
Published online 30 November 2021 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 4 1
https://doi.org/10.1093/nargab/lqab110

Identifying essential genes across eukaryotes by
machine learning
Thomas Beder1,2,3,*, Olufemi Aromolaran 4,5, Jürgen Dönitz6,7, Sofia Tapanelli8,
Eunice O. Adedeji5,9, Ezekiel Adebiyi4,5, Gregor Bucher6,* and Rainer Koenig 1,2,*

1Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital,
Am Klinikum 1, 07747 Jena, Germany, 2Institute of Infectious Diseases and Infection Control, Jena University
Hospital, Am Klinikum 1, 07747 Jena, Germany, 3Department of Internal Medicine II, University Medical Center
Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany, 4Department of Computer & Information Sciences,
Covenant University, Ota, Ogun State, Nigeria, 5Covenant University Bioinformatics Research (CUBRe), Covenant
University, Ota, Ogun State, Nigeria, 6Department of Evolutionary Developmental Genetics, GZMB, University of
Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany, 7Department of Medical Bioinformatics, University
Medical Center Göttingen (UMG), 37099 Göttingen, Germany, 8Department of Life Sciences, Imperial College
London, London SW7 2AZ, UK and 9Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria

Received April 21, 2021; Revised October 9, 2021; Editorial Decision October 20, 2021; Accepted November 29, 2021

ABSTRACT

Identifying essential genes on a genome scale is re-
source intensive and has been performed for only
a few eukaryotes. For less studied organisms es-
sentiality might be predicted by gene homology.
However, this approach cannot be applied to non-
conserved genes. Additionally, divergent essential-
ity information is obtained from studying single
cells or whole, multi-cellular organisms, and partic-
ularly when derived from human cell line screens
and human population studies. We employed ma-
chine learning across six model eukaryotes and 60
381 genes, using 41 635 features derived from the
sequence, gene function information and network
topology. Within a leave-one-organism-out cross-
validation, the classifiers showed high generalizabil-
ity with an average accuracy close to 80% in the left-
out species. As a case study, we applied the method
to Tribolium castaneum and Bombyx mori and vali-
dated predictions experimentally yielding similar per-
formances. Finally, using the classifier based on the
studied model organisms enabled linking the essen-
tiality information of human cell line screens and
population studies.

GRAPHICAL ABSTRACT

INTRODUCTION

Essential genes are defined as indispensable for the repro-
ductive success of an organism (1). Consequently, infor-
mation on essentiality is used in a broad range of life sci-
ence research, prominently to identify drug targets, as in
cancer therapy (2) or identifying insecticidal targets, but
also for the design of a minimal genome in synthetic biol-
ogy. Many genome wide screens exploring phenotypes and
gene functions have been performed using forward genetic
methods (3–5). Later, reverse genetic methods were devel-
oped which allowed targeting individual genes specifically
(6). Some large scale screens were focused on the question,
which genes are essential for an organism (7). Function-
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ally, these screens revealed that essential genes are involved
in fundamental cellular maintenance processes like DNA,
RNA and protein synthesis (8). Besides this, their encoded
proteins are highly connected in protein-protein interaction
(PPI) and metabolic networks (9,10). Furthermore, core es-
sential genes were identified across different model systems
(11), revealing their evolutionary conservation. Many es-
sential genes show their essentiality not as a binary trait
nor are they fixed across all intrinsic and extrinsic condi-
tions within the evolutionary niche and may be influenced
by the environment and the genetic context (1). For exam-
ple, in yeast, many non-essential genes for growth in rich
media are actually important in other growth conditions
(12). Consequently, quantitative values for essentiality have
been defined accounting for the degree of dependency on
external influences, as well as the likelihood that a compen-
satory mutation occurs (13) and typically statistical score
values are calculated for gene essentiality (14–16). Essential
genes in humans were identified by studying cancer cell lines
and more recently by genomic population studies, compre-
hensively reviewed by Bartha et al. (13). In cell lines, gene es-
sentiality is assessed by cell viability after gene knock-out or
knock-down, whereas in the population studies of humans
it is assessed by scoring loss-of an allele or the depletion of
variants in a gene. Interestingly, the essential gene lists of the
two distinct approaches hardly overlap (13). This was unex-
pected since a cellular essential gene (CEG) should also be
an organismal essential gene (OEG), even though not nec-
essarily vice versa. This discrepancy between human CEG
and OEG remains to be elucidated.

Despite their great value, experimental screens and pop-
ulation studies are very resource intensive. Consequently,
on a genome scale, essential genes have been experimentally
identified for several bacteria but only for a few eukaryotes,
while population studies were performed only for human
(Table 1). Because of experimental challenges and costs, the
computational prediction of essential genes is of great in-
terest and machine learning can considerably facilitate the
search for essential genes in an organism. Following this ap-
proach, classifiers have been trained on a set of genes with
known essentiality that are described by various features.
For this, features can be based directly on the DNA or pro-
tein sequence (17,18), such as GC content or amino acid fre-
quencies, or on more complex characteristics, e.g. the topol-
ogy in PPI or co-expression networks (9,19). Subsequently,
a trained classifier was used to predict a new set of genes
finding novel essential gene candidates (9). The next mile-
stone was the prediction of essential genes across species.
For bacteria, the software Geptop 2.0 (20) calculates an
essentiality score of an unknown gene based on informa-
tion of 37 (bacterial) species and sequence similarity. For
eukaryotes the task is more challenging, considering their
complex multi-cellular architecture. Besides this, only a few
model organisms have been experimentally screened for es-
sential genes to date, even though the number is growing
(21,22). To our knowledge only two studies were published
predicting essential genes across eukaryotes using machine
learning. Lloyd et al. (23) predicted essential genes in two
plant species and Saccharomyces cerevisiae. They showed
that inter-species prediction is feasible across plants, how-
ever, they observed a drastically reduced performance in

cross plant-fungal species predictions. The other study, by
Campos et al. (18), predicted essential genes in six eukary-
otes using a leave-one-organism-out approach and it based
merely on protein sequence features. These studies laid the
foundations in machine learning based essential gene pre-
diction highlighting the necessity to achieve a robust per-
formance for predictions across organisms including hu-
mans.tttttt

