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Abstract: Acquisition of patient kinematics in different environments plays an important 

role in the detection of risk situations such as fall detection in elderly patients, in 

rehabilitation of patients with injuries, and in the design of treatment plans for patients with 

neurological diseases. Received Signal Strength Indicator (RSSI) measurements in a Body 

Area Network (BAN), capture the signal power on a radio link. The main aim of this paper is 

to demonstrate the potential of utilizing RSSI measurements in assessment of human 

kinematic features, and to give methods to determine these features. RSSI measurements can 

be used for tracking different body parts’ displacements on scales of a few centimeters, for 

classifying motion and gait patterns instead of inertial sensors, and to serve as an additional 

reference to other sensors, in particular inertial sensors. Criteria and analytical methods for 

body part tracking, kinematic motion feature extraction, and a Kalman filter model for 

aggregation of RSSI and inertial sensor were derived. The methods were verified by a set of 

experiments performed in an indoor environment. In the future, the use of RSSI 

measurements can help in continuous assessment of various kinematic features of patients 

during their daily life activities and enhance medical diagnosis accuracy with lower costs. 
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1. Introduction 

Acquiring a patient’s kinematics and the characterization of his or her activity over time plays an 

important role in medicine [1]. Patient’s kinematic assessment includes estimation of different body 

parts’ position, velocity, and acceleration. The type of activity is more abstract, has a temporal 

characteristic, and can be divided to classes such as standing, moving from sitting to standing, walking, 

jumping, or lifting a bag. Human motion monitoring can help in identifying movement related problems, 

assist in the process of rehabilitation, design of treatment plans and follow-up monitoring [2], enable the 

diagnosis and treatment of numerous neurological disorders [3], and detect risk situations like falls in the 

elderly population [4].  

Non-wearable sensing modalities are used for motion acquisition. Among these techniques, the most 

common ones are based on optical, electromagnetic, and ultrasonic technologies. Optical technology is 

usually implemented by a video recording system and is commonly used in gait analysis laboratories [5]. 

The estimation quality of optical methods is limited in range and azimuth, limited to high light 

conditions, requires calibration and a priori knowledge about the target people [6], heavy data streams, 

and computational resources for enhanced resolution. Electromagnetic based technologies can be based 

on narrow band, or wideband signals. A narrow band radar has been used [7] for the detection and 

classification of patients’ movements and location based on the Doppler effect. An Ultra Wide-Band 

(UWB) radar, which uses a large portion of the radio spectrum, has recently been suggested for 

acquisition of body part displacement and motion kinematics [8]. The high EM transmission bandwidth 

yields accurate position location and possible material penetration. These technologies emit EM 

radiation to the environment and are mostly limited in range, and become not accurate in scattered 

environment. The Microsoft Kinect™ (Kinect), an active infra-red system [9], was recently used as a 

markerless method, to acquire human activity data. Reference [10] has shown accurately prediction of 

human pose and extract other kinematic features. Kinect still suffers from limited range and azimuth, 

and erroneous data. The non-wearable sensing modalities can assess human kinematics, sometimes in 

accurate way, but they are very much restricted to the indoor environment where the sensors are 

deployed, and cannot be used in outdoor environment.  

Continuous monitoring of human motion while performing daily life activities has been enabled in 

recent years by using a Body Area Network (BAN). A BAN is a Wireless Sensor Network (WSN) with 

a spatially distributed autonomous sensor nodes equipped with a radio transceiver [11], located to scale 

of the human body dimensions [12]. Systems designed for motion estimation based on WSNs can be 

classified by technology, measurement metrics, and processing methods [13]. The most common motion 

acquisition system is an Inertial Navigation System (INS) [14]. It includes the equations that are required 

to derive the sensor position and orientation in a global coordination system. An INS includes an Inertial 

Measurement Unit (IMU), which is usually composed of miniature accelerometers, gyroscopes and 

sometimes a compass [15]. The IMU is usually attached to the body parts of interest and provides kinetic 

information about the body part movement.  

In the course of accelerometer and gyroscope integration, small errors in the measurements can be 

accumulated and increase the tracking error over time [16]. There are several ways to compensate on the 

accumulation of errors over time. The repetition pattern of gait can be used to estimate the time intervals 

needed for carrying an efficient implementation of the strap-down integration, exclude the IMU bias, 
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and minimize the error to less than 10% of the stride length [17] (around 5 cm per stride). Another way is 

to use bio-mechanics considerations. With anthropometric considerations specific to the user 

biomechanics—leg length and usual stride length—it is possible to limit the uncertainty growth [18]. 

Another way is to use the advanced filtering of the extended Kalman filter (EKF), integrated with a 

kinematic model [19]. The EKF model utilizes a robotic kinematic model and knowledge of human 

motion to estimate displacements based on gyroscope measurements. For foot displacement over an 

average walking distance of 3.55 m, the new EKF has an average error of 6.89 cm. Another way to 

reduce the error accumulation is by aggregation of other sensors [20]. All these approaches are based on 

exploitation of a priori knowledge about the type of motion, which is usually limited to repetitive 

motions, or limited to a specific bio-mechanics model adapted to specific sensor locations.  

Received Signal Strength Indicator (RSSI) is a measurement of the signal power on a radio link [21]. 

It can be used for localization, link quality estimation and power control. It is part of the IEEE 802.11 

protocol family and the 802.15.4 standards, and is supported by most of existing transceiver chipsets 

with no need for additional hardware resources. In WSN, RSSI can be calculated between set of mobile 

and static nodes, referred to as anchor nodes.  

The available RSSI measurements can be used to estimate mobile nodes location [22]. RSSI-based 

tracking algorithms are usually composed of range estimation between pairs of nodes using offline 

calibration methods that translate the power measurements to corresponding distance between each pair 

of nodes [23]. Then geometric or statistical methods are applied to obtain the instant location from the 

range estimation [24]. Reflections of the signal from walls or from scatterers in the medium result in 

severe multi-paths interference at the receiving antenna. Since the calibration is usually performed 

offline, and is based on statistical channel realization, it cannot fully compensate for the temporal and 

spatial variability of the wireless medium, which reduce the position accuracy [25]. 

