected DBS from
children born in July, sampled at 2 days of age, and born at 40
weeks of gestation at Hvidovre Hospital, Denmark. Metadata
readily accessible to us included sex, birth weight, and the
mother’s age. These factors did not appear to explain major
variation in the neonatal DBS in prelimininary studies12 and
restricting sample selection further would have led to very few
samples included in the study. Therefore, we adjusted for these
additional factors in downstream statistical analyses. The study
was conducted in accordance with the Declaration of Helsinki,
and the protocol complies with the Danish Ethical Committee
law by not being a health research project (Section 1) but a
method development study not requiring ethical approval.4

The Committees on Health Research Ethics for the Capital
Region of Denmark waived ethical approval for this work.

Sample Preparation. Samples were randomly distributed
over three 96-well plates (batches). A large batch of DBS
consisting of adult blood from a single individual was created
before the sample preparation and stored at −20 °C. Aliquots
(3.2-mm-diameter punches) were distributed on all plates and
used as external controls (EC). Each plate consisted of two
water blanks, eight EC, four paper blanks (PB, 3.2-mm-
diameter punches of blank filter paper), four pooled samples
(equal aliquots of all samples within a plate), and 67 samples
for the second and third plate and 66 samples for the first plate.
All solvents were LCMS-grade, and were purchased from
Thermo Fisher Scientific (Waltham, MA, USA). DBS samples
(3.2-mm-diameter punches) were punched into 96-well plates,
made from polypropylen, and kept at −20 °C until extraction.
The punching process was done using a Panthera-Puncher 9
from PerkinElmer at room temperature. On the day of
extraction, the sample plate was removed from the freezer and
kept at room temperature for 30 min. 100 μL of 80% methanol
was added to each well, and the plate was then sealed with a
silicone plate lid. The plate was then shaken for 45 min at 450
rpm at room temperature, and consecutively centrifuged at
4000 rpm for 30 min at 4 °C. 75 μL of extract was pipetted
into a new 96-well polypropylen plate, which was then
evaporated under nitrogen for 1 h at 60 L/min, at room
temperature. The samples were reconstituted in 75 μL of
reconstitution solution (comprised of 5% solvent B in 95%
solvent A, see Metabolomics Profiling section), shaken at 600
rpm for 15 min, and then centrifuged at 3000 rpm for 10 min
at 4 °C. Afterward the samples on the plate were pooled into a
single well on a deep well plate, and pipetted into the four pool
positions on the plate, which was then sealed with a silicone lid
and centrifuged at 3000 rpm for 5 min at 4 °C. The plate was
then run on the LC-MS/MS platform. All pipetting steps were
performed on a Microlab STAR automated liquid handler
(Hamilton Bonaduz AG, Bonaduz, Switzerland). The extrac-
tion procedure took approximately 41/2 h.
Metabolomics Profiling. All samples (including blank,