The aim of this study was to develop a classifier capa-
ble of identifying essential genes in eukaryotes even if no
experimental data is available. For this, we trained and vali-
dated classifiers using essentiality information from six, well
described model organisms. Within a leave-one-organism-
out cross-validation, the classifiers were trained on data
derived from five organisms and validated with the sixth
organism. As case studies, we applied the classifier to the
red flour beetle T. castaneum and the silk moth Bombyx
mori. We used the available RNA interference (RNAi) (24)
and CRISPR (25) screen with defined lethality status as a
control, while validating further predictions experimentally.
Moreover, we aimed to fill the gap between human cell line
screens and population studies, by integrating information
from the model organisms to improve human essential gene
assignments.

MATERIALS AND METHODS

Assembling the gold standard

We assembled essentiality information for genes from the
six species C. elegans, D. melanogaster, H. sapiens, M. mus-
culus, S. cerevisiae and S. pombe. For fly, mouse and human
we could collect screens for CEG and OEG, for worm only
for OEG, and for the yeasts (obviously) only for CEG. This
essentiality information was collected from the databases
OGEE (21) and DEG (26) and the literature as listed in Ta-
ble 1. For genes with different essentially status in different
screens, we performed a majority voting. For human cell
line screens, a gene had to be studied in at least five experi-
ments as previously suggested by Guo et al. (17). All genes,
their class labels and predictions can be found in Supple-
mentary Table S4.

Feature generation

A total of 41 635 features were generated based on
seven different sources including protein and gene
sequence, functional domains, topological features,
evolution/conservation, subcellular localization, and gene
sets from Gene Ontology (Figure 2). Protein and gene
sequences of the organisms were obtained using biomaRt
(27). For genes with isoforms, the features were generated
individually for each isoform and the median of all was
calculated. For deriving protein and gene sequence fea-
tures, various numerical representations characterizing the
nucleotide and amino acid sequences and compositions
of the query gene were calculated using seqinR (28),
protr (29), CodonW (http://codonw.sourceforge.net/) and
rDNAse (30). With seqinR simple protein sequence infor-
mation including the number of residues, the percentage
of physico-chemical classes and the theoretical isoelectric
point were calculated. Most protein sequence features

http://codonw.sourceforge.net/
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Table 1. Assembled essential gene information based on OGEE (21), DEG (26) and the literature

Species Source
Data set
abbreviation Method

Essential
genes

Non essential
genes

H. sapiens Population
sequencing data

Hs OE Loss-of fuction-variants (50–54) 2828 12 844

H. sapiens Cell line Hs CE RNAi (43,47,63), shRNA (48), CRISPR
(14–16)

833 13 743

M. musculus Organism Mm OE Biallelic inactivation (56,62) 1966 4505
M. musculus Cell line Mm CE CRISPR (57) 939 7472
D. melanogaster Organism Dm OE P-element (59), RNAi (44), CRISPR (58) 246 271
D. melanogaster Cell line Dm CE RNAi (61), CRISPR (55) 1227 10 320
C. elegans Organism Ce OE RNAi (60) 737 10 128
S. cerevisiae Single cell Sc CE PCR based (7,45,21) 1036 4373
S. pombe Single cell Sp CE PCR based (46), Transposon (49) 1226 3379

Total 11 038 67 035

were obtained using protr including autocorrelation,
CTD, conjoint triad, quasi-sequence order and pseudo
amino acid composition. CodonW was used to calculate
simple gene characteristics like length and GC content but
also frequency of optimal codons and effective number
of codons. Using rDNAse, DNA descriptors like auto
covariance or pseudo nucleotide composition, and kmer
frequencies (n = 2–7) were calculated. Domain features
including post-translational modifications were generated
based on the tools provided by the Technical University of
Denmark (http://www.cbs.dtu.dk/services/) and included
prediction of membrane helices and �-turns, cofactor
binding, acetylation and glycosylation sites. Topology fea-
tures were computed based on protein-protein-associations
(PPA) derived from STRING v11 (31) including degree,
degree distribution, betweenness, closeness and clustering
coefficient using the Python library NetworkX.

Conservation features included the number of homolo-
gous proteins of a query protein in the complete RefSeq (32)
database using PSI-BLAST (33). The number of proteins
found with e-value cutoffs from 1e−5 to 1e-100 (in 1e−5
multiplication steps) were used as features. In addition, an
alignment coverage score (ACS) was calculated for hits with
a cutoff ≤1e−30 as described by Vinayagam et al. (34). The
ACS is the average of the query coverage score (QCS) and
the subject coverage score (SCS):

QCS and SCS are combined measures of size, identity
and E-value of the alignment concerning the query or sub-
ject sequence,

QCS := −
(

AL
QL

× I
)

× log10 (E-value) (1)

and

SCS := −
(

AL
SL

× I
)

