
ORIGINAL RESEARCH
published: 02 June 2021

doi: 10.3389/fnbeh.2021.673151

Edited by:

Hisao Nishijo,
University of Toyama, Japan

Reviewed by:
Michael Fritz,

University of Ulm, Germany
Mustapha Muzaimi,

Universiti Sains Malaysia Health
Campus, Malaysia

*Correspondence:
Jared A. Rowland

jared.rowland@va.gov

Specialty section:
This article was submitted to

Pathological Conditions,
a section of the journal

Frontiers in Behavioral Neuroscience

Received: 26 February 2021
Accepted: 28 April 2021
Published: 02 June 2021

Citation:
Rowland JA, Stapleton-Kotloski JR,

Alberto GE, Davenport AT,
Epperly PM, Godwin DW and
Daunais JB (2021) Rich Club

Characteristics of Alcohol-Naïve
Functional Brain Networks Predict

Future Drinking Phenotypes in
Rhesus Macaques.

Front. Behav. Neurosci. 15:673151.
doi: 10.3389/fnbeh.2021.673151

Rich Club Characteristics of
Alcohol-Naïve Functional Brain
Networks Predict Future Drinking
Phenotypes in Rhesus Macaques
Jared A. Rowland1,2,3*, Jennifer R. Stapleton-Kotloski1,4, Greg E. Alberto2,
April T. Davenport5, Phillip M. Epperly5, Dwayne W. Godwin2,4,5 and James B. Daunais5

1Research and Academic Affairs Service Line, Mid-Atlantic Mental Illness Research Education and Clinical Center, Salisbury
VA Medical Center, Salisbury, NC, United States, 2Department of Neurobiology and Anatomy, Wake Forest School of
Medicine, Winston-Salem, NC, United States, 3Department of Psychiatry and Behavioral Medicine, Wake Forest School of
Medicine, Winston-Salem, NC, United States, 4Department of Neurology, Wake Forest School of Medicine, Winston-Salem,
NC, United States, 5Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC,
United States

Purpose: A fundamental question for Alcohol use disorder (AUD) is how and when
naïve brain networks are reorganized in response to alcohol consumption. The current
study aimed to determine the progression of alcohol’s effect on functional brain networks
during transition from the naïve state to chronic consumption.

Procedures: Resting-state brain networks of six female rhesus macaque (Macaca
mulatta) monkeys were acquired using magnetoencephalography (MEG) prior to alcohol
exposure and after free-access to alcohol using a well-established model of chronic
heavy alcohol consumption. Functional brain network metrics were derived at each
time point.

Results: The average connection frequency (p < 0.024) and membership of the Rich
Club (p < 0.022) changed significantly over time. Metrics describing network topology
remained relatively stable from baseline to free-access drinking. The minimum degree of
the Rich Club prior to alcohol exposure was significantly predictive of future free-access
drinking (r = −0.88, p < 0.001).

Conclusions: Results suggest naïve brain network characteristics may be used to
predict future alcohol consumption, and that alcohol consumption alters functional brain
networks, shifting hubs and Rich Club membership away from previous regions in
a non-systematic manner. Further work to refine these relationships may lead to the
identification of a high-risk drinking phenotype.

Keywords: magnetoencephalography, substance use disorder, risk factor, primate, brain function

INTRODUCTION

Alcohol use disorder (AUD) constitutes a global problem and is ranked among the top
substance abuse problems in the United States, with over 70% of adults that struggle
with substance use disorder estimated to abuse alcohol (Substance Abuse and Mental
Health Services Administration (SAMHSA), 2020). AUD impacts global brain functional
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networks including the default mode, executive, attentional,
salience and reward networks (Loeber et al., 2009; Park et al.,
2010; Chanraud et al., 2011, 2013; Camchong et al., 2013; Sullivan
et al., 2013) but the neurocircuitry underlying vulnerability and
resilience to AUD is not clearly understood, making it difficult to
establish viable, targeted treatment options.

This lack of clarity is due, in part, to the difficulty in capturing
an alcohol-naïve baseline in human subjects. Clinical studies are
often conducted with long-term drinkers at different drinking
phases after changes in brain networks have already manifested.
It is clear that AUD is characterized in part by dysfunctional
information processing (Sullivan et al., 2000) that occurs in part
through altered brain activity during both resting state (RS) and
task performance in alcoholics (Rangaswamy and Porjesz, 2008)
as compared to other neurological conditions (Georgopoulos
et al., 2007). Functional brain networks including the default
mode, salience, and executive networks are known to be sensitive
to chronic alcohol use (Sullivan and Pfefferbaum, 2005; Sullivan
et al., 2013; Weiland et al., 2014; Fede et al., 2019) however,
the temporal nature and anatomic directionality of changes that
occur remains unclear.