pooled, and external quality control samples) were submitted
to untargeted LC-MS/MS at Statens Serum Institut,
Copenhagen, Denmark, in December 2020. The LC-MS/MS
platform consisted of a timsTOF Pro mass spectrometer with
an Apollo II ion-source for electrospray ionization (Bruker
Daltonics, Billerica, MA, US) coupled to a UHPLC Elute LC
system (Bruker Daltonics). The chromatographic separation
system included a binary pump, an autosampler with a cooling
function, and a column oven with temperature control. For
infusion of the reference solution, used for external and
internal mass calibration, an additional isocratic pump, Azura
Pump P4.1S (Knauer, Berlin, Germany), was used. The
analytical separation was performed on an Acquity HSS T3
(100 Å, 2.1 mm × 100 mm, 1.8 μm) column (Waters, Milford,
MA, US). The mobile phase consisted of solvent A (99.8%
water and 0.2% formic acid) and B (49.9% methanol, 49.9%
acetonitrile, and 0.2% formic acid). The analysis started with
99% mobile phase A for 1.5 min, followed by a linear gradient
to 95% mobile phase B over 8.5 min, and an isocratic flow at
95% mobile phase B for 2.5 min before going back to 99%
mobile phase A and equilibration for 2.4 min. Total run time
for each injection was 15 min, and the analysis time for a full
96-well plate was approximately 25 h. Samples were
maintained at +15 °C in the autosampler; 5 μL were loaded
onto the column with a flow rate of 0.4 mL/min and a column
temperature of 40 °C.
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Tandem mass spectrometric analysis was performed in Q-
TOF mode with TIMS off and auto MS/MS using the
following settings: ionization mode set to positive ionization,
mass range set to 20−1000 m/z, and a spectra rate of 3 Hz.
Source settings are as follows: capillary, 2500 V; nebulizer gas,
2.5 bar; dry gas flow, 8 L/min; dry gas temperature, 240 °C.
Tune settings were as follows: funnel 1 RF and funnel 2 RF,
200Vpp; isCID, 0 eV; multipole RF, 60 Vpp; deflection delta,
60 V; quadrupole ion energy, 5 eV with a low mass set to 60
m/z; collision cell energy set to 7 eV with a pre pulse storage of
5 μs. Stepping was used in basic mode with a collison RF from
250 to 750 Vpp; transfer time 20−50 μs; and timing set to 50%
for both. For MS/MS, only the collision energy ranged from
100% to 250% with timing set to 50% for both. Auto MS/MS
was used with a predefined cycle time of 0.5 s; active exclusion
was used with exclusion after three spectra and a release time
set to 0.20 min. Sodium formate clusters were applied for
instrument mass calibration and for internal recalibration of
individual samples. A precursor exclusion list was used with an
exclusion of mass range of 20−60 m/z.
Metabolomics Preprocessing. Bruker .d files were

exported to the .mzML format using ProteoWizard’s
MSConvert13 and subsequently preprocessed using the ion
identity network workflow in MZmine14,15 (version
2.37.1.corr17.7).

Data were cropped, with a chromatogram retention time
from 0.4 to 12 min retained. Mass lists were then created with
MS1 intensity above 5E2 and MS2 intensity above 0 retained.
The chromatogram was built through the ADAP chromato-
gram builder16 by using the following parameters: minimum
group size of scans, 3; group intensity threshold, 5E2;
minimum highest intensity, 1E3; and m/z tolerance, 0.002
m/z or 5 ppm. The chromatogram was smoothed with a filter
width of 5 and further deconvoluted using the MEDIAN m/z
center calculation with an m/z range for MS2 scan pairing of
0.002 Da and a retention time range for MS2 scan pairing of
0.3 min. The local minimum search algorithm was used for
deconvolution with parameters set to chromatographic thresh-
old, 85%; minimum RT range, 0.01 min; minimum relative
height, 0%; minimum absolute height, 1E3; min ratio of peak
top/edge, 2.2; peak duration range, 0.01−0.5 min. The peaks
were deisotoped using the isotopic peak grouper function, with
parameters set to m/z tolerance, 0.002 m/z or 5 ppm;
retention time tolerance, 0.3 min; monotonic shape, on;
maximum charge, 2; representative isotope, most intense.
Peaks from all samples were aligned using the join aligner
function with parameters set to m/z tolerance, 0.002 m/z or 5
ppm; retention time tolerance, 0.5 min; weight for m/z, 75%;
weight for retention time, 25%. Rows were then filtered using
the duplicate peak filter with the new average filter mode and
m/z tolerance set to 0.001 m/z or 5 ppm and RT tolerance to
0.03 min. The metaCorrelate function was used to find
correlating peak shapes with parameters set to RT tolerance,
0.1 min; min height, 1E3; noise level, 5E2; min samples in all,
2 (abs); min samples in group, 0 (abs); min %-intensity
overlap, 60%; exclude estimated features (gap-filled), on.
Parameters for the correlation grouping were set as follows:
min data points, 5; min data points on edge, 2; measure,
Pearson; min feature shape correlation, 85%. Ion identity
networking parameters were set to m/z tolerance, 0.002 m/z or
5 ppm; check, one feature; min height, 1E3 with ion identity
library parameters set to MS mode, positive; maximum charge,
2; maximum molecules/cluster, 2; adducts, M+H, M+Na, M