× log10 (E-value) (2)

where AL denotes the alignment length, QL the length of
the query sequence, SL the length of the subject sequence,
and I the fraction of identical amino acids in the alignment.
Next, the number of homologous sequences with a score
from 0 to 0.95 in 0.05 steps were calculated. Analogously,
the number of paralogous sequences were calculated, but
blastn (35) alignment results with an e-value cutoff ≤1e−30
were used as input for the score. Subcellular localization fea-
tures were predicted using DeepLoc (36), which assigns a

score for each protein to its localization in eleven eukaryotic
cell compartments. Gene set features were computed based
on 3,874 Gene Ontology (GO) terms present in all analyzed
organisms, similar to Chen et al. (37). By this, not only the
characterization of the query gene was taken into account,
but also of its neighbors in the protein association network
making the features more robust against false gene set anno-
tations. We assembled the neighbors of the query gene em-
ploying the gene network definitions of STRING v11 (31).
For each of the gene sets, a Fisher’s exact test for enrichment
of interaction partners was performed. The −log10 values of
the P-values were used as features.

Data normalization, feature selection and machine learning

Data analysis was performed using R. Values of each fea-
ture were z-transformed and each value was assigned to
deciles. Next, we performed two steps for feature selection
prior to the training procedure. The data was randomly split
into training (4/5) and testing (1/5). Based on the train-
ing set, Least Absolute Shrinkage and Selection Operator
(LASSO) was applied for feature selection using the glm-
net package (38) in R (cv.glmnet function with parame-
ters alpha = 1, type.measure = ‘auc’). To avoid collinearity,
highly correlating features with Pearson correlation coeffi-
cients r ≥ 0.70 were removed.

To overcome class imbalances when training the classi-
fiers, we used SMOTE (39) and trained with the classifica-
tion algorithms Random Forest (RF) and Extreme Gradi-
ent Boosting (XGB) from the caret (40) package. For RF the
tuneLength parameter in the train function was set to 3 re-
sulting in three mtry values (number of predictors randomly
sampled at each split). For XGB eta, nrounds, max depth,
min child weight and colsample bytree were optimized in a
tune-grid whereas gamma and subsample parameters were
kept constant at 0 and 1, respectively. This resulted in 216
different parameter combinations for XGB tuning. To im-
prove generalizability, for each organism we performed a
stratified randomized 5-fold cross-validation in which fea-
ture selection, hyper-parameter tuning and training of the
classifiers was done on 80% of the data. Twenty percent of
the data was exclusively used for testing the performance,
thus leaving this data completely untouched by the ma-
chines during training (Supplementary Figure S1). By this,
we derived the training and test performances for each or-
ganism individually (Supplementary Figure S2), ensuring

http://www.cbs.dtu.dk/services/
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the capability of the machines to predict essential genes and
to avoid over-fitting.

Leave-one-organism-out cross-validation scheme for the
CLassifier of Essentiality AcRoss EukaRyotes (CLEARER)

For each individual species (five species for CEG, four for
OEG predictions), five machines were trained (Supplemen-
tary Figure S1). Essential genes for the left-out species were
predicted with machines trained on the according CEG or
OEG data sets of the other organisms. Thereby the classi-
fiers for each (non-left out) species supplied an essentiality
prediction score between zero and one and the average of
these scores was used for the prediction of a gene to be es-
sential in the left-out species. This approach allowed testing
the generalizability of CLEARER as the data from the left-
out species was only used for testing.

Orthology-based essential gene prediction

We derived orthologs from the OrthoDB v10 (41) database
and assigned the essentiality to the genes according to the
data sources listed in Table 1. For predicting essential genes
in an organism we selected the essential and non-essential
orthologs in the other organisms and performed a hyper-
geometric test. P-values were FDR corrected for multiple
testing and values lower than 0.05 considered to be signifi-
cant.

RNAi experiments in T. castaneum

RNAi was performed according to the procedure described
for the larval injection screen in Schmitt-Engel et al. (24)
with minor modifications: we used another strain (San
Bernardino) and scored lethality after 7 days after injection
(instead of 11). We defined a gene as lethal if the lethality in
the pupal or larval screen was at least 50%.

Functional enrichment analysis of essential genes

To study in which cellular processes essential genes were en-
riched, an enrichment analysis was performed using Gene
Ontology (version from 2020-11-18), biological process,
molecular function and cellular compartment. Enriched
GO-terms (Fisher’s exact test P < 0.05, FDR corrected)
were selected and compared across the six species. Gene sets
were removed if they showed high redundancy according to
the following method. Redundancy between two gene sets
was quantified using Jaccard similarity coefficients,

J (A, B) = |A∧ B|
|A∨ B| (3)

in which A and B are gene sets enriched for essential genes.
An undirected graph G = (X, E) is introduced, with X being
gene sets as vertices and E being gene set pairs with J(A,
B) ≥ 0.3 as edges of the graph. A mixed integer linear model
(weighted stable set problem) was setup with a constraint
for each edge to select at most one of the vertices of an edge:

Max
n∑

i=1

wi Xi (4)

subjected to

Xi + Xj ≤ 1 for every {i, j} ∈ E and

Xi ∈ E {0, 1} for 1 ≤ i ≤ n, (5)

where wi is the weight of a gene set. The weight is derived
from the enrichment test P-value and maximization was
performed employing linear integer programming solved
by the software Gurobi (version 7.5.2, https://www.gurobi.
com). This led to an optimal selection of at most one gene
set from a pair in such a way that the overall number of
non-redundant gene sets were maximized. Moreover, very
general gene sets containing ≥1000 genes (in any organism)
were removed and gene sets comprising ≤ 0.1% genes of
the corresponding organism were not considered. For illus-
tration, each gene set was assigned to one of eleven major
groups (cell cycle, cellular structure, development, immune
response, metabolism, neural processes, protein biogenesis,
regulation, repair, RNA biogenesis and signaling).

