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Water as the often neglected medium at the
interface between materials and biology
B. L. Dargaville 1 & D. W. Hutmacher 1✉

Despite its apparent simplicity, water behaves in a complex manner and is fundamental in

controlling many physical, chemical and biological processes. The molecular mechanisms

underlying interaction of water with materials, particularly polymer networks such as

hydrogels, have received much attention in the research community. Despite this, a large gulf

still exists in applying what is known to rationalize how the molecular organization of water

on and within these materials impacts biological processes. In this perspective, we outline the

importance of water in biomaterials science as a whole and give indications for future

research directions towards emergence of a complete picture of water, materials and biology.

An exceptional molecule

Water is central to all life. Cells, whole organisms and indeed entire ecosystems are
fundamentally and completely dependent upon the presence of water. Water is the
most abundant substance on earth, making up around 70% of the earth’s surface and

65–90% of the mass of living organisms1. Hence, the importance of water in biological processes
has been receiving attention in the scientific community for well over a century2,3.

Water plays an important role in all vital processes of living organisms. All facets of the
structure and function of both cells and the extracellular matrix (ECM) are centered around the
physical and chemical properties of water. Broad biological functions of water include its action
as a transport medium for nutrients and waste products, a medium for chemical reactions,
cellular osmoregulation and maintenance of cell turgidity, body temperature regulation, lubri-
cation, pH regulation and the formation of pH buffers.

Water is a complex, structured liquid. It dissolves most biologically important molecules (the
notable exceptions being lipids and some amino acids). On the other hand, it is much more than
just a passive solvent. Water molecules participate actively as a nucleophile and/or proton donor
or acceptor in many chemical reactions in living organisms, such as photosynthesis, cellular
respiration, condensation reactions, and hydrolysis of both endogenous and foreign compounds.
In addition, over the last several decades it has become apparent that water also plays an active
role in many other aspects of the human body and its interaction with foreign substances and
surfaces4. Much of our understanding of the role of water in biological systems stems from
studies of protein and DNA in aqueous solution. Protein-ligand binding, as occurs in the
immune response for example, has been suggested to be in part determined by the energetics and
dynamics of water5. Water—at times individual molecules— facilitates enzyme catalysis and
water molecules strongly bound to biomolecules impart thermodynamic stabilization to the
latter5.
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Central to the chemical and physical behavior of water is its
nature as a polar molecule. The hydrogen and oxygen atoms have
vastly different electronegativities. Thus, the oxygen atom carries a
partial negative charge due to its greater attraction for the shared
electrons of the H-O covalent bond. Consequently, the two
hydrogen atoms carry a partial positive charge. The formation of
this dipole results in electrostatic attraction between H and O atoms
of adjacent water molecules, generating a type of secondary bonding
called hydrogen bonding. Hydrogen bonds are weaker than cova-
lent bonds. The hydrogen-oxygen bond dissociation energies are 21
and 464 kJmol−1 for hydrogen bonds and covalent bonds,
respectively6. Therefore, within the temperature range for which
water is a liquid, hydrogen bonds are able to break and re-form in a
continuous dynamic fashion. The lifespan of a hydrogen bond in
liquid water is in the range of tens of femtoseconds to picoseconds7.
Although individual hydrogen bonds are weak, collectively they
result in the high cohesive forces of water as a substance8,9.

The polar nature of water enables crucial cellular functions such as
cell membrane formation, support of the three-dimensional shape of
the DNA double helix, and it has an important role in the tertiary
structure of proteins—specifically, water enables hydrophobic inter-
actions, which are crucial to protein folding and aggregation10.
Water is a polar, protic solvent and amphoteric reagent, and has the
ability to ionize both itself and other molecules. Due to its high heat
capacity, water protects against the effects of temperature fluctuation.

There is a vast amount of literature on the behavior of water.
The picture is, as yet, far from complete and research in this area
is highly active. Entire journal issues have been devoted to the
topic of water and its properties11. Water is unique among all
chemical substances in that it displays many anomalous and
unexpected behavior parameters. For example, water has an
unusually high boiling point for a substance composed of such
small molecules; water displays a decreased viscosity when under
pressure; it shows a maximum density at 4 °C and ice has a lower
density than liquid water. Other thermodynamic parameters,
such as specific heat (CP), thermal expansion coefficient (αP), and
compressibility (kT), all show anomalous behavior12. Much of the
unusual behavior of water is linked to hydrogen bonding. For
example, the high heat capacity and heat of vaporization are due
to the large energy input required to break up the hydrogen-
bonded network to allow greater molecular movement.