RSSI measurements have been recently used to classify movement without using a tedious calibration 

process. Reference [26] used a set of anchor nodes and mobile nodes attached to the arm to classify 

different movements by using a Support Vector Machine (SVM) technique. A Hidden Markov Model 

(HMM) based mechanism can be applied on the RSSI measurements for identification of different body 

postures [27]. These techniques are based on anchor nodes placed in known static locations, and restrict 

the patient location to a small area. 

RSSI-based human activity systems are limited to known static locations of the anchor nodes. In 

addition, RSSI based systems suffer from variations in the channel, inaccurate channel modeling, 

tedious offline calibration process, calibration errors, packet loss, and are affected by inadequate 

transmit power level. As a result, today’s RSSI-based tracking systems accuracy is measurable in the 

scale of a meter [28]. This accuracy is insufficient for bio-medical applications based on BAN where the 

required accuracy is in the order of a centimeter. In the work in [29] we suggested a new calibration 

scheme for small indoor environment, using a priori information about the medium. In reference [30], 

we showed that with high transmission rate, in close proximity, and by using the calibration scheme  

in [29], objects can be tracked in a scale of few centimeters. This provides an accuracy that can be used 

for some bio-medical applications.  

In this paper, the RSSI measurements of sensor nodes that are attached to the body parts are used to 

track body parts, and to extract kinematic features of gait. We focus on three main techniques to exploit 

the RSSI measurements: track body part based on RSSI measurements only; extract kinematic features; 
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and aggregation of RSSI measurements and other sensor modalities like IMU. For each technique, we 

define criteria, and tailor processing techniques. The feasibility of each technique is demonstrated and 

quantified for different applications in a set of experiments. A hand motion tracking was used to 

demonstrate tracking displacements of different body parts in scale of few centimeters. Similar 

methodology like in [30], was used for this purpose. We demonstrate how gait features like speed and 

pattern can be derived by only two sensor nodes attached to the two feet. RSSI data was aggregated with 

only one IMU data using a dedicated Kalman Filter. The INS was implemented by a simple strap-down 

integration and did not assume any assumptions on the movement and on the location of the body part. 

The results show that the accumulation of error was minimized using the RSSI measurements and the 

tracking accuracy compared with the one based only on RSSI measurements, can be improved by around 

50 percent.  

This paper summarizes and points out the potential of utilizing RSSI measurements. It has two main 

contributions. The first contribution is the technique that enables accurate tracking of body parts and 

extraction of motion features, by using RSSI measurements only, which have become recently available 

without additional cost. This can excludes the need for dedicated wearable sensor nodes. Unlike 

algorithms similar to the one in [26], the new suggested technique is not limited to a specific location or 

environment, as all the nodes can be placed on the body while in a move. The second contribution is the 

utilization of RSSI measurements from several nodes located at different body parts, for assessing 

motion features. A third contribution is a new Kalman filter model, which aggregates the RSSI data with 

an IMU data. The IMU data only (acceleration and angular velocity) without exploiting prior knowledge 

about the periodicity of the movement, or a specific kinematic model, suffers from accumulation of error 

over time. Aggregation of the RSSI based location estimation with the IMU data, can enable and 

improve IMU based tracking accuracy of different body parts without being limited to a specific body 

part location, to a specific type of activity, or to a specific kinematic model.  

This paper is organized as follows. Section 2 describes an RSSI based tracking system for a body 

segment and adequate data processing techniques. Section 3, describes the system and criterion for 

movement classification using RSSI measurements. In Section 4, different techniques are suggested to 

aggregate RSSI data with other sensors. Section 5 describes the experimental set-up used. In Section 6 

the experimental results are given and discussed. Section 7 summarizes the results and suggests 

directions for future research. 

2. System Description 

The system consists of   mobile nodes with locations of                                 

             , in Cartesian coordinates and   static nodes, referred to as anchor nodes,  

placed at                                                                       

respectively. The mobile node  ’th location at instance time   is   
     

    
    

  . Each mobile 

node transmits a data packet with a known transmission power to the anchor nodes every   ms. The 

anchor nodes, located in the transmission range of the mobile node, calculate the received power values 

     
       

          
 . Each transmitted packet is labeled with a time stamp, to synchronize between the 

nodes, and to recover possible packets loss.  
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The main goal of this paper is to derive different features from the power measurements alone, and 

together with other sensors’ data that can be used for motion analysis. There are several sensor 

deployments that can be used for this purpose. One is when the anchor nodes are placed in known 

locations in an indoor environment, like a room, and the mobile nodes are attached to the person. From 

the RSSI measurements between the different anchor nodes, and the mobile node, motion features can be 

derived and used to track the different body part locations, and classify the person activity in indoor 

environment. Another setup can be when all sensor nodes are placed on different body parts. From the 

attenuation of radiation as measured by RSSI, other motion features can be derived. This setup is also 

suitable for an outdoor environment, as there are no limitations on anchor node locations. The received 

signal power can be modeled in a statistical manner. A common wireless channel model is the channel 

path-loss model [31]. The received power for mobile node   and anchor node   at time instance   in 

channel path-loss model is:  

     
                   

      
    (1)  

where      is a constant that is a function of the transmission power      
 , the transmission wave 

length, and the receive and transmit antennas gains [32];   is the channel exponent that varies between 

  (free space) and   (indoor with many scatterers);     
  and     

  are the additive noise that accounts 

for the random effect of multi-path and for channel model inaccuracy between the  ’th anchor node and 

the  ’th mobile node. 