Clustering

Scores of human cell lines were combined calculating the
rank products leading to a combined rank for CEG. Sim-
ilarly, combined ranks were calculated for OEG based on
the scores of the population studies. Hierachical cluster-
ing of human genes was based on the percentiles of the
combined scores from the cell lines (experimental CEG),
population studies (experimental OEG) and CLEARER
(OEG and CEG predictions). Clustering was performed us-
ing euclidian distance and average linkage of the R package
pheatmap.

Associating human genes to phenotypes

To investigate how the predicted essential genes in hu-
man associate with human diseases, we extracted 225 443
phenotype-to-gene associations from the Human Pheno-
type Ontology (42) database. For each of the phenotypes,
an enrichment test (Fisher’s exact test) for the according
genes in the clusters was performed following FDR correc-
tion and phenotypes with P < 0.05 were considered to be
significantly enriched. Word clouds illustrating phenotypes
were generated using the R package wordcloud2.

RESULTS

Essential genes are different in single cells compared to multi-
cellular organisms

Our study was performed based on the six model organisms
Homo sapiens (human), Mus musculus (mouse), Drosophila
melanogaster (fly), Caenorhabditis elegans (worm), Saccha-
romyces cerevisiae and Schizosaccharomyces pombe (yeasts).
Essentiality information for each of these organisms was
taken from the databases Online GEne Essentiality (21),
Database of Essential Genes (26) and the literature (7,14–
16,43–63). Table 1 lists the number of genes for which
this essentiality information could be assembled. To our
knowledge we compiled the most comprehensive collection
of essentiality information for these six eukaryotes com-
prising 11 038 essential and 67 035 non-essential labeled
genes.

https://www.gurobi.com
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For humans, it has been shown that essentiality infor-
mation derived from viability screens of cancer cell lines
does not well agree with essentiality information derived
from in vivo genetic studies (13). We speculated that this
phenomenon can be generalized, i.e. CEG identified from
cell lines or unicellular organisms (yeasts) are distinct from
OEG. E.g. genes involved in embryo development or neu-
ral morphogenesis may be substantial for multicellular or-
ganisms, but not for a unicellular organism or a cell line.
Hence, we defined two categories of gene essentiality, i.e.,
CEG and OEG, depending on the cellular or organis-
mal nature of the experimental study (Table 1). We com-
pared gene essentiality based on OEG and CEG experi-
ments across the six investigated organisms based on or-
thologous gene groups. As shown before (13), gene es-
sentiality inferred from human in vivo population stud-
ies correlated well with each other (r = 0.53 ± 0.15) and
the correlation was even better between human cell line
studies (r = 0.74 ± 0.07, Figure 1A). Interestingly, we
also observed good pairwise correlations of CEG of hu-
man, fly, mouse and the yeasts (r = 0.38 ± 0.17). More-
over, we observed reasonable pairwise correlations of OEG
across organisms (r = 0.20 ± 0.06). In contrast, there were
lower correlations between CEG and OEG across organ-
isms (r = 0.15 ± 0.13) and the lowest correlation between
OEG and CEG of the same species was found in hu-
man (r = 0.13 ± 0.06). Despite that, the overlap of cellu-
lar and organismal essential genes was significant for all
three organisms, by far the highest overlap was found in
mouse (Figure 1B). The complete list of orthologous groups
and essentiality information is provided in Supplementary
Table S1.

Next, we studied the involvement in cellular processes of
CEG and OEG. For this, we performed gene set enrichment
analyses based on the gene set definitions of Gene Ontology.
To get a better overview, each gene set was assigned to one
of eleven major groups (cell cycle, cellular structure, devel-
opment, immune response, metabolism, neural processes,
protein biogenesis, regulation, repair, RNA biogenesis and
signaling).

Whereas CEG were enriched in processes de-
scribing cellular macromolecule biogenesis and cell
cycle/proliferation, OEG showed enrichment in regulation,
development/morphogenesis, neural related processes and
signaling (Figure 2). This reflects the need of multicellular
organisms for functional organ systems, which do not only
depend on the survival of the respective cells but also their
concerted function within and between organs. Figure 2
shows the proportions of CEG and OEG of these different
cellular processes for each organism. Notably, for human
OEG less developmental gene sets were found compared
to M. musculus, D. melanogaster and C. elegans potentially
reflecting the different way to identify essential genes. The
simple multicellular nematode C. elegans shows processes
we observed in CEG of the other multi cellular organisms.
All enriched gene sets are listed in Supplementary Table
S2.

We observed that CEG are similar among the individ-
ual species, and similarly OEG. However, CEG and OEG
are substantially different suggesting learning our machines
with CEG and OEG separately.

Setting up the data sets for machine learning

We set up a machine learning procedure to predict essen-
tial genes across eukaryotes called CLassifier of Essentiality
AcRoss EukaRyotes (CLEARER). Each data set from Ta-
ble 1 served as the gold standard, and with this we trained
individual classifiers for each organism for CEG and OEG
based on 41 635 features from seven categories comprising
information from protein and DNA sequences, domains,
of gene network topology, evolutionary conservation, sub-
cellular localization, biological processes and further gene
set definitions (Figure 3). The complete list and description
of features used in this study is shown in Supplementary
Table S3. To predict essential genes across species, a leave-
one-organism-out cross-validation was applied. An exam-
ple is shown in Figure 3 where CEG of human are predicted
by machines trained on fly, mouse and the yeasts. The en-
tire machine learning workflow is depicted in Supplemen-
tary Figure S1. Notably, following a leave-one-organism-
out cross-validation allowed realistic performance evalua-
tions as the class labels of the left-out organism were only
uncovered when evaluating the predictions. OEG were pre-
dicted separately, using essentiality information of the four
available organisms comprising worm, fly, mouse and hu-
man (Table 1).