Pettersson et al stated that one of the central questions to the
understanding of water is ‘What are the structure and dynamics
of the hydrogen bonding network that give rise to its unique
properties?’11 The introduction of ions and interfaces further
complicates the unique properties of water and such scenarios are
less well understood than those involving bulk water11.

The interaction of water with macromolecules is important on
a number of levels, ranging from water associated with both ECM
and cellular components such as proteins13,14 to water interacting
with drugs, medical devices and implants15–17.

The concept of ‘biological water’ has gained prominence in the
recent literature. It has been variously defined as any water sur-
rounding a biomolecule; a shell of functional water surrounding a
biomolecule; to the notion of cellular water as a distinctive species
able to itself perform biological functions18. In any event, there is no
dispute that a layer of water exists around biomolecules (and other
macromolecules), whose properties differ considerably to those of
bulk water. In this Perspective Article, we focus on the interaction of
water with biomaterials, and more specifically hydrogels, rather than
the role of water in the function of endogenous biomolecules.

Hydrogels as the key to understanding the water interface
Water’s exceptional behavior, coupled with its importance in
biological systems, has prompted generation of a large body of

work with respect to investigation of its properties in the context
of biomaterials. Hydrogels are among the most widely used
biomaterials for healthcare applications. In addition, hydrogels
have been used for applications in other fields such as agriculture,
food technology and hygiene. However, biomedical applications
represent by far the largest sector, with hydrogels being used
widely in areas including pharmaceuticals19, diagnostics, tissue
engineering and regenerative medicine20, drug delivery21,22,
wound dressing, biofiltration, and biosensors23,24.

A hydrogel is a three-dimensional network of crosslinked
hydrophilic polymer chains. The network can swell and hold a
large volume of water and has the integrity of a semi-solid
material. By definition, a hydrogel contains at least 10 % of its
weight or volume as water but may absorb many times its weight
in water. The high water content results in mechanical properties
similar to natural biological tissue. A distinguishing property of
hydrogels is their response to external physical and chemical
stimuli, such as temperature, pressure, pH, solvent composition,
and the presence of ions and other dissolved species. In this
respect and many others, hydrogels have the potential to closely
simulate natural biological environments.

Hydrogels can be classified according to their origin (natural,
semi-synthetic or synthetic), their ionic charge (cationic, anionic
or neutral), or the type of crosslinking involved (covalent, phy-
sical, ionic, and others).

Natural hydrogels are derived from polymers such as collagen,
gelatin, agarose, alginate, fibrin, chitosan, and hyaluronic acid25.
Natural hydrogels have been extensively used in numerous bio-
medical applications, specifically drug delivery and tissue engi-
neering and regenerative medicine research, due to their inherent
biocompatibility, biodegradation and bioactivity, such as pro-
moting cell growth26. Synthetic hydrogels are based on polymers
or copolymers, which include poly(ethylene glycol) (PEG),
poly(vinyl alcohol) (PVA), synthetic polypeptides, poly (N-vinyl-
2-pyrrolidinone) (PVP), and poly (2-hydroxyethyl methacrylate)
(PHEMA). Synthetic hydrogels are, in general, less biocompatible
and biofunctional than natural hydrogels; however, they have
better mechanical properties and can be easily tailored to different
requirements by varying the synthesis parameters.

The overall structure of hydrogels is determined by the type of
polymer matrix, degree of crosslinking, porosity and pore struc-
ture. However, the central theme of all hydrogels is water. Many
of the physical properties of hydrogels are closely related to the
water content and organization of water both within the gel and
at the gel surface (Fig. 1). This organization in turn is dependent
upon many factors, both internal (related to the gel composition
itself) and external (related to the composition of the surrounding
environment)27.

In the 1970s, 80s and 90s a significant amount of work was
done on characterization of water states in hydrogels, and a
discussion of this body of work appears below. However, with
increasing sophistication of hydrogel systems, both natural and
synthetic, developed for biomedical use, such fundamental
characterization has been largely neglected in recent years.