3. RSSI based Tracking of a Body Segment  

Tracking a body segment can be performed by attaching the mobile node to the body part of interest 

and using the RSSI measurements to estimate the body part’s displacement over time. The anchor nodes 

can be located at the indoor environment, e.g., placed in the indoor environment, for example attached to 

the room walls, or alternatively, located on the body on relatively static body part. For example, for 

tracking a leg movement, the mobile node can be attached to the leg, while the anchor node can be 

attached to the relatively static torso. Need to note that RSSI variation is a complex phenomenon and the 

techniques given in this paper will be less feasible when the anchor nodes are placed in larger areas, with 

rich multipath, and with multiple moving objects. 

Without loss of generality, we will assume that there is only one body segment which we enquire its 

displacements over time. For this we need only one mobile node, i.e.,    . The location of additional 

body parts can be tracked with additional sensor nodes using multiplexing techniques, like different 

frequency bands, or time slots. The maximal number of tracked body part depends on the multiplexing 

techniques defined by the standard, and the desired tracking accuracy.  

A Minimal Mean Square Estimation (MMSE) criterion for the transformation between the RSSI 

measurements matrix,   , and the location, is:  

                    
  (2)  

                 

where   consists of   consecutive coordinates of the mobile node;    is the     power 

measurement matrix that contains   anchor nodes power measurements over K measurements;   is a 
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transformation of the power measurements to location;      is the expected value over all stochastic 

sources; and   is a bound on the difference between consecutive location estimations which are a 

function of transmission rate and mobile node velocity. With a high RSSI transmission rate or a low 

mobile node velocity, consecutive RSSI measurements imply proximate locations. 

The problem is neither linear nor convex [33], thus the criterion in Equation (2) can only be solved 

numerically. Furthermore, an optimal transformation requires accurate statistical knowledge [34] which 

is not always available. Since the mobile node moves during observation time, the channel is not 

stationary and frequent new updates of the transformation are needed for accurate approximation. 

We propose to estimate the solution to the criterion in Equation (2) by using two stages similar  

to [30,35]: first to approximate the range between the mobile nodes and the   anchor nodes for   

measurements interval; and then to apply geometric and statistical methods on the range approximations 

to obtain the instant location. Consequently, the MMSE criterion can be refined to two sub-criterions, 

estimation of the range between the sensor nodes, and then the estimate the location based on the range 

estimations: 

                    
  (3)  

                      

                  
(4)  

where   is the transformation that operates on the power measurements matrix    and its output is set 

of range estimations between the mobile node and the anchor nodes,   is the transformation that 

operates on the range estimations, and           is a     matrix of approximated distances between 

the mobile nodes and the   anchor nodes over   measurements. 

The RSSI-based tracking algorithm is composed of three main stages similar to [35]: calibration, 

range estimation, and location estimation.  

The calibration scheme is performed offline, and is based on statistical models. As a result, the RSSI- 

based tracking accuracy is sensitive to changes in the medium, and to 2-D and 3-D changes in antenna 

orientations. Changes in antenna orientations, in the case of a non-isotropic antenna, where the antenna 

has different intensity of the radio waves in different directions, affect the tracking accuracy. Another 

factor that affects the tracking accuracy is the location of the sensor nodes [36]. Location estimations 

accuracy vary through a set of different locations in relation to the anchor nodes’ positions [36]. These error 

factors are related to Dilution of Precision (DOP) [37]. DOP is a measure that quantifies the effect of a 

change sensor location and other error sources like antenna orientation on the tracking estimation accuracy.  

In the second stage, the different sensor nodes’ samples are synchronized, lost packets are recovered 

using interpolation, and the RSSI data is smoothed. Then the range between the mobile node and each 

anchor node is estimated by solving Equation (3) using the mapping table obtained in an offline 

calibration process. The calibration estimate the channel offset and exponent in a way that it reflects the 

channel and environment conditions.  

In the third stage, the range estimations from all nodes are combined and used to solve Equation (4) 

The mobile node’s location is estimated using the trilateration technique [38]. A median filter [39] is 

used to apply the continuity constraint in Equation (4). It excludes discontinuities in the location 

estimations and filters out location estimation errors caused by imperfect compensation for packet loss. 



Sensors 2013, 13 11295 

 

 

Additional filter is applied after the median filter to mitigate over small scale multi-path fading. Figure 1 

describes the different stages of the body part tracking based on RSSI measurements. 

Figure 1. RSSI based Body part tracking scheme. Offline calibration phase produces the 

channel model parameters. The RSSI measurements and the channel model parameters are 

used to estimate the body part displacements over time. 

 

4. Movement Classification and Features Extraction with RSSI Data 

The pattern of movement of different body parts and their kinematic features are important for 

medical diagnosis [40]. The RSSI measurements can be used to assess movement features. For this, the 

mobile nodes need to be deployed on the different body parts of interest. The anchor nodes can be 

deployed at different locations along the indoor environment or on other body parts. 

The RSSI data can be used to classify motion, e.g., the type of gait, i.e., standing, walking, or running, 

or to indicate the activity level. The classification can be performed directly on the RSSI measurements 

or on a mapping of these measurements to a feature space [41]. In some cases, a training phase, which is 

usually performed offline and utilizes an external reference, is needed. 

Since the classifier operates directly on the RSSI measurements or on the kinematic features, the 

classification problem is less sensitive to sudden changes in the anchor node location, to inaccuracies in 

the calibration, to changes in antenna orientation and its directionality, or to packet loss, compared with 

the body part displacement tracking problem in the previous section. This classification capability is due 

to the nature of the RSSI measurements to locally preserve a pattern that is related to the movement. This 

pattern is relatively not affected by the typical changes in RSSI gain shifts that are caused due to channel 

variations and can affect the location estimation. For instance, for characterization of gait, two sensor 

nodes can be attached to each foot. Each node functions as a mobile node and as an anchor node  

(which is not in static) to the second one. Each sensor node receives transmissions of the other one, and 

calculates the RSSI level. Training of the system can observe some kinematic features that capture the 

variations of the specific setup channel, which include shadowing by body parts, creeping of the 

electromagnetic wave, and the antenna orientation.  
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Let us denoted the j’th kinematic feature by   , and the operator   , as the feature space mapping, 

         . The J size feature space is defined by the group          
   

. A MMSE criterion for a 

classifier   is:  

                    , (5) 

where   is a     matrix of features, and   is a L length vector of the set of human activity classes. 