Identifying essential genes within and across species

First, we tested our approach by predicting essential genes
within the same species using a stratified randomized 5-
fold cross-validation. Thereby, 80% of the data was used
for feature selection, hyperparameter tuning and training
of the classifiers, and 20% for testing (Supplementary Fig-
ure S1). We evaluated the performance of the two machine
learning strategies Random Forests and Extreme Gradient
Boosting. Random Forests performed slightly better on the
test sets (Supplementary Figure S2) with an average ROC–
AUC of 0.857 ± 0.057. The best performance was obtained
for the human cell lines (ROC–AUC = 0.955 ± 0.018),
which also reflects the consistency of the essentiality infor-
mation within the six data sets (Table 1). Notably, we ob-
served no difference between the performance in predict-
ing CEG and OEG. For both, we got consistently high
performances (Figure 4A, ROC–AUCCEG = 0.873, ROC–
AUCOEG = 0.845, P = 0.13).

Furthermore, we investigated the performance when
combining CEG and OEG information. For this, we trained
and tested using combined lists. As expected, we observed
a distinctively reduced performance in terms of the ROC–
AUC for the organisms with CEG and OEG information
(Supplementary Figure S3). For the following, we based our
analysis on classifiers which were trained separately either
with OEG or CEG. In conclusion, our method predicted
essentiality well, when CEG and OEG were trained sepa-
rately and when applied to the same species.

Next, CLEARER (Figure 3) was applied to predict
CEG and OEG across organisms, following a leave-one-
organism-out cross-validation. We observed an ROC–AUC
of 0.744 ± 0.084 on average (Figure 4A, Supplementary
Figure S4 shows the performance for each organism sep-
arately). The overall accuracy of the final predictions of the
within species classifiers and CLEARER were similar (no
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Figure 1. Correlation of cellular and organismal essential genes. (A) Correlation analysis of essentiality across organisms shows that both cellular (CEG)
and organismal essential genes (OEG) are conserved across the investigated eukaryotes. Essentiality on the cellular level correlated better than on the
organismal level. The lowest correlation of CEG and OEG was observed for human. Human OEG scores (from population studies) and human CEG
scores (from cell based knockout/knockdown screens) were obtained from Bartha et al. (13). Human population studies are denoted as scores used
to define essentiality. The human cell line studies are denoted by the name of the corresponding cell lines and, in brackets, the first author of the study.
Additionally, the OEG and CEG scores for C. elegans, D. melanogaster, M. musculus, S. cerevisiae and S. pombe were included. (B) Venn diagrams showing
the overlap of essential genes found in organisms with CEG and OEG data sets. P-values show the significance of the overlap.

Figure 2. Functional characterization of essential genes. Distribution of
CEG and OEG in major biological processes. Enriched gene sets were
assigned to one of eleven major categories. The proportions were de-
rived by dividing the number of essential genes in each gene set by
the total number of essential genes of the according CEG or OEG en-
tity. CEG were enriched in processes describing cellular biogenesis and
cell cycle/proliferation, whereas OEG showed enrichment in regulation,
development/morphogenesis and signaling.

significant difference). Next, we compared CLEARER to
the approach previously reported by Campos et al. (18),
which used protein sequence features and the leave-one-
organism-out cross-validation approach investigating the
same species. In their approach CEG and OEG were not
handled separately and machines were not trained on the
individual organisms, but on combined lists of essential
and non-essential genes (18). Following this way, we ob-
served a reduced performance compared to CLEARER
when using the same protein sequence features (ROC-
AUC = 0.599 ± 0.067, P < 0.0001) and also when using
our set of diverse features (ROC–AUC = 0.696 ± 0.044,
P < 0.05). This demonstrated the improvement when in-
tegrating the comprehensive set of the above described fea-
tures and an ensemble classifier trained on CEG and OEG
of the individual species.

CLEARER performed well to predict essential genes for
each of the model organisms investigated when trained on
the other model organisms and significantly outperformed
the previous approach.

Comparing CLEARER with an orthology-based prediction
approach

The most common approach to find essential genes is
based on inference by orthology. For all genes with or-
thologs in at least one of the other investigated organ-
isms we performed a test for enrichment of essential or-
thologs. This enrichment test showed a similar accuracy as
simple majority voting (accuracyenrichment = 0.784 ± 0.052,
accuracymajority = 0.797 ± 0.047, P = 0.1563) but an in-
creased sensitivity (sensitivityenrichment = 0.398 ± 0.188,
sensitivitymajority = 0.314 ± 0.141, P = 0.031). Conse-
quently, we used the enrichment test-based assignment. A
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Figure 3. The workflow of CLEARER. The workflow is exemplified for
the prediction of human cellular essential genes (CEG). For each gene 41
635 features based on seven different categories were assessed. Machine
learning was performed and the intra-species classification performance
evaluated. For the inter-species classification, the machines trained on the
other organisms were used to predict human CEG.

major disadvantage of such an approach is that for 17 994
genes (29.8%) no ortholog with known essentiality was as-
signed, leaving these genes unpredicted (Figure 4D). How-
ever, for the genes with identified orthologs the enrichment
test performed similar to CLEARER in terms of the ac-
curacy (accucacyenrichment = 0.77, accucacyCLEARER = 0.74,
Figure 4D). Despite that, CLEARER classified more es-
sential (31.6%) and non-essential genes (24.4%) correctly
(Figure 4D). Notably, both approaches shared a substantial
number of true positive predictions (Supplementary Figure
S5) suggesting combining both approaches for the best per-
formance.