Many of the early studies were aimed at identifying the pre-
sence of different types of water present in polymer systems,
initially in natural systems such as proteins and polypeptides,
then also synthetic gels such as those composed of PVP and
methacrylate polymers. Various designations have been used for
the observed water states, including hydration water, associated
water, bound versus free water, fast versus slow water, and
freezable versus nonfreezable water. One of the first observations
was that water within polymers does not display the usual sharp,
first-order thermodynamic phase transitions seen for bulk
water28. Thermodynamic measurements revealed the step-wise
nature of the hydration process29. A hierarchy was established for
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the strength of water interactions within proteins: water-ion >
water-water = water-polar group > water-hydrophobic group30.
Clear evidence was compiled for the presence of hydrogen
bonding interactions between water and polymer chains in syn-
thetic polymers31–33. It was recognized that the behavior of water
is sensitive to many different factors, and that different techni-
ques, such as differential scanning calorimetry (DSC) and nuclear
magnetic resonance (NMR) reveal different aspects of the water
phenomena. For example, concentration, temperature,

plasticization, polymer mobility and conformation, hysteresis
effects, crosslinking and the presence of extra components such as
salts, all complicate data interpretation28.

The cumulative effort of this era resulted in the ‘three-state’
model of water in hydrogels, wherein water exists in ‘bound’,
‘intermediate’ and ‘free’ states28,34,35. The bound water forms the
primary hydration shell around the hydrophilic polymer chains
and does not show freezing/melting behavior. Intermediate water
forms the secondary hydration shell and exhibits ice melting

Fig. 1 Graphic illustration of water content in PEGDA hydrogels. a Water content under different swelling conditions. b Comparison of water content in
hydrogels with different PEGDA molecular weight. c Comparison of water content in hydrogels with different PEGDA weight fraction. (Figure reproduced
from Yang et al, Polymers, 2021, 13 (6), 845, https://doi.org/10.3390/polym13060845).
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below 0 °C due to moderately strong interactions with the poly-
mer chains. Free water does not interact with the network
structure and behaves very similarly to bulk water, freezing and
melting at around 0 °C. The relative content of the three water
states depends on many interacting factors, including overall
water content. Although only tacitly acknowledged at the time,
this creates a fascinating and complex array of possibilities in
terms of implications for the biological response to these systems.

Peppas et al carried out work on the thermodynamic interac-
tions of copolymer hydrogels with biological fluids utilizing the
Florey–Huggins thermodynamic theory, for the purpose of the
evaluation of biomaterials for different applications36,37. They
developed a new method for determining the Florey interaction
parameter, χ, for hydrophilic copolymers in contact with water.
The work of Peppas, as well as others, allowed prediction of
swelling characteristics and solute diffusion for hydrogels
designed for biomedical applications, having important implica-
tions for protein adsorption, mechanical properties, refractive
index, and drug diffusion38.

Knowledge of the interaction with water is important from
both a biological and a material science perspective: polymer
properties depend heavily on the degree and nature of water
absorption; while cellular interactions depend both directly on
water arrangement at the molecular level and indirectly on the
properties of the hydrated polymer.

From a material science point of view, the sorption of water is
important for the design of biomaterial properties, understanding
plasticization phenomena, and understanding the interaction of
polymers with other small molecules39. The study of water states
sheds light on the pore structure (macroporous, microporous and
nanoporous) of hydrogels since water exists in different states in
different types of pores and voids27.

Over the last decade researchers have synthesized new
hydrogels with the emphasis on applications and advanced sys-
tems containing cells and other active components for therapeutic
use40–42. The more fundamental research into molecular struc-
ture, water content and structure, and how this relates to func-
tionality has, for the most part, lately been forgotten. Many
hydrogels, and biomaterials in general, are lacking the level of
function necessary for successful integration into biological sys-
tems, and consequently their performance is sub-optimal43,44. In
order to bridge the gap between the emergence of ‘new’ hydrogel
systems and successful extension of these to application, a sys-
tematic approach is required for the fundamental characterization
of the macromolecular interactions in an aqueous environment.