+K; modifications, M-H2O, M-NH3. Further ion identity
networks were added with m/z tolerance, 0.002 m/z or 5 ppm;
min height, 1E3; ion identity library parameters set to MS
mode, positive; maximum charge, 2; maximum molecules/
cluster, 6; adducts, M+H, M+Na; modifications, M-H2O, M-
2H2O, M-3H2O, M-4H2O, M-5H2O; and m/z tolerance,
0.002 m/z or 5 ppm; min height, 1E3; and annotation
refinement on with parameters set to delete smaller networks,
link threshold, 4; delete networks without monomer, on; and
ion identity library parameters set to MS mode, positive;
maximum charge, 2; maximum molecules/cluster, 2; adducts,
M+H, M+Na, M+K; modifications, M-H2O, M-NH3. Finally,
two feature tables were exported in .csv format: one feature
table containing all extracted mass spectral features and
another feature table filtered for mass spectral features with
associated fragmentation spectra (MS2). An aggregated list of
MS2 fragmentation spectra was exported in .mgf format and
submitted to ion identity feature-based mass spectral molecular
networking through the Global Natural Products Social
Molecular Networking Platform (GNPS).15,17,18

Before statistical analysis, mass spectral features with a
relative intensity less than 20 times the mean relative intensity
of all paper blank samples were removed. Relative intensities
were further batch normalized through centering by subtract-
ing the column means (omitting NAs) of each batch and
scaling by the standard deviation. Missing values were
thereafter imputed using the OptSpace matrix completion
algorithm implemented in the robust Aitchison open-source
software DEICODE, implemented in Qiime2,19 assuming a
rank of 100 for the underlying low-rank structure.20

Furthermore, we removed features present in less than 5% of
the samples, resulting in a final cohort of 200 samples and 731
metabolite features. After batch normalization, no significant
effect of the plate number was observed using a permutational
multivariate analysis of variance21 (PERMANOVA, P = 1,
Adonis R2 = 0.0032) and external controls and per plate
pooled samples clustered satisfactorily in principal components
space, showing good precision of our LC-MS/MS metab-
olomics measurements (Figure S1). Among 170 metabolite
features that were present in all EC samples, 93% had a
coefficient of variation (CV) < 25% and 59% had a CV < 10%.
Metabolite Identification. To annotate mass spectral

features to putative chemical structures, a mass spectral
molecular network was created through the GNPS Platform
(http://gnps.ucsd.edu) using the ion identity feature based
molecular networking workflow (https://ccms-ucsd.github.io/
GNPSDocumentation/fbmn-iin/).15,17,18 The data were fil-
tered by removing all MS/MS fragment ions within ±17 Da of
the precursor m/z. MS/MS spectra were window filtered by
choosing only the top six fragment ions in the ±50 Da window
throughout the spectrum. The precursor ion mass tolerance
was set to 0.02 Da and a MS/MS fragment ion tolerance of
0.02 Da. A network was then created where edges were filtered
to have a cosine score above 0.7 and more than four matched
peaks. Further, edges between two nodes were kept in the
network if and only if each of the nodes appeared in each
other’s respective top 10 most similar nodes. Finally, the
maximum size of a molecular family was set to 100, and the
lowest scoring edges were removed from molecular families
until the molecular family size was below this threshold. The
spectra in the network were then searched against all GNPS’
spectral libraries. The library spectra were filtered in the same
manner as the input data. All matches kept between network
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spectra and library spectra were required to have a score above
0.7 and at least four matched peaks.