Studies such as IMAGEN have attempted to address this issue
by evaluating adolescents prior to initiation of substance use
(Maričić et al., 2020). Ivanov et al. (2020) used the IMAGEN
study data to demonstrate that expected reductions in impulsivity
were associated with lower levels of new onset drinking in
an adolescent sample. They also found that blunted medial
orbitofrontal activity in response to reward was associated with
increased new onset and use. Nees et al. (2012) used the IMAGEN
dataset to demonstrate that personality factors (novelty seeking,
impulsivity, extraversion, and sensation seeking) were more
strongly related to the initiation of drinking behaviors than
reward related brain function, but that reward related brain
function (particularly ventral striatum) was more strongly
related to the development of problematic alcohol use. Heinrich
et al. (2016) extended these findings in the IMAGEN study
by including genetic factors. Results replicated the strong
influence of personality factors on early initiation of drinking
behaviors, while genetic factors appeared to become equally
important when predicting future alcohol misuse behaviors.
Reward related brain function did not contribute significant
variance to the model. Similarly, Harper et al. (2019) used data
from the Minnesota Twin Family Study Enrichment Sample to
demonstrate that P3 amplitude mid-frontal theta power during
an oddball task were predictors of new onset alcohol behaviors
3 years later in a sample of 14-year-old adolescents. While these
studies offer valuable insight into the factors associated with
initiation of use and onset of problematic use, they do not fully
alleviate the confounding influence of environmental variables.

Non-human primate (NHP) models are valuable tools to help
address the limitations of studies involving human participants
(Grant et al., 2008). The model applied in the current study has
been used to demonstrate that daily drinking for 15 months
causes functional and genomic changes across the brain when
contrasted against the alcohol naïve brain (Budygin et al., 2003;
Floyd et al., 2004; Alexander et al., 2006; Carden et al., 2006;
Anderson et al., 2007; Acosta et al., 2010; Cuzon Carlson

et al., 2011; Mohr et al., 2013), as well as reorganization of
brain networks measured by fMRI (Telesford et al., 2015) and
significantly altered signal power of multiple bandwidths across
the brain using magnetoencephalography (MEG; Rowland et al.,
2017a). Using the same NHP model, alcohol naïve predictors
of future drinking have also been identified. These include
low cognitive flexibility (Shnitko et al., 2019), early drinking
phenotypes (i.e., gulping vs. sipping; Grant et al., 2008; Baker
et al., 2017), age, latency to begin drinking, and the number of
‘‘bouts’’ of drinking (Helms et al., 2014; Baker et al., 2017). No
studies have examined alcohol naïve aspects of brain function as
predictors of future drinking levels using this model.

The objective of the current study was a longitudinal
examination of the trajectory of these changes at an earlier time
point (6 months of chronic heavy alcohol intake) than previously
examined (15 months chronic heavy alcohol intake) to identify at
what point they begin to manifest and if baseline, alcohol-naïve
indicators of future drinking can be identified.

MATERIALS AND METHODS

Animals
Adult female rhesus monkeys (n = 6, 5–7 years old at study start)
were subjects in an ongoing ethanol (EtOH) self-administration
study. This age group reflects late adolescence to early adulthood
in humans. The monkeys were trained on an operant panel
to self-administer all fluids and food using a well-established
drinking model that parallels levels and patterns of intake
observed in alcoholics (Grant et al., 2008; Baker et al., 2014).
This process begins with EtOH-naïve monkeys that are induced
to drink escalating doses of EtOH (0.5, 1.0 and 1.5 g/kg) for
30 days at each dose (induction phase). This phase introduces
the monkeys to the reinforcing properties of alcohol and
results in rapid and equal daily alcohol intake without causing
taste aversion. All monkeys were maintained at 1.5 g/kg for
20 drinking days while operant panels were serviced and re-
programed. Animals were then provided free access to EtOH and
water for 22 h per day, 5 days per week for 180 days. Sessions
began at 11:00 am each day. MEG recordings were acquired
under EtOH naïve conditions (Baseline) and after 180 open
access drinking days (Free Access) to determine the impact of
chronic, daily intake on RS brain function. The alcohol-naïve
baseline served as a within-animal control dataset.