The mapping function estimation to classes can be more accurate by using the continuity change of the 

classes for consecutive times, similar to the constraint in the tracking problem in Equation (2).  

Many different classifiers and feature spaces can be used. Common motion features can be the RSSI 

measurements raw data, the RSSI measurements distribution, in particular the mean standard deviation 

values, and the spectral properties of the measurements. In addition, body part kinematic features like 

location, acceleration, and velocity, can be used. Feature selection algorithms can be used to determine 

which features are more useful for each motion activity classification. 

A basic feature that relate to the RSSI measurements distribution RSSI is Zero Crossing Rate (ZCR) 

of the RSSI measurements. The ZCR is defined as the number of zero crossings of a measurement of a 

reference level [42]. The mobility factor is another feature that can indicate on the patient activity  

level [43], can monitor patient recovery after an injury [44], and can be used to analyze freeze in PD 

patients [40]. It can be defined similar to [45] as the ratio of ZCR between two consecutive time 

instances activity:  

     
        

        
   , (6) 

where       
  is the number of zero crossings in a time window of W samples of the RSSI 

measurements between the m’th mobile node (attached to the m’th body part) and the n’th anchor node 

at time instance i.  

Other features can be obtained in the signal spectrum by performing a Fast Fourier Transpose (FFT) 

on the RSSI measurements. An important feature for analysis of periodical movements is the body part 

displacement’s fundamental frequency. It can be obtained from the spectrum estimated by: 

                 , (7) 

where       is the FFT of the RSSI measurements over a window period W,       
  

 

   
. 

For the special case where the two sensors are attached to the two feet, the frequency term in  

Equation (7) is the inverse of the gait cycle. This technology is expected in future to be used to detect 

abnormalities in gait, like changes in a swing heel-off event in gait, which today is detected in gait lab by 

using a force plate [46]. 

5. RSSI Data Aggregation with Other Sensors 

RSSI data can be aggregated together with other sensors’ data using advanced statistical  

techniques [47]. It can be used to improve the RSSI based tracking accuracy and enable kinematic feature 

extraction. The criterions in Equations (2) and (5), can be extended in a way they exploit the power 

measurements and the other sensors’ data. An extension to the MMSE criterion in Equation (2) for tracking 

a body part is: 
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(8) 

where    is the transformation that aggregate the RSSI measurements with the other sensor data 

measurements  .  

Similarly, the criterion in Equation (5) for the extended MMSE classification method of    is: 

                         

                  
(9) 

where    is set of classes of interest at time instance i, and     is a bound on the difference between 

consecutive classes estimations. It depends on the transmission rate and the body part velocity  

and acceleration.  

To solve the criterion in Equation (9) advanced sensor fusion techniques like Kalman filter [48], or 

particle filter [49], can be used. For the common case where the additional sensor’s data   is the 

measurements of an IMU unit, the RSSI data can be used in a simple manner to enhance the accuracy of 

the Kalman filter location estimations. In case of gait analysis, two sensor nodes, which include inertial 

sensors, are attached to each foot. In the time instance where the legs cross each other, the distance 

between the feet is minimal, and the RSSI measurements value is the maximal. This cross section point 

can be used for determination of boundaries of an SDI [17]. 

A more optimal approach, uses the Complementary Kalman Filter (CKF), which is also known as the 

Error State Kalman Filter (ESKF) [48], to estimate the instantaneous body part (mobile node) location. 

In the CKF, only the main error factors in the system are modeled, e.g., the sensor bias. This reduce the 

need to model the whole complex movement [50]. The state variables of the CKF provide additional 

information about body part kinematics (location, velocity, and acceleration over time). The CKF use 

the two independent location estimations. One is based on the RSSI based tracking system. The other on 

the INS system, using the IMU signals [14].  

5.1. Sensors’ Model  

The sensor measurements were modeled as Gaussian process. The gyroscope signal can be  

modeled as: 

  
       

    
   (10) 

where      
  and   

  are the angular velocity vector, the related angular velocity bias, and a  

white Gaussian noise, at instance time i, respectively. All expressed in the three dimensions sensor 

coordinate system. 

Similarly, the accelerator signal is modeled as: 

  
    

       
    

 , (11) 

where   
       

 , and   
 , are the acceleration, gravity, acceleration bias, and noise at instance time i, 

respectively. All expressed in three dimensions vectors in sensor coordinate system. 
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The RSSI based location in global coordinates of a body part at instance time i, as derived in Section 

III, can be modeled as a sum of the actual position, slowly varying shadowing factor and instantaneous 

white Gaussian noise: 

      
           

        

 , (12) 

where    is the real location,       

  is the bias error, and       

  is a white mean zero Gaussian noise. 

The bias       

  is related to the shadowing effect, to the DOP, and to the directionality of the 

antenna. The bias between successive estimations is correlated, due to the large scale fading factor, 

which is modeled in Equation (1) by the noise factor     
 . This correlation can be modeled by a first 

order Gauss-Markov process [51] with an auto correlation function of: 

                         
   

   

 , (13) 

where   
  is the bias variance and   is the coherence time, which is a measure of the time that 

multi-path components are correlated. The coherence time   depends on the body part velocity and the 

medium characteristics, and is typically in range of a second for most of activities. 

The RSSI based location bias, similar to accelerometer and gyroscope biases [50], can be represented 

in the state space [48] as: 

      

    
  
       

          

   (14) 

where       

  is a zero mean white Gaussian noise. 