To further enhance chemical structural information within
the molecular network, substructure information was incorpo-
rated into the network using the GNPS MS2LDA workflow
(https://ccms-ucsd.github.io/GNPSDocumentation/ms2lda/
).22−24 Furthermore, information from in silico structure
annotations from Network Annotation Propagation25 and
Sirius+CSI:FingerID26 were incorporated into the network
using the GNPS MolNetEnhancer workflow (https://ccms-
ucsd.github.io/GNPSDocumentation/molnetenhancer/).27

Chemical class annotations were performed using deep neural
networks in CANOPUS28 and followed the ClassyFire
chemical ontology.29

Statistical Analysis. The overall variation in the
metabolite data was analyzed using principal component
analysis (PCA), in R package mixOmics.30 To assess
associations between principal components and storage time,
we performed linear regression models. To identify metabolic
features significantly associated with storage time and time at
ambient temperature, we performed a linear regression analysis
for each metabolite individually. All linear regression models
were adjusted for sex, birth weight, and the mothers’ age. P
values were adjusted for multiple hypothesis testing using the
false discovery rate (FDR) method.31 Piecewise linear trends
were investigated using linear splines, with two segments, using
the R package lspline. To visualize temporal trends, we
calculated the median for all significant metabolites (linear
regression or linear splines, FDR-adjusted P value < 0.05) and
subtracted the most recent sampling year (2019), which was

used as a baseline. Results from linear regression models were
confirmed using nonparametric correlation tests using Spear-
man’s ρ. Also, longitudinal trends in metabolite data were
explored by multivariate statistics using the R package
timeOmics.32 Briefly, longitudinal changes in metabolite levels
were modeled using linear mixed model splines. By applying
PCA on modeled metabolite profiles, metabolites with similar
longitudinal trends could be clustered together. The optimal
number of principal components was optimized by maximizing
the silhouette coefficient. All statistical analyses were
performed in R 4.1.1 or Python 3.7 code, and Jupyter
notebooks are publicly accessible at https://github.com/SSI-
Metabolomics/Temporal_SupplementaryMaterial/.
Putative Identification of Degradation Products. To

identify putative degradation products, we performed a
pairwise correlation analysis of all metabolite features
correlating significantly with the year of sampling (Spearman’s
ρ, FDR-adjusted P value < 0.05) using Pearson’s ρ. Putative
degradation was then defined as two metabolite features, which
(1) correlate significantly with year of sampling (Spearman’s ρ,
FDR-adjusted P value < 0.05), (2) correlate negatively with
each other (Pearson’s r < 0; P value < 0.05), and (3) exhibit a
chemical structural relationship either through high tandem
mass spectral similarity (cosine > 0.7) or shared MS2LDA
substructural motifs. For visualization and chemical structural
annotation, putative degradation products were identified
within the mass spectral molecular network by adding edges
(connecting lines) between two nodes, meeting criteria 1, 2,
and 3.

Figure 1. Beta coefficients (standard deviation increment of metabolite feature per year of storage) from linear regression models (A), indicating
change for each metabolite in standard deviation units per year of storage time. Significant associations indicate false discovery-rate P values < 0.05.
(B) Median levels of all the 152 metabolites significantly associated with storage time for each year of storage time. Point estimates show mean
value at each time point and direction (pos, positive; neg, negative), and error bars indicate standard deviations. (C) Proportion of metabolites
within each class without associations with storage time, out of 20 putatively annotated classes, only seven showed significant alterations with
storage time.
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■ RESULTS
A total of 731 metabolites (mass spectral features with unique
MS/MS fragmentation patterns) were measured and present in
at least 5% of the samples. Putative annotation on the
metabolite class level was conducted by combining mass
spectral molecular networking (GNPS), unsupervised sub-
structure discovery (MS2LDA), in silico annotation through
network annotation propagation,25 Sirius+CSI:FingerID, Mol-
NetEnhancer, and deep neural networks in CANOPUS. This
resulted in chemical class annotation (level 3 annotation33) for
188 metabolites (25.7%). Spectral mirror plots of all
metabolite annotations retrieved through GNPS with a spectral
similarity score (cosine score) ≥ 0.7 are shown in Supporting
Information.