Preparation for MEG Scans
Animals were fasted overnight from food but not EtOH prior
to scans. Average time between last drink and sedation for
imaging was 344.2 min (SD = 377.9, min = 0.0, max = 977)
at the Free Access Scan. These time frames raise the possibility
of acute withdrawal (Winger and Woods, 1973); however,
symptoms of withdrawal were not observed during similar
time frames on non-imaging days (Pieper and Skeen, 1977)
and the anesthetic agent (propofol, a GABAA receptor positive
allosteric modulator; Shin et al., 2018) helped ensure acute
withdrawal symptoms were not present during data acquisition.
Previous work has shown that acute withdrawal in this model
peaks between 24–72 h (Cuzon Carlson et al., 2011), which
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is beyond the duration since the last drink present here.
Animals were sedated with ketamine (12 mg/kg, i.m.) for
transport to the MEG suite. Anesthesia was induced with a
bolus injection of 2.0–4.0 mg/kg propofol to allow intubation
and was maintained via intravenous continuous infusion of 200
µg/kg/min propofol via syringe pump (Sage, Orion Research
Corporation, Cambridge, MA, USA). Animals were placed in
a supine position and artificially ventilated. These preparations
are consistent with our previous reports (Telesford et al., 2015;
Rowland et al., 2017a).

MEG Signal Recordings
Data were acquired using a whole head CTF Systems Inc.
MEG 2005 neuromagnetometer system equipped with 275 first-
order axial gradiometer coils. Head localization was achieved
using a conventional three-point fiducial system (nasion and
preauricular points). Each monkey was tattooed at each fiducial
location to ensure consistent placement over time. Resting-state
recording was conducted with animals lying supine for 5 min.
Data were sampled at 1,200 or 2,400 Hz over a DC-300 or DC-600
Hz bandwidth, respectively. MEG data were preprocessed using
synthetic 3rd order gradient balancing, whole trial DC offsetting,
and band pass filtered from DC-80 Hz with powerline filtering.
Data were visually inspected for obvious muscle artifact, and
such epochs, if present, were discarded from further analyses.
Following initial MEG recording, a T1 weighted MRI image was
obtained for each animal for co-registration and localization of
MEG signals.

Network Analysis
Network analysis was conducted identically to previous work
(Rowland et al., 2017a,b, 2018). Network analysis proceeded
by first identifying nodes of the network and quantifying
communication among those nodes. The resulting matrices are
conducive to the application of graph theory for calculating
metrics describing the topology of the network.

Network Creation
Node Identification
For each animal 41 non-adjacent bilateral regions of interest
(ROIs, voxel size = 2 × 2 × 2 mm) were identified in native
brain space representing the default mode and reward networks.
These networks have been previously demonstrated to be affected
by chronic heavy alcohol consumption in humans (Chanraud
et al., 2011; Müller-Oehring et al., 2015; Zhang and Volkow,
2019) and shown to be present in NHPs (Vincent et al., 2007;
Mantini et al., 2011; Belcher et al., 2013). Brain regions included
the anterior cingulate, medial and lateral orbital frontal cortex,
principle sulcus, nucleus accumbens, caudate head and body,
head of the putamen, parietal area, precuneus, lateral and medial
amygdala, anterior, medial, and posterior hippocampus, vermis,
anterior and posterior lobes of the cerebellum, thalamus, and
anterior insula.

Functional Connectivity
Source series representing the unique weighted sum of the output
across all MEG sensors for a specific ROI in the brain were
calculated using a well-validated beamformer (synthetic aperture

magnetometry, SAM; Robinson and Vrba, 1999; Hillebrand et al.,
2005). Prior work has demonstrated the sensitivity of MEG
beamformers to superficial as well as deeper sources (Stapleton-
Kotloski et al., 2014, 2018). The weighted phase lag index
(wPLI; Vinck et al., 2011) was calculated between all pairs of
source series to establish functional connectivity, filtered between
1 and 80 Hz. The wPLI is a phase-based metric insensitive
to fluctuations in source amplitude. A surrogate distribution
of 5,000 unique pairs of phase-randomized time series was
created for each animal individually (Prichard and Theiler,
1994). Connectivity was operationalized at the frequency with
the greatest difference in wPLI value between the real and
surrogate data, calculated as standard deviations. This approach
allows the frequency at which connections occur to vary from
connection to connection, representing a better model of brain
activity than restricting connectivity to a specific frequency
band (Chen et al., 2008; Hillebrand et al., 2012). To remove
connections not different from noise, connections without a
real-surrogate difference exceeding 2.5 standard deviations were
left unconnected. The resulting networks were then thresholded
by satisfying the equation S = log(N)/log(K) where N represents
the number of nodes in the network and K the average degree
using S = 2.5 (Hayasaka and Laurienti, 2010).