5.2. CKF Implementation 

The INS was implemented by a simple strap-down integration and did not assume any simplifying 

assumptions on the type of movement, on bio-mechanical model, or on and location of the body part like 

in [17–19]. The difference between the location estimations of the two systems at instance time   is: 

  
       

        
  (15) 

where      
 , and       

 , are the 3-D location estimations of the RSSI, and INS systems, respectively. 

The difference   
  is modeled as a function of the errors in both measurement systems, in particular, 

location, velocity, and orientation errors. The CKF processes the positioning difference together with the 

error model to estimate the location, velocity and orientation errors to minimize the error probability. 

These errors are then used to correct the estimations at each time instant. Consequently, the system uses 

a feedback design to continuously update the inertial system estimations according to the Kalman  

filter corrections.  

A CKF uses a state space model representation to model the relationship between the model state 

variables and the positioning difference predicted by the model [48]. The state vector models the main 

error factors of the system is:  

                                    
  (16) 

where                         are the estimation error vectors of location, velocity, orientation, 

accelerometer bias, angular velocity bias, respectively, and        
 is the RSSI estimation bias. 
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Using a first-order approximation of the error propagation, we can model the error model as a linear 

transformation system, where the error is distributed as white Gaussian variable with zero mean. 

Consequently, the linear CKF model can be used. The CKF equations are: 

  
       

       

  
       

    , 
(17) 

where matrix   is the state transition matrix related to the propagation of the a-priori error state 

vector    
   , and  , is the measurements matrix,                   , where    is     identity 

matrix and   is     zero matrix;   , and    are the estimation model and the measurements model 

interference vectors at instance time i, determined by the noise covariance matrices   
  and   

 , of the 

state error model and measurements, respectively.  

The state transition matrix is derived in [52], in a similar manner to [16] and [50], and by using a 

first-order approximation of the error propagation is:  

  

 
 
 
 
 
 
 
           

       
                

        
       
       

       
  
    

 
 
 
 
 
 

, (18) 

where the operator   is the matrix cross product operator [53], and     is the rotation matrix from 

sensor to global coordinates. 

It is assumed that the noise for each state variable is uncorrelated with the noise for each other state. 

Hence, all non-diagonal terms of the noise matrix are zero and the diagonal terms are the variances of the 

random variables. 

Figure 2. An implementation scheme of the CKF for tracking the m’th mobile node. It uses 

two independent estimations of location, each with different accuracies and error sources. 

The difference of the two estimates is fed to the CKF. The Kalman filter estimates the errors 

(the state vector) and corrects them continuously using a feedback loop. 
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An implementation scheme of the CKF is shown in Figure 2. It uses the two independent estimations 

of location, each with different accuracies and error sources. The IMU outputs   
  and   

  are fed to the 

INS system similar to [50]. The gravity component estimated and subtracted and the INS location 

estimation in global coordinates is derived. The power measurements are used to derive the RSSI based 

location estimation. The difference of the two estimates is fed to the CKF. The Kalman filter estimates 

the errors (the state vector) and corrects them continuously using a feedback loop. Need to notice, that 

when the RSSI data is very noisy and not reliable, and its location error estimations are high the RSSI 

measurements variance goes to infinity. The CKF tracking system converges then to the INS strap-down 

integration, and the state variables representing the biases will not be well estimated, and the system will 

suffer from increasing accumulation error.  

The main estimation error source of   
  is related to inaccuracy in the state variables prediction error 

vector,   
 . The gyroscope bias and accelerometer bias lead to growing errors when the numerical 

integration is applied in the INS to estimate orientation, velocity or position. A small offset error in the 

orientation estimation accumulates over time, affects the accuracy of the gravity component extraction 

operation in the INS, and reduces the location estimation accuracy. The absolute location estimations 

obtained by the RSSI are filtered by the Kalman filter, and can help reducing the accumulation of 

different error factors. Other error components, which are not explicitly incorporated into the state 

vector, are partially modeled as part of the noise components of   . 

RSSI location estimations suffer from estimation bias due to an offline calibration process that does 

not always reflect well the dynamic changes in the channel in different locations in the environment. 

This process is usually performed offline and maps between the different RSSI levels and the locations 

using external reference such as video system. The location estimations of the different body parts is 

derived by solving Equation (17), and can be used as a feedback to the RSSI tracking algorithms to 

update in real time the calibration table in a process called Auto-Calibration (AC) [29,54]. This process 

can increase the accuracy of the RSSI based estimations, and the Kalman Filter estimations. For 

example, when moving from an environment with few scatterers to one with many, the channel exponent 

in channel path loss model will increase. In shadowing, the channel offset will decrease. In both cases, 

the RSSI based location will have a growing bias. This bias can be reduced by incorporating the Kalman 

location estimations in the AC process. 

6. Experimental Section  

The experimental setup was designed to show the feasibility of the proposed technologies for  

RSSI-based location estimation and motion classification. The experiment was composed of three main 

parts aimed to demonstrate different ways of exploiting the RSSI measurements. The first part 

demonstrated tracking of hand movement. The mobile node was attached to a moving body part (hand), 

while the anchor nodes were located in static known locations in the room. The second part 

demonstrated extraction of fundamental motion features of gait, where both mobile node and anchor 

nodes were placed on the two feet. The third experiment demonstrated the improvement that can be 

achieved in tracking a body part, by aggregation the RSSI data with inertial sensor data with relatively 

high bias, using CKF. 
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The sensor nodes were deployed in a set of distances of around a meter that are typical for BAN. The 

processing was partially done on the sensor nodes, and partially offline, on a remote computer. The 

different RSSI data packets were multiplexed in time to avoid collision. The amount and complexity of 

calculations is not, and in future, the calculations can be conducted on real-time on the sensor nodes.  

6.1. Hand Movement Tracking  

The experimental setup included three sensor nodes (BSN node, Imperial College, London, UK) with 

an external 5 cm dipole antenna, An inertial sensor (Shimmer, Boston, MA, USA), a base station 

(TelosB, Andover, MA, USA), a notebook (IBM T43, Armonk, New York, NY, USA), and an optical 

real-time motion tracking system (Polaris, Northern Digital Inc., Ontario, Canada) used as a reference. 