Combining CLEARER with the orthology-based approach
improves the overall predictions

To obtain a unique classifier predicting CEG and OEG
with the best performance, we now combined the predic-
tions from CEG, OEG and the orthology-based approach.
For the yeasts only predictions for CEG and from the
orthology-based approach were considered. A combined
score for each gene was calculated based on the ranking
of the predictions for each approach. This score allowed

to order the genes such that an optimal percentile (cut-
off) could be selected above which a gene was regarded to
be essential. The optimal cutoff needed to be selected to
balance between high accuracy, sensitivity and precision.
For this, two measures were regarded, i.e. (1) the maxima
of the F1-score (harmonic mean of sensitivity and preci-
sion) and (2) the maximal accuracy. Figure 4b illustrates this
tradeoff exemplarily for the prediction of essential genes
for human. Across all six organisms, the best cutoff based
on the maximal F1 approach was on average the 75% per-
centile, yielding an accuracy of 0.769 ± 0.99 (Figure 4C).
The best cutoff for the maximal accuracy was the 95%
percentile and yielded a higher accuracy (0.832 ± 0.077)
and precision (0.606 ± 0.059), but the sensitivity was lower
(0.186 ± 0.117). Even though the latter criterion yielded
lower sensitivities, depending on the application, high pre-
cision can be very beneficial if validation experiments are
costly or technically complex. We observed improved pre-
dictions (compared to CLEARER alone) with the com-
bined approach yielding n = 1,060 (18.7%) more correctly
identified essential genes and only a marginal decrease in
specificity (1.1%) when applying the 75% percentile cutoff
(Figure 3d). We used this combined classifier to predict es-
sential genes for the case study applications (next section).
The results of the predictions for all model organisms are
shown in Supplementary Table S4.

CLEARER combined with the orthology-based approach
performs well for Tribolium castaneum and Bombyx mori

As two case studies, we applied the unified classifier
(CEGCLERARER, OEGCLEARER and orthology-based ap-
proach) to predict essential genes for T. castaneum and B.
mori.

T. castaneum is an insect with emerging interest because
in many respects its biology is more representative of in-
sects than that of D. melanogaster (64), e.g. T. castaneum
is used as a model organism for pest control (65). Gene es-
sentiality information was available from previously pub-
lished knockdown screens (24,65,66), and this information
was used to validate the predictions. We made predictions
for 12 859 genes of which 2,783 had been tested by RNAi
(Supplementary Table S5). Following the F1-based cutoff
criterion, the top 25% predictions were considered to be
essential. The achieved performance (sensitivity = 0.409,
specificity = 0.809, and precision = 0.712) was compara-
ble to the leave one organism out cross-validation results of
the model organisms (sensitivity = 0.569 ± 0.0958, speci-
ficity = 0.802 ± 0.129, precision = 0.415 ± 0.087). The
overlap of essential gene predictions and experimental re-
sults was highly significant (P < 0.0001, odds ratio = 2.63).
Following the maximal accuracy cutoff, the top 5% of pre-
dictions were considered to be essential yielding high preci-
sion (0.859) and specificity (0.973), but only low sensitivity
(0.143). The results show that CLEARER predicts essential
genes for T. castaneum with a very similar performance as
achieved for the model organisms when applying the leave-
one-organism-out cross-validation. Next, we selected 200
genes with the highest prediction scores and validated them
experimentally performing RNAi in vivo. Indeed, n = 160
genes (accuracy = 80.5%) proved experimentally to be es-
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Figure 4. Performance of CLEARER. (A) Comparison of the prediction performance within and across species from all cross-validations. Species abbre-
viations are as listed in Table 1. (B) Line graph illustrating the maximal F1-score and accuracy cutoff for H. sapiens after combining CLEARER and the
orthology-based approach. Dotted lines indicate maxima. (C) Box plots showing the percentiles and performance metrics for the maximal F1- score and
maximal accuracy for the six model organisms. (D) Bar graphs showing the total number of correct and incorrect predicted genes.

sential (Supplementary Table S5). In addition, we randomly
selected 200 genes and tested their essentiality in vivo (Sup-
plementary Table S5). Again, the overlap of essential gene
predictions and RNAi validation experiments was signifi-
cant (P < 0.01, odds ratio = 2.78, precision = 0.646 and
specificity = 0.850).

Essential genes of B. mori were investigated in the sec-
ond case study. B. mori is a lepidopteran insect with agricul-
tural importance in silk production but also in research (67).

Gene essentiality information was available from a previ-
ously published CRISPR/Cas9 based knockout screen (25),
and was used to validate the predictions. For B. mori, we
made predictions for 8,150 genes with known lethality in-
formation from the knockout screen (listed in Supplemen-
tary Table S5). Following the F1-based cutoff criterion, we
yielded a good classification performance, again similar to
the results from the model organisms (accuracy = 0.786,
sensitivity = 0.591 and specificity = 0.806). Using the max-
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imal accuracy as the cutoff criterion resulted in higher accu-
racy (0.917) and specificity (0.983), but reduced sensitivity
(0.267).

In summary, applying our approach to T. castaneum and
B. mori yielded a similar performance as observed in the
leave-one-organism-out cross-validation of the six model
organisms showing the good applicability of our approach.