To examine whether overall variation in the metabolomics
data was related to storage time of DBS samples, PCA was
performed. The first principal component (PC) explained
11.5% of the variation in the data set, and the cumulative
explained variance of the first four PCs was 29.2% (Figure
S2A). Samples with similar storage time did not cluster
according to the PCs (Figure S2B), but PC2 (beta = 0.068, p =
5.5e-3), PC3 (beta = 0.090, p = 2.1e-4), and PC4 (beta = 0.12,
p = 1.6e-7) were significantly (p < 0.05) negatively associated
with storage time in linear regression models adjusted for sex,
birth weight, and the mothers’ age (Figure S2C). The mothers’
age and birth weight did not differ between the different time
points (Table S1).

We proceeded to explore the association between each
individual metabolite and storage time. In linear regression
models, adjusted for sex, birth weight, and age of the mother,
152 out of 731 metabolites (20.8%) were significantly (FDR-
adjusted P value <0.05) associated with storage time (Figure

1A; Table S2). Out of these, 71 were inversely associated with
storage time, and 81 showed a positive association. Comparing
the metabolite levels after 10 years of storage with those at one
year of storage, the median metabolite level was on average
0.67 standard deviations higher for metabolites with significant
positive beta coefficients and 0.64 standard deviations lower
for metabolites with significant negative beta coefficients
(Figure 1B). The median estimated annual change among
significant metabolites was 0.08 standard deviation units, and
the median explained variance was 9.9%. The explained
variance ranged from 3.1% (tyrosine) to 26.8% (methionine).
In total, 50 of the 152 significant metabolites (32.9%) could be
assigned to a metabolite class (level 3). Among the eight
represented metabolite classes, four contributed with more
than one metabolite, including amino acids and derivatives (N
= 18), peptides (N = 17), glycerophosphocholines (N = 5),
and acylcarnitines (N = 4). In total, 24 significant metabolites
achieved at least a second level annotation,33 among which the
strongest positive association with storage time was seen for
glycerophosphocholine (beta = 0.098, p = 4.7e-5) and the
strongest negative association for methionine (beta = −0.15, p
= 6.3e-12) and glutathione (beta = −0.18, p = 7.7e-11).
Overall, 13 classes (with at least two measured metabolites)
had no metabolites significantly associated with storage.
Among classes with metabolites associated with storage, the
proportions of unaltered metabolites ranged from 73%
(acylcarnitines) to 37% (glycerophosphocholines). For metab-
olites without class annotation, 81% were unaltered (Figure
1C). Neither metabolites annotated as peptides nor metabo-
lites annotated as amino acids and derivatives did show any
class-specific temporal trends. Both negative as well as positive
associations were observed. On the contrary, all significant

Figure 2. Median metabolite levels for different storage times. Data are shown for all four metabolite classes with more than one metabolite
significantly associated with storage time. Only features with significant associations are shown. Metabolites without level 2 annotations are shown
in gray.
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acylcarnitines showed negative associations with storage. For
glycerophosphocholines, all significant lysophosphatidylcholine
species were negatively associated with storage, while levels of
the headgroup glycerophosphocholine were positively asso-
ciated with storage (Figure 2).

Overall, similar results were achieved when comparing the
results from the linear regression models with those from
Spearman’s correlation coefficient tests, where 141 metabolites
were significantly (FDR-adjusted P value <0.05) correlated
with storage time, out of which 128 were significant using
linear regression (Figure S3).

We next explored metabolite changes upon storage using a
multivariate approach implemented in the timeOmics R
package.32 The optimal clustering was achieved when using
only the first principal component (PC1). PC1 was strongly
associated with storage time, explaining 81% of the variation in
storage time. The loadings of PC1 were very similar to the beta
coefficients of the linear regression models (Pearson’s ρ =
0.93). For instance, glutathione was the metabolite with the
strongest (negative) contribution to PC1 and among the
metabolites with strongest association in the linear regression
models (Figure S4).