The mobile node transmitted 802.15.4 data packets in transmission rate of 20 Hz, which is a sufficient 

rate to track most of daily life activities kinematic features [29]. The anchor nodes received the packets, 

calculated the RSSI measurements, averaged over eight symbol periods (128   ), and sent them through 

the base station to the notebook for further processing. The RSSI transmitted power was around  

−11 dBm. The notebook was used for programming the sensors and for analyzing the results offline 

using Matlab Software (Matlab Inc., Natick, MA, USA). The optical reference provided an accurate 

orientation and positioning information with an affective coverage of   square meter, a sampling rate of 

   Hz, and tracking accuracy of around 0.35 mm. The RSSI measurements and the reference Polaris 

system were synchronized by correlating the RSSI and the tracking system location estimations. Figure 

3 describes the experimental setup used for the hand tracking in the first and third experiments. The two 

anchor nodes were located in the   and   axes, in coordinates of (40,0) and (0,40) centimeters, in 

reference to the center of the optical anchor in coordinate (0,0), respectively. In the first and third 

experiments the mobile node was attached to the hand and moved on the 2-D plane, which was formed 

by the two anchor nodes. The hand was moving in a varying speed, in an average speed of approximated 

0.3 cm/s.  

Figure 3. Hand movement motion tracking in 2D experiment setup. It consisted of two 

anchor nodes (BSN), located at x and y axes, a mobile node attached to a hand (BSN),  

an inertial sensor (Shimmer), used for sensor aggregation, and a reference Optical Sensor 

(Polaris). 
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An offline calibration process was performed between the mobile node and each of the anchor nodes 

at eight different locations. Then the mobile node moved on an arbitrary path in different velocities. The 

maximal range between the sensor nodes was less than a meter and the channel was non-stationary due 

to the variations caused by the human body motion. This tried to simulate an environment that is typical 

for BAN. 

6.2. Gait Features Extraction  

In the second experiment setup, two sensor nodes (BSN nodes) were attached to each foot as shown in 

Figure 4. The sensor nodes included three orthogonal accelerometers producing kinematic information 

in 3-D. The sensor nodes calculated the RSSI of each other, and sent it for gait classification through the 

base station to the processing unit. Two gait scenarios were examined: walking at normal-fast pace  

(gait cycle of around 1 s), and running in slow pace (gait cycle of around 0.5 s). The sensor configuration 

was the same as the first experiment. The RSSI data was calculated in both feet in reference to the other 

sensor node. The features of gait cycle and ZCR, were derived from the RSSI measurements. These 

features were used to classify between walking or running states. Same features derived by 

accelerometers were used as a reference.  

Figure 4. For gait classification, two sensor nodes are attached to each feet. The sensor nodes 

send the RSSI of each other through the base station to a processing unit to classify the gait. 

 

6.3. Aggregation of RSSI with Inertial Sensor 

The experimental setup was similar to the hand tracking in the first experiments. The inertial sensor 

(Shimmer) was attached to the mobile node (BSN) in the first experiment setup as shown in Figure 3. 

The inertial sensor included a 3-D accelerometer and a 3-D gyroscope with sampling rate of 200 Hz. An 

offline calibration process was performed. For the RSSI, the calibration process was the same as in the 

first experiment. The calibration process for the inertial sensor included extraction of acceleration 

biases, and calculation of initial values of angular velocity biases. The accelerometer and gyroscope 

standard deviation error for each axis were            , and              , respectively. The 

accelerometer and gyroscope biases was relatively high and changed over time with average value of 
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round 0.06       , and 0.03         per minute in each axis, respectively. The inertial data was sent 

to the processing unit via Bluetooth. The RSSI data was interpolated to the inertial sensor data rate  

(200 Hz).The hand was moving in two patterns, circular, and zig-zag. 

7. Results and Discussion 

7.1. Hand Movement Tracking 

The power measurements at different locations that were taken before the tracking phase are shown in 

Figure 5. The channel parameters were estimated in the calibration process and used to map between the 

power measurements and the range between the anchor and mobile nodes similar to in [29]. The variance 

of the measurements compared to the logarithmic fitting, is the variance of the noise term in the path-loss 

model in Equation (1). The difference in gain and dynamic power range between the two nodes can be 

explained by the strong reflection from the body in the direction of node y that enhanced the received 

power and increased the power level. 

Figure 5. RSSI mapping between power, and distance for the x, and y nodes. 

 

We can see that the RSSI based ranging accuracy drop with distance for both nodes. This is due to the 

logarithmic behavior of the RSSI with distance. For distances higher than 2 m, the difference of the RSSI 

measurements between two proximate distances will be significantly small, compared with proximate 

distances. This limits the tracking resolution accuracy. Still, since the typical distance of different nodes 

in BAN is around a meter, the RSSI based range estimation, and correspondingly, the RSSI based 

tracking, will be sufficient.  

The range estimations were aggregated using trilateration and an advanced filtering technique similar to 

the one derived in [30]. Figure 6 illustrates the tracking results of a hand moving in a zig-zag pattern, and 

straight horizontal and vertical lines. The location estimation mean errors were 7.88 and 10.67 cm with 

standard deviation mean error of 4.77 and 5.69 cm, for the zig-zag and straight patterns, respectively.  

The static Cramer-Rao lower bound (CRLB) [30], calculated by the error distributions using  

the variance at the reference locations, were 16.37 and 15.34 cm, for the zig-zag and straight patterns, 

respectively. The lower standard deviation of the results is due to the exploitation of the spatial  

and temporal correlations and the diversity of the measurements, that were not included in the  

CRLB bound. 
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Figure 6. RSSI based location tracking compared to the optical reference for a hand moving 

in a zig-zag (a), and in a straight lines pattern (b). 