CLEARER supports defining human essential genes

Essential gene information for human derived from cancer
cell line and population sequence studies hardly overlap, in-
dicating a missing link between both approaches. We aimed
to provide this link by integrating the available experimen-
tal information for human with predictions from the model
organisms.

Essentiality scores of the experimental data from ten hu-
man cell line screens were combined (using rank products)
to obtain an experimental CEG score. Similarly, a com-
bined score was obtained for OEG based on the five popu-
lation studies. As described above, human CEG and OEG
poorly overlap, and hence the correlation of the according
scores was low (r = 0.12, Figure 5A). In contrast, the scores
from the combination of CLEARER and the orthology-
based approach correlated much better with the scores from
the cell line screens (r = 0.50) and the population studies
(r = 0.24). Next, experimentally derived CEG and OEG
scores were combined with the computational predictions
using the rank product. This combined score showed the
best correlation to the cell line screens (r = 0.53), popula-
tion studies (r = 0.45) and CLEARER (r = 0.71).

We were now interested whether this combined score im-
proved elucidating human essential gene definitions. For
this, we clustered the essential genes based on their exper-
imentally derived scores and CLEARER predictions. We
identified eleven clusters distinctively separating essential
and non-essential genes according to their combined scores
(Figure 5B). In total, 7,739 genes (38.9%) with high com-
bined essentiality scores were found in four clusters (2–
4,10). Genes from these four clusters account for the ma-
jority of genes associated to an early death (72.6%, Figure
5C). Cacheiro et al. (68), recently proposed a categorization
of human genes according to their essentiality. Genes from
clusters 2, 3, 4 and 10 were highly enriched in the categories
‘cellular lethal’ and ‘developmental lethal’ of Cacheiro et al.
(Figure 5C). In contrast, these genes were depleted in the
‘viable’ categories, which again indicates an accumulation
of essential genes in clusters 2, 3, 4 and 10. Another indi-
cator for essentiality was their association to human dis-
eases. Genes from our essential gene clusters were com-
bined and compared to genes from the non-essential gene
clusters (clusters 1, 5, 6, 7, 8, 9 and 11). We observed a
distinctively high enrichment of diseases and impairments
associated to the genes from essential gene clusters. In to-
tal, 490 phenotypic descriptions were found to be enriched
mostly associated with abnormal development but also hy-
poplasia, which is associated with an inadequate or below-
normal number of cells (Figure 5D). In contrast, the 12,175
genes from the other seven (non-essential gene) clusters
were not enriched for any phentoypic description. These re-

sults highly suggest a strong enrichment of essential genes
in clusters 2, 3, 4 and 10, compared to the other clusters.

Another interesting finding was that in clusters where ex-
perimental and computational scores differed, CLEARER
supported making the final decision. Genes from cluster 4
and cluster 10 had high scores either in the cell line screens
(cluster 4) or population studies (cluster 10). Both were
supported by the predictions from CLEARER. In con-
trast, genes from clusters 5 and 6 were not supported by
CLEARER (Figure 5E). Next, the phenotypic associations
of the individual clusters were compared (Figure 5F) again
showing the overlap of associated diseases in the essential
gene clusters. On the contrary, genes from the non-essential
clusters were considerably less associated to diseases (con-
tributing only 3.6% of all identified phenotypes) and their
phenotypes did not overlap (Figure 5F). In fact, for the non-
essential gene clusters 6, 7, 8 and 11 no associated pheno-
type was found. The combined score for each gene and en-
riched phenotypes for the clusters are listed in Supplemen-
tary Table S6.

The results show that the combined score supports defin-
ing human essential genes and may contribute filling the
gap between cell line screens and population studies by
integrating information from the other model organisms.
Genes with high scores are associated with death, abnor-
mal morphology, cancer and other diseases. Moreover, the
combined score appears to be particularly supportive when
the results of the cell line screens and population studies are
divergent.

DISCUSSION

We employed machine learning across six model eukary-
otes and 60 381 genes, using 41 635 features derived from
sequence, gene functions and network topology. The ap-
proach enabled to predict essential genes in an organism
based on data of other organisms, here the above described
and well-studied model organisms of human, mouse, fly,
worm and the yeasts. Within a leave-one-organism-out
cross-validation, the classifiers showed a high generalizabil-
ity with an average accuracy close to 80% in the left-out
species. Applying our combined approach consisting of ma-
chines from all these organisms and a homology based pre-
dictor we could predict gene essentiality with a similar per-
formance for two (unseen during training) organisms T. cas-
taneum and B. mori. For T. castaneum, we validated the pre-
dictions by a random selection of our predictions experi-
mentally.