In order to look for linear trends that do not span the entire
10 years, we performed linear splines with two segments.
Among metabolites that did not have significant linear trends
over 10 years, 60 metabolites were significantly associated with
storage time during at least one of the segments (Table S3).
These included four features with a U-shaped trend, five with
an inverted U-shaped trend, 17 features with a plateau during
the first 5 years (12 with late increasing trend and five with late
decreasing trend), and 34 with a plateau during the last 5 years
(27 with early increasing trend and 7 with early decreasing
trend Figure S5).

As DBS samples are transported from the hospital or site of
collection to the site of analysis or biobank at room
temperature, metabolite stability may not only be influenced
by storage time, but also by variations in transportation times.
Therefore, we assessed the relation between transportation
time and metabolite features. The time at ambient temperature
(average 2.5 days) did not differ between the 10 different time
points (Table S1; Figure S6A) but was significantly (FDR-
adjusted P value < 0.05) associated with 58 metabolite features
(Figure S6B), among which 41 were not associated with
storage time (Figure S7). Nicotinamide was the metabolite
feature with strongest association with time at ambient
temperature (Figure S6C).

Observing both positive and negative temporal trends for
metabolites, we sought to identify putative transformation
pathways for metabolites in our data set. We found a total of
four potential chemical transformations (Figures 3 and S8). A
first putative degradation pathway involved an unknown
glutathione isomer formed either by deconjugation of
crotonaldehyde from 4-oxobutan-2-yl-glutathione or directly
from glutathione (Figure 3). Glutathione (beta = −0.17, P = 1
× 10−13) and 4-oxobutan-2-yl-glutathione (beta = −0.06, P =
4.8e-3) were decreasing in levels with longer storage time,
while levels of the unknown glutathione isomer were found to
be increased with longer storage time (beta = 0.09, P = 1.8 ×
10−5). In addition, we found three further potential
degradation pathways, which we were only able to partially
annotate (Figure S8). These included degradation of different
glutathione analogoues (Figure S8A), degradation of a
glycerophosphocholine to an unknown likely phosphocholine

related feature, and degradation of N,N,N-trimethyltyrosine or
a structural analogue thereof to phosphocholine.

■ DISCUSSION
In order to study the long-term stability of untargeted
metabolomics data in DBS stored at −20 °C, we investigated
the relationship between over 700 metabolite features and
sample storage up to 10 years. In total, 34.5% of the metabolite
features were either associated with biobank storage at −20 °C
(28.9%) or with storage at ambient temperature during
transportation to the biobank (7.9%). The levels of a few
metabolites, such as glutathione and methionine, may be
heavily influenced by extended storage time in DBS and should
be closely monitored in future studies. For most of the
unstable features, the effect of storage was relatively small, with
a median explained variance of 9.9%.

Applying untargeted metabolomics in prospective or
retrospective cohorts has great potential, but also several
challenges, including effects of long-term storage times. The
plasma metabolome has been seen to be stable up to five years
of storage at −80 °C,34 given that samples do not go through
several freeze−thaw cycles.35 Recently, it was shown that,
among 200 plasma metabolites, only 2% were significantly
altered after seven years but 26% upon 16 years of storage at
−80 °C.36 As opposed to plasma samples, DBS are usually
stored at −20 °C or even at room temperature, emphasizing
the need to ensure the stability of long-term storage. A
previous study by Li and collaborators has shown that 76% of
DBS metabolites in a targeted metabolomics panel, covering
both polar and apolar metabolites, were influenced by storage
at −80 °C up to one year. The major effect of storage was seen

Figure 3. Putative degradation of glutathione structural analogues.
Putative degradation was identified through the mass spectral
molecular network and defined as two metabolite features, which
(1) correlate significantly with year of sampling (FDR-adjusted P
value <0.05), (2) correlate negatively with each other (Pearson’s r <
0; P value <0.05), (3) exhibit chemical structural relationship either
through high tandem mass spectral similarity (cosine >0.7) or shared
MS2LDA substructural motifs. Shared MS2LDA substructural motifs
are further indicated in orange in the molecular structures.
Mass2Motif connections are only displayed if spectral cosine
similarity > 0.7.
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between months one and three, where influenced metabolites
on average decreased in concentration to 60% of the original
concentration, while small concentration changes were seen
between months three and 12.37