  

(a) (b) 

The distribution of the location estimation error is not uniform along the path. The non-uniform 

distribution can be explained by the dynamics of the human body motion during the hand tracking, 

mainly the different reflection of the radiation in different directions, which increases the variability of 

the medium, induces non-stationary channel conditions. In addition, the calibration, which is performed 

in one dimension for each sensor node, has a statistical nature, and cannot capture all of the online 

channel variations in   . Future extension of the solution to 3D with non-isotropic antenna will require 

aggregation of online information about the antenna orientation. 

In the case of tracking several body parts, multiple nodes are deployed and placed on the body. The 

maximal transmissions rate might decrease compared to tracking single body part, depends on the 

multiplexing technique used. For example, for the 802.15.4 standard, the multiplexing is performed over 

time. In this case, if one sensor node tracks well an object that moves in a velocity in scale of 0.5 m/s, at 

a transmission rate of 30 Hz, three sensor nodes, will need to cope with a transmission rate of 10 Hz. This 

transmission rate can still assess most of the movement in velocity in scale of 1 m/s without any 

significant sacrifice in performance [30]. 

The pattern of the movement is well captured, even when the location estimation is distorted. This 

indicates that the location estimations, even if is not accurate, can be useful assessment of movement 

pattern even in a dynamic environment, even with lower transmission rate that is needed for tracking.  

7.2. Gait Features Extraction 

The RSSI and the commonly used accelerometers’ data for walking and slow-pace running in the 

direction of movement for three seconds is shown in Figure 7a,b, respectively. The spectrum of the RSSI 

and accelerometer signals for walking and slow-pace running is shown in Figure 7c,d, respectively. The 

values are shown in reference to the mean value and were normalized to a scale between −1 to 1, for a 

fair comparison.  

It can be seen that in both experiments there is a periodical pattern. The repetition period is related to 

the gait cycle time. The gait cycle can be estimated in spectrum according to Equation (7) and is 1.6, and 

2.3 Hz, for the walking and slow pace running, respectively. The zero crossing rate (ZCR) measure were 

calculated according to Equation (5). For the RSSI the ZCR values were 3.36 and 4.36, for the walking 
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and the running phases, respectively, compared to 4.95 and 9.11, for the reference accelerometer 

measurements. The mobility factor of moving between walking and slow pace running values were 1.30 

and 1.84, for the RSSI and accelerometer, respectively.  

Both features seem to be statistically sufficient to distinguish between fundamental movements like 

standing, walking and running. The zero-crossing feature seems to preserve the pattern of the movement. 

The accelerometer ZCR values appear to be higher than the one of the RSSI. This is due to the nature of 

acceleration, as a second derivation of displacements, compared to the RSSI, which is related directly to 

the location estimations. The mobility factor in both cases, from stage of running to walking, was higher 

than 1, as expected. The lower factor in the case of RSSI can be explained by the higher low pass 

filtering of the RSSI measurements, and by the lower sampling rate of the RSSI samples compared to the 

one of the accelerometers.  

Figure 7. RSSI patterns of walking (a) and running in time (b) and walking (c) and running 

(d) in spectrum. Both RSSI and acceleration patterns have periodical pattern with a period 

equal to gait cycle time, but the RSSI estimations are less noisy. 

  

(a) (b) 

  

(c) (d) 

The RSSI spectrum main frequency is the gait frequency, while the accelerometer frequencies 

include beside the gait frequency, many other frequencies. The additional frequency content of the 

accelerometer compared to the RSSI estimations is related to higher sensitivity of the acceleration 

measurements to displacements of the sensor that was moving on the foot, which was magnified as it is 

the second derivation of the location estimations. 
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The RSSI pattern might not preserve all the changes in the pattern, as in the accelerometer. Still, the 

RSSI location estimations, as they are related directly to range estimation, seem to capture the main 

movement features, and therefore might be more informative for activity level estimation. 

7.3. Aggregation of RSSI with Inertial Sensor 

The measurements noise covariance matrixes and the state initial values and the state covariance 

matrixes were estimated in an offline stage. The initial IMU based location and the initial CKF location 

estimation was set to the true location and the gyroscope bias was set to the initial value from calibration.  

Figure 8 describes the Kalman gain (trace of the matrix) for the circular path. From the graph, the 

location estimation converges to its steady state value after around 15 s. Different initial values for the 

covariance matrixes can change this convergence time. The location estimation based on the IMU only 

becomes not feasible, due to the sensor bias shift over time and the accumulation of error. The 

integration error in the strap-down integration in the INS grows gradually and the location estimations 

become not informative after few seconds having a mean and standard deviation error in scale of meters. 

This will be the results of the CKF, when the RSSI measurements are very noisy, and the CKF will 

account mainly for the output of the INS system. Need to emphasize, that there are several ways to 

compensate on the accumulation of error over time, and improve the INS location estimation [18–20,54]. 

All these approaches are based on exploitation of a-priori knowledge about the type of motion (periodic 

motions, or a specific bio-mechanics model adapted to specific sensor locations), and are not suitable for 

our model of one IMU unit that is located on any body part, and can move in a random path. Still, better 

INS performance, is expected to give better CKF results.  

Figure 8. Shows the Kalman gain during experiment time. 

 

Figure 9 describes the convergence of the CKF error to its steady state error for the circular and 

zig-zag paths. The convergence is after 15 s, when the state variables estimations error and the 

corresponding Kalman gain, converge to a certain minimal value. The error in the circular pattern 

converge to the steady state faster, and o lower value compared to the zig-zag pattern, is lower, with 

shorter convergence time. This indicates that the convergence time to the steady state, depends in 

addition to the initial state parameter values, also on the body part speed. 
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Figure 9. The location estimation error of the RSSI vs. the Kalman filter, for the circular (a) 

and zigzag patterns (b). The Kalman filter converges to the steady state error after 

approximately 15, and 20 s. 