During the study, we came across several hurdles for these
predictions. Regarding the gold standard, we observed a
considerable discrepancy between organismal and cellular
essential gene assignments. The correlation of their essen-
tiality scores was low, particularly for human. Still, the over-
lap of cellular and organismal essential genes was significant
for all three studied organisms for which such a compar-
ison was possible (human, mouse, fly). The highest over-
lap was observed in mouse. Some genes seem to be essen-
tial in both, the single cells and in the whole organism,
others seem to be essential specifically either in the organ-
ism or the single cells. Particularly for human, there is a
large discrepancy between the available essentiality infor-
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Figure 5. CLEARER supports identifying essential genes for human. (A) Correlation of experimental and computational scores. Scores from five popula-
tion studies and ten cell line screens were combined and compared to predictions from CLEARER. The highest correlation was found when combining the
experimental data and computational predictions. (B) Clustering of computational and experimental scores separates essential and non-essential genes. (C)
Essential gene clusters associate with early death and lethality from Full Spectrum of Intolerance to Loss-of-function categories by Cacheiro et al. (68). (D)
Word cloud illustrating enriched phenotype-to-gene associations of genes from the essential gene clusters. (E) Box plots of the scores of the four essential
gene clusters illustrate how CLEARER supported the final decision-making towards or against essentiality. (F) Venn diagrams showing the number of
overlapping and non-overlapping phenotypes being enriched in genes of the according clusters. Notably, for the non-essential gene clusters 6, 7, 8 and 11
no enriched phenotype was identified.
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mation from cell line screens compared to population stud-
ies (13). Human cell lines are mostly derived from cancer
cells. Notably, these cells have been investigated to iden-
tify cancer-specific and even cancer-sub-type-specific essen-
tial genes. For example, more than a thousand cancer cell
lines have been studied by Ghandi et al. to identify pan-
and cancer-specific essential genes as new chemotherapeu-
tic targets (69). Essential genes in such cell lines may have
specific tasks in these cells, such as to provide high prolifer-
ation, cellular repair or biogenesis of cellular compounds.
In turn, depletion of mutations/conservation of genes in
human populations rather lead to genes being essential for
the regulation, development and differentiation of the or-
ganism. Pan-cancer essentiality information has been used
to provide targets for cancer therapy. However, these thera-
pies often come along with high cell toxicity enforcing low
dosage treatments, which, in turn limit their effect on tumor
elimination (70). However, a systematic machine learning
based differentiation of gene essentiality of cancer cells and
population studies might be an intriguing approach to de-
fine drug targets against cancer with reduced side effects,
and we suggest such studies as a future perspective. For hu-
man and fly, essential gene information based on studying
immortal cell lines and the overlap of essential genes was
much lower than for mouse. For mouse, cellular essential
gene information was derived from experiments with em-
bryonic stem cells indicating that these correspond much
better to the organismal development. The different bio-
logical sources and experimental methods led to rather di-
verse lists of identified essential genes. To cope with these
inconsistencies we integrated essentiality information from
various studies for the individual organisms thus balanc-
ing for differences between the studies. In addition, predic-
tions based on machines trained across several organisms.
Particularly for human, we showed that combining essen-
tiality information of other, non-human organisms using
CLEARER with orthology information and experimental
data for human led to a combined score highly correlating
with scores from both, cell line and population studies. This
approach may hence suit to bridge human CEG and OEG
information.

Genes with high scores associated with early death,
abnormal morphology and cancer. The predictions from
CLEARER supported the final decision of genes with
higher scores from the cell line or population studies. This
suggests that the combined score, integrating experimental
data and computational predictions based on the model or-
ganisms, may provide a valuable resource for genetic studies
of human health and diseases.

The presented method base on a recent development
by us (9). Methodologically, orthology-based classification
was included and more than 14,000 additional features were
implemented. In comparison to the previous study, here
cross-species essential gene predictions were performed, in-
stead of predicting essential genes within the same organ-
ism (in the previous study, training and validation was done
for D. melanogaster or for human cell lines). In this study,
two case studies for application to unknown organisms
were performed demonstrating the generalizability of the
classifier, including 400 RNAi experiments for validation
of the essential gene predictions in T. castaneum. Our ap-

proach highly outperformed a previously published method
(18), which evaluated the performance of protein sequence
derived features using the same model organisms. More-
over, our approach advantaged from distinguishing between
CEG and OEG in the gold standard. Good prediction of
essential genes for prokaryotes were provided by Geptop,
a well developed prediction tool basing on sequence ho-
mology (20), and this was further developed for eukary-
otic cells adding information of orthologous groups (71).
However, essential gene prediction particularly for eukary-
otes is challenging as few genome wide experimental screens
are available. In addition, the experimental approaches are
very heterogeneous comprising knockout as well as knock-
down methods, and investigating cell lines, single cell organ-
isms, whole multi-cellular organisms, and population stud-
ies. Recently, Cacheiro et al. (68), combined essential gene
information of mouse and human orthologous genes re-
sulting in 3819 predicted human essential genes. The as-
signment of their groups is in good accordance to our
combined score. However, the clear advantage of our ap-
proach is that it is applied to all known genes and not
just to orthologs. Another approach elucidating essential
gene information is provided by HEGIAP (37). HEGIAP
is a collection of analytical tools enabling to analyze the
epigenetics, gene structure and evolution of human essen-
tial genes. To note, HEGIAP considers only human es-
sential genes from cell line screens neglecting organismal
essentiality. Besides this, HEGIAP is rather a descriptive
tool collection not providing a final prediction for gene
essentiality.

As a further perspective, more complex sequence-based
and topology features, which have been developed and
shown to be powerful in essential gene prediction of
prokaryotes (72,73), may be added to CLEARER to fur-
ther improve its performance. In this study, we focused on
the prediction of essential genes. As another perspective,
using the same approach but defining another gold stan-
dard, also other gene to phenotype associations can be
predicted. For this, several databases (42,56,66,74,75) with
gene to phenotype descriptions for model organisms can
be used to set up the appropriate gold standard. Moreover,
here we only considered loss-of-function of single genes. A
further promising application will be to predict synthetic
lethality, in which combinations of loss-of-functions lead to
death.

Our method CLEARER allows the prediction of essen-
tial genes, in principle, for any eukaryote without the need
of a screening experiment. This can simplify the search for
essential genes in non-model organisms e.g. to find targets
for pest and vector control. Instead of large scale experi-
mental screens, CLEARER can provide a shortlist of puta-
tive essential genes, which can subsequently be tested exper-
imentally on a smaller scale.

DATA AVAILABILITY

The source code is available at https://github.com/
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