Probing the water phenomena
In order to research water in hydrogels by experimentation, it is a
condition sine qua non to build up a fundamental knowledge of
the methods involved and their theoretical interpretation, thus
assisting in the understanding of the structure and dynamics of
bound, intermediate and free water. The study of dynamic pro-
cesses such as hydrogen bonding and water states necessitates the
use of various complimentary experimental techniques. Different
methods give varying perspectives on the ‘water state’ phenom-
enon, since each gives information at different temperatures,
different spatial scales and timescales. For example, DSC shows
the presence of distinct states of water at low temperatures (in the
vicinity of 0 °C) whereas the concept of different states is less
applicable at temperatures above ambient (273 K). However,
Fourier transform infrared spectroscopy (FTIR) and thermo-
gravimetric analysis (TGA) can give information on water states
above 273 K45. Another example of this is that NMR and ther-
mally stimulated depolarization current (TSDC) allow study
over different temperature ranges (200–280 and 90–270 K,

respectively). There has been considerable debate on how to
correlate the results from the different techniques10.

Methods, such as DSC and NMR, can be used in parallel to
gain a deeper insight into hydration and dehydration phenomena
of hydrogels. Such combining of techniques allows for a more
comprehensive analysis. For example, the parallel use of DSC and
X-ray diffraction (XRD) has been used to monitor the growth of
ice crystals during the cold crystallization process of intermediate
water in the heating cycle of hydrated biomaterials46.

Table 1 outlines the experimental techniques for studying
water in hydrogels that have advanced the knowledge base, along
with some of the materials to which the techniques have been
applied. One of the most utilized methods is DSC, in its various
forms. It allows quantification of bound, intermediate and free
water within gel systems and represents a good starting point for
acquiring an overall picture of water behavior in polymeric
systems.

Although DSC is extremely functional for quantifying the
amounts of the three different states of water, it does not detect
water below certain scale threshold levels and cannot be used on
its own to construct a picture of events on the molecular and
functional group scale. Spectroscopic methods are more likely to
reveal this kind of information. 1H NMR spectroscopy is a more
sensitive and much utilized technique. 1H, 2H and 17O T1 and T2

relaxation measurements are able to give much of the same
information as DSC but over a wider temperature range and can
probe a single molecular layer of bound water. 13C NMR can be
used to obtain structural information about the hydrated mac-
romolecules. This can be useful because the network structure
and dynamics of the polymer chains may have an important role
in regulating the water structure. Yet, direct information about
water cannot be obtained from this technique. Infrared spectro-
scopy allows dynamic probing of the interaction of water with
specific functional groups present on the polymer chains but
hasn’t thus far allowed quantification of the different types of
water present in hydrogels.

Recently, in situ Raman spectroscopy has been employed to
identify three distinct types of water, based on differences in their
O-H stretching vibrations, in the context of interfacial water
involved in electrochemical reactions9,47. Distinction was made
between 4-coordinated, 2-coordinated and ion-coordinated water
molecules. Similar methods could in the future be applied to
hydrogel systems to probe in detail the exact bonding arrange-
ments that lead to the different states of water observed in these
systems.

Several other less common, and therefore to a lesser extent
scientifically validated, techniques have been used by a number of
research groups to elaborate further on specific aspects of the
behavior of bound, intermediate and free water in hydrogels and
representatives of these are presented in Table 1.

Outlook
Hydrogels are of particular interest with regard to the water-
biomaterial account because the development of hydrogels for
biomedical applications represents one of the most studied areas
at the interface of material science, engineering and medicine.
The reason for their attractiveness centers around the ability of
these water-rich matrices to mimic natural tissues, both physically
and functionally (Fig. 2).

The term ‘biocompatible’ is generally used to describe materials
which are able to perform a specific biological function while
maintaining an appropriate host response. Such materials thus do
not give rise to adverse effects when in contact with biological
components such as cells, blood and tissues. Specific require-
ments of biocompatible biomaterials include the ability to resist
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protein adsorption and cell adhesion, lack of immunogenicity,
and being mechanically matched to the host tissue.

The in-depth mechanisms underlying blood and biocompat-
ibility and the overall host response to biomaterials have not been
clearly elucidated. However, there have been many attempts in
this direction and it appears that the physicochemical properties
of hydration water play an important role48–50. The blood com-
patibility of many natural and synthetic polymers has been closely

linked to the presence of intermediate water, which appears to
prevent direct contact between blood cells, proteins and the
material surface51. In particular, NMR spectroscopic studies have
shown that intermediate water bound to the polymer chains
prevents protein adsorption43. Other studies have also correlated
the presence of hydration water with anti-fouling properties52,53.
Highly hydrated polymers exhibit resistance to non-specific
protein adsorption54, and changes in hydration due to