There are few studies of metabolite stability in DBS over a
longer time span than one year. In a targeted metabolomics
study, with several samples collected over two years, alterations
in metabolite stability could only be seen in samples stored at
room temperature, as opposed to −20 °C.8 Rus and
collaborators applied untargeted metabolomics in six individ-
uals, who deposited DBS samples each year over a period of six
years. The authors showed that 30−35% of the ∼6000
measured metabolite features had a between-sample coefficient
of variation (CV) < 20%, while the majority of metabolite
features displayed large alterations over time.10

In order to best capture the effect of storage, we chose to
evaluate the temporal trend in the present study using linear
regression models, assuming linear changes in metabolite levels
over time. As opposed to the previous study by Rus and
collaborators, our investigation showed that almost 70% of the
measured metabolite features were unrelated to biobank
storage. Among the 152 metabolites that were linearly
associated with storage time, we observed that the levels of
around half of the metabolites increased with storage, while the
remaining decreased. This is in contrast to what was previously
seen during one year of storage, where a large majority of
influenced metabolites in a targeted panel decreased with
time.37 It is important to note that the present study does not
investigate the short-term effects of storage, since all
investigated samples had a storage time of at least one year.
Therefore, we cannot exclude that the relatively large short-
term effects described previously also occurred in the present
study. Our finding that around half of the metabolites increase
with storage and half decrease indicates that chemical
transformations may occur over time. This is also supported
by the nonlinear trends that were detected, where some of the
metabolite features had either U-shaped or inverted U-shaped
temporal trends, indicating complex interactions between
unstable metabolites. In addition to the effects of biobank
storage, the transportation time (at ambient temperature) from
the sample collection to the biobank may influence the
metabolome. The time at ambient temperature (1 to 5 days)
influenced around 8% of the measured features, mirroring the
more rapid degradation of DBS samples that have been
observed previously at room temperature.5

To further investigate chemical transformations, we
combined mass spectral molecular networking, in silico
structure, and substructure annotation with information on
metabolites significantly increasing or decreasing over time.
We found a total of four potential chemical transformations
(Figures 3 and S8). One putative transformation pathway
involved glutathione, a compound that is previously known to
be prone to degradation in DBS samples.37 Our data suggest
that a glutathione isomer is formed from glutathione
degradation and/or by deconjugation of 4-oxobutan-2-yl-
glutathione. Glutathione may also be oxidized to form a
disulfide dimer, a process which is well-known in nature, where
glutathione is a potent scavenger of reactive oxygen species.38

Our findings indicate that oxidation could contribute to
glutathione degradation, since a feature putatively annotated as
oxidized glutathione was significantly increasing with storage
time, although, glutathione and oxidized glutathione were not
inversely correlated with each other (ρ = 0.09, p = 0.18).

Glutathione degradation possibly forms many structural
analogues, supported further by our finding of different
glutathione analogoues inversely correlated with each other
(Figure S8A). In addition, our findings suggested two further
putative transformation pathways (Figure S8B and C),
however only limited structural information and biological
interpretation could be retrieved. A glycerophosphocholine
structural analogue was found to degrade to a phosphocholine
related structure, whereas a feature putatively annotated as
N,N,N-trimethyltyrosine or a structural analogue thereof was
found to degrade to phosphocholine. We were not able to find
a biochemical rationale for the degradation of the N,N,N-
trimethyltyrosine structural analogue to phosphocholine.
Inverse correlation could either be picked up by chance,
involve a chemical intermediate, or may result from false
positively annotated features.