  

(a) (b) 

Figure 10 describes the location estimation of the RSSI, and the Kalman filter, compared to the 

reference (Polaris) system, for a circular, and zig-zag motion patterns. The results are after convergence 

of the covariance matrixes to their steady state value. The RSSI based location estimations suffer from a 

distortion due to the offline calibration process, that provide only statistical estimations with an 

estimation bias that cannot compensate for the dynamic changes in the environment.  

Figure 10. Location estimation of the RSSI, Inertial Sensor (INS), and the Kalman filter, 

compared to the reference (Polaris) system. Figure (a), and Figure (b) describes circular, and 

zig-zag motion, respectively. 

  

(a) (b) 

The location estimation based on the aggregation of IMU and RSSI measurements improve the RSSI 

based estimations significantly. The RSSI based location mean and standard error were 6.76 and 3.11 cm, 

and 8.11 and 5.28 cm, for the circular, and zig-zag patterns, respectively. The location estimations based 

on the Kalman filter in steady state, are lower by around 30%, with a mean and standard error of 4.13 and 

1.96 cm, and 6.07 and 4.04 cm, for the circular, and zig-zag patterns, respectively. Table 1 summarize 

the results.  

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

Time (sec)

E
rr

o
r 

(c
m

)

 

 

RSSI

Kalman

Steady State Error

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

Time (sec)

E
rr

o
r 

(c
m

)

 

 

RSSI

Kalman

Steady State
Error

-40 -30 -20 -10 0 10 20 30
-30

-25

-20

-15

-10

-5

0

5

10

15

20

x (cm)

y
 (

c
m

)

 

 

Reference

RSSI

Kalman

-30 -20 -10 0 10 20 30 40
-30

-20

-10

0

10

20

30

40

x (cm)

y
 (

c
m

)

 

 

Reference

RSSI

Kalman



Sensors 2013, 13 11308 

 

 

Table 1. Steady state tracking error mean and standard deviation. 

 Circular Zig-Zag 

Error (cm) RSSI Kalman RSSI Kalman 

Mean 6.76 4.13 8.11 6.07 

Std 3.11 1.96 5.28 4.04 

The location estimation based on both sensors capture the shape in a better way than based on only 

RSSI. In Figure 10a, the circular shape is well observed. It seems that the Kalman filter partially 

eliminates the effect of noisy RSSI location estimations caused by the dynamic changes in the channel 

that cannot be mitigated by the offline calibration. In Figure 10b, the zig-zag shape is well observed and 

like in the circular shape, exceptional wrong RSSI location estimations are eliminated, like the one in the 

right bottom corner. In the left side, wrong RSSI based location estimations are also excluded, but there 

is still an estimation bias of the CKF. This is due to the nature of CKF that is optimal in statistical manner, 

and cannot compensate for local high RSSI based location bias. The CKF, is still superior over simple low 

pass filtering of the RSSI location estimations, as it preserve well, despite the bias, the zig-zag pattern, that 

low pass filter would not resolve. In the future, an auto-calibration process, that correct in real time the 

RSSI location offset, can reduce the location bias, and improve the overall tracking accuracy. 

These results demonstrate how the body part displacements, as estimated by the RSSI measurements, 

can be used to improve significantly the location accuracy of other sensors. It is achieved by continuous 

estimation of the measurements’ biases in the CKF, and by this eliminating the growing integration 

error. This absolute information about location can exclude the need from additional sensor that measure 

global position, or orientation, like Global Positioning System (GPS), or magnetometer. 

8. Conclusions and Future Work  

RSSI measurements are unique in the sense that they are included in all BAN standards, and as such, 

they do not require additional hardware and software resources. Utilizing RSSI measurements of sensor 

nodes that are attached to the body parts of interest can be used to improve existing patient kinematics 

acquisition systems. Exploitation of RSSI measurements for kinematic feature assessment is a new field 

of research that requires extensive future research efforts. This paper’s main purpose is to show 

feasibility of the technology, and develop the basic computational tools.  

With advanced processing, and sufficient transmission rate, RSSI measurements can be used for 

tracking body segments within a scale of a few centimeters. This was demonstrated by tracking a hand 

movement. Still, many physical phenomena like shadowing, absorption by the human tissue, creeping of 

the electromagnetic wave along the body, affect the accuracy of the tracking information, as it is based 

on statistical models that cannot fully mitigate over instantaneous dynamic changes. In addition, the 

RSSI based tracking resolution, drop with distance, due to the nature of the wireless channel. Still, when 

the sensors are located in close proximity, which is the common case in BAN, the RSSI based tracking 

results can be sufficient to many applications.  

In the case where the RSSI based tracking resolution is not adequate due to scattering, and distance 

limitations, the pattern of the RSSI measurements can still be utilized and be informative for motion 

feature assessment. We demonstrated assessment of basic kinetic feature of gait with two sensor nodes 
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attached to the two feet. Gait pace and patterns were well assessed and verified against the traditional 

acceleration based assessment, in two gait speeds, normal and running.  

Aggregation of the RSSI data with other common sensors, like inertial sensors, can further improve 

body part tracking and motion classification. The aggregation of RSSI and IMU data, can exclude the 

need from additional sensor that measure global position, or orientation, like GPS, or magnetometer. The 

tracking accuracy based only on aggregation of RSSI measurements with inertial sensor data, using an 

original Complementary Kalman Filter (CKF) implementation, has improved the tracking accuracy by 

almost 50%. This technology is expected in future to be used to detect abnormalities in gait, which today 

is detected in gait lab by using a force plate.  

In future, the RSSI based tracking technology should be applied to track multiple body parts at 

different environments in 3-D. More advanced filtering, which exploits information about 

bio-mechanical model of the body parts, are expected to improve the system performance. Applying an 

online calibration process that utilizes instantaneous location estimations, can mitigate in future for part 

of the dynamic changes caused by changes in the environment and in sensor orientation, and improve the 

overall tracking estimation accuracy. More advanced classification algorithms, using more features, and 

feature selection algorithms, can be used to distinguish between different complex movements’ classes, 

which are used in daily life activities. 
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