Fig. 2 Examples of ‘synthesis to application’ of hydrogels. a Design of poly-DL-serine (PSer) from L-serine and D-serine. The high L-serine content in silk
sericin and the high level of D-serine in the human body as an important neurotransmitter altogether inspired the design of anti-FBR material PSer. b Water
solubility of poly-β-homoserine (β-HS) (about 10 mg/mL), poly-L-serine (P-L-Ser) (<0.1 mg/mL due to its β-sheet folding) and PSer (>500mg/mL).
c Circular dichroism spectrum of PSer. d Synthesis of β-HS and PSer. LiHMDS Lithium hexamethyldisilazide, DMAc dimethylacetamide. e Photographs of
poly-DL-serine diacrylamide (PSerDA) that was well dissolved at a concentration of 20 wt% and was used to prepare PSer hydrogels by photo-crosslinking
in the presence of 0.1% photoinitiator (Irgacure 2959). f PSer hydrogels and PEG hydrogels implanted subcutaneously into C57/BL6 mice induced low FBR
and obvious FBR respectively (Figure reproduced from Zhang et al. Nat. Commun. 12, 5327 (2021), https://doi.org/10.1038/s41467-021-25581-9).
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copolymerization with hydrophobic monomers or increases in
temperature55,56, for example, thus lead to a reduction of non-
fouling properties.

Attempts have been made to correlate polymer side-chain
mobility, subsequent water mobility and biocompatibility from the
viewpoint of protein adsorption57,58. It was found that the flex-
ibility of both polymer (PMEA>PTHFA>PHEMA) and bound
water was directly related to the discovery creating of a marker for
biocompatibility, TAT (thrombin-antithrombin III complex)58.

As many research groups develop new and more sophisticated
hydrogel systems59,60 for biomedical applications, with promi-
nence being given to advanced approaches incorporating cells
and other active components, the link between translational and
fundamental research into the role played by different water
states in material end-function is more important than ever.

As described in the preceding sections, the molecular
mechanisms underlying the interactions of water molecules with
biomaterials, specifically polymer networks such as hydrogels,
have been well-studied and although there is much still to be
learned, progress has been achieved in understanding these pro-
cesses. However, a significant gap still exists when it comes to
applying this knowledge to rationalize the way in which the
molecular organization of water on the surface and within bio-
materials affects their in vitro and/or in vivo biocompatibility.

Biotherapeutic environments are complex and consist not only
of tissue, implant and water, but also a multitude of other
molecules and species in the cellular and extracellular space.
Another layer of the puzzle that warrants consideration concerns
the presence of these species (which include metabolites, elec-
trolytes and other osmolytes) and their influence on the inter-
action of water with hydrogel macromolecules and the
subsequent biological response. While it has been anticipated that
they will affect the properties of water, exactly how this occurs has
been controversial and there is a distinct lack of research con-
sidering this problem. Most researchers traditionally frame their
experimental models against a pure water setting (Fig. 3). Clearly,
the biological relevance of such an approach is limited.

Figure 3 displays the number of papers in the biomedical lit-
erature, published since 2000, that have studied hydrogel swelling,
compared to the number of those same papers that use PBS as the
swelling medium. ‘PBS’ was chosen as a search term in order to

represent those studies that have considered more physiologically
relevant swelling media than pure water. Although it can be
conceded that this data excludes a number of studies which utilize
other more complex osmotic and biologically relevant fluids, the
number of such studies is very small compared to those that use
PBS, and their omission does not alter the overall trend shown.
Indeed, a closer perusal of the studies that do not involve PBS
reveals that most of them do in fact use pure water as the swelling
medium.

The rapidly emerging design space of hydrogels with controlled
physical, chemical and biological properties represent a great
opportunity for future research. We propose that future strategies
in this area should involve pairing what is known from the early
fundamental research on water in hydrogels with the more recent
work on the role of water in biological systems and applying this
to the characterization of newly developed hydrogel systems.
Detailed studies in this direction will not only enable filling of
some of the knowledge gaps that exist hitherto, but will also enable
the development of a more systematic approach for hydrogel
characterization. Only in this way will a more complete scientific
framework of biocompatibility, water and materials emerge. This
may indeed require the development of new experimental and
theoretical techniques to further probe the dynamics of this topic
and answer the many questions that remain regarding the big
picture of water in biomaterial science as a whole.
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