Although the majority of the metabolites in our study were
not significantly associated with storage, relatively strong
associations were seen for some metabolites, such as
glutathione and methionine. For instance, our results indicate
that the levels of glutathione decrease at a rate of
approximately 0.1−0.2 standard deviation units per year,
resulting in significant imprecision when analyzing samples
with very different storage time. However, for most of the
unstable features, the estimated annual change was much
smaller (median 0.08 sd units per year). Also the explained
variance was low for many features (median 9.9%), such as
3.1% for tyrosine, despite associations being statistically
significant. Overall, our results are consistent with previous
studies where several of the metabolites, which are associated
with storage time in the present study, have previously been
reported to be unstable in DBS samples, including
glutathione,37 sphingosine-1-phosphate,37 and palmitoylcarni-
tine.37 Additionally, we observed that acylcarnitines and
lysophosphocholines were inversely associated with storage
time, indicating either residual enzymatic degradation of the
fatty acids or nonenzymatic hydrolysis of the headgroups upon
extended storage. Consistent with the latter, we observed that
the headgroup of lysophosphocholines, glycerphosphocholine,
was positively associated with storage and a similar trend was
seen for free carnitine, although not statistically significant after
multiple-test correction. Previous studies displayed conflicting
findings regarding storage of lysoPCs, where two studies in
plasma have shown either increasing36 and decreasing34

concentrations of lysoPCs upon storage. In DBS, several
lysoPCs have been shown to decrease in concentration during
one year of storage,37 but some lysoPC species, such as
LysoPC C26:0, appear to be stable.39 In our study,
glycerophosphocholines were the metabolite class with the
highest proportion (63%) of metabolites associated with
storage time. Decreasing concentrations of acylcarnitines
have been reported in several studies of both plasma34 and
DBS37 samples, but no evidence of increases in free carnitine
has been found previously. It is noteworthy that although we
see a negative temporal trend for acylcarnitines in this study,
the proportion of altered acylcarnitines (27%) was close to the
overall average (21%), indicating that the stability may not be
worse for acylcarnitines than for other metabolite classes.

The present study has several limitations, and results should
be interpreted within this context. The study design makes it
difficult to confidently disentangle biological and technical
variation. We addressed this by analyzing neonatal DBS
samples, with identical gestational age, age at sampling, and
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birth month, all factors that were previously identified to have
a major effect on the DBS metabolome.11,12 Moreover, in the
regression analysis, we adjusted for other potential confound-
ing factors, such as birth weight, sex, and the mothers’ age.
Despite these efforts, a limitation with the current study design
is that residual biological variation may result in statistically
significant differences between individual time points that are
not related to storage per se. To minimize the risk of false
positives, we modeled a linear association between metabolite
and storage, disregarding differences between two individual
time points. Results from the linear regression models were
confirmed using alternative approaches using both Spearman’s
correlation tests and multivariate statistics. A further technical
limitation of our study is that data were only acquired in
positive ion mode. A broader coverage of the metabolome
could have been achieved by using different extraction
solvents, chromatographic columns, as well as the negative
ionization mode. As our sample material was limited, we aimed
at using a single method that would give as broad coverage of
annotated semipolar metabolites as possible. As most libraries
and in silico tools for chemical structural annotation are built
for positive ion mode data, we acquired our data using
reversed-phase liquid chromatography in positive ion mode.
Finally, data describing whether samples were taken out of the
biobank between the original time of collection and analysis
was unavailable to us for this study, representing a potential
confounder that we were unable to control for.

■ CONCLUSIONS
The majority (>71%) of the biobanked DBS metabolome is
stable during storage at −20 °C for up to 10 years. For the
majority of the unstable metabolites, storage had a relatively
small effect, with a median explained, variance of 9.9%, whereas
a few metabolites, including methionine and glutathione, may
be strongly influenced by storage. Overall, our findings confirm
that untargeted metabolomics methods may be a powerful tool
for the discovery of early markers of disease in biobanked
neonatal heel prick samples, if storage time is taken into
account appropriately. This may be done either during study
design, for example by matching cases and controls on storage
time in case-cohort studies, by correcting for storage time in
posthoc statistical models, or by removing metabolites
highlighted in the current study that vary strongly with storage
time.
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