Network Metrics
Network metrics calculated are listed in Table 2. Metrics
were selected with a focus on characterizing the topology of
the overall network. Clustering Coefficient was selected as an
indicator of clustering and subgroup formation within the
network. This metric was calculated as defined in Stam and
Reijneveld (2007). Modularity was selected as an indicator
of well-defined subnetworks within the larger network. This
metric was calculated using the Louvain method of community
detection (Blondel et al., 2008). The analysis was run 500 times,
using the average number of modules (Number Modules)
as outcome variables. Assortativity coefficient represents the
correlation coefficient of the degree of nodes on each end of
a connection. The degree of a node is the number of direct
connections that node has to other nodes in the network. A
positive coefficient suggests nodes are preferentially connecting
to other nodes of similar degree, while a negative coefficient
suggests nodes preferentially connect to those of different degree
(Newman, 2002). Rich Club was selected as an indicator of the
presence of a ‘‘network backbone.’’ The Rich Club is a subset of
highly connected and highly interconnected nodes forming the
basis of the broader network. Rich Club characteristics (Colizza
et al., 2006) were calculated using 500 independently generated
random networks. The number of nodes (Rich Club Nodes)
within the Rich Club, the minimum degree of those nodes (Rich
Club Degree), and interconnectivity among those nodes (Rich
Club Coefficient) were used as outcome variables. The Rich Club
Coefficient was weighted by the average of the same metric across
the 500 random networks, representing the level of increased
interconnectivity over a random network. The Mean Connection
Frequency was calculated as the average of the frequency at which
connections occurred across all connections in the network.
The number of connections occurring in each of the canonical
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frequency bands (e.g., delta, theta, alpha, beta, gamma) was
also calculated as outcome variables. Hubs of the network were
identified as the 10% of nodes (n = 4) with the highest degree.

Materials
Beamforming and source series construction were completed
using software provided by CTF MEG International Services
LP (Coquitlam, BC, Canada). Further analyses of source series
data and network creation were conducted using Matlab 2016a.
Network metrics were calculated using the Brain Connectivity
Toolbox (Rubinov and Sporns, 2010). SAS Enterprise Guide
7.1 (SAS Institute Inc., Cary, NC, USA) was used for statistical
analysis.

Analyses
Differences across time in network metrics (Baseline to Free
Access) were examined using paired samples t-tests. Consistency
over time in the distribution of hub and Rich Club members
was examined using paired samples t-tests. The data used
are presented in Tables 4, 5. The independent variable was
time point, and the dependent variable was the distribution
of membership across regions. Secondary Chi-Square analyses
(McNemara’s test) were run to examine how the hub and Rich
Club status of individual brain regions changed over time.
Spearman rank correlations were conducted to examine the
relationship between network metrics and drinking outcomes
(daily average g/kg) during Free Access. Two-tailed tests and
alpha of 0.05 were used for significance.

RESULTS

Daily average g/kg EtOH consumption increased significantly
once given free access [mean (SD); Free-Access = 4.7 (1.0),
p< 0.01, Cohen’s d = 5.23], as shown in Table 1. Network metrics
at Baseline and Free-Access (after 180 days unrestricted access)
are shown in Table 2.

Networks Predicting EtOH Consumption
Table 3 illustrates correlations between Baseline (EtOH naïve)
network metrics and Free Access consumption. The minimum
degree of the Rich Club at baseline was strongly related to Free
Access consumption levels (Figure 1).

Effects of EtOH on Networks
Table 2 shows mean and standard deviations of network
metrics at Baseline and Free Access. The average connection
frequency was significantly higher at Free Access than at Baseline,
t(5) = −3.20, p = 0.024, but no other differences in network
metrics were observed.

Specific Brain Regions
Table 4 demonstrates areas considered hubs across animals at
each time point. For brain structures with multiple aspects,
the region was considered a hub if any of the aspects were
considered a hub (e.g., if either the posterior, medial, or anterior
hippocampus was a hub, then Table 4 indicates the hippocampus
as a hub). There was no significant change in brain regions
considered hubs from Baseline to Free Access. Table 5 includes

TABLE 1 | Amount of EtOH consumed by subjects during the Free-Access
Period in grams/kilogram.

Subject Free access

1 3.8
2 4.4
3 5.4
4 5.5
5 3.3
6 5.9

Note. n = 6. EtOH = ethanol.

TABLE 2 | Descriptive statistics of network metrics prior to and following
exposure to ethanol.

Network metric Baseline Free access

Clustering coefficient 0.35 (0.1) 0.30 (0.1)

Global efficiency 0.59 (0.05) 0.56 (0.05)

Assortativity coefficient −0.40 (0.1) −0.19 (0.2)

Rich club coefficient 1.84 (0.1) 1.91 (0.3)

Rich club nodes 13.17 (1.7) 10.83 (4.3)

Rich club minimum degree 7.50 (1.1) 9.50 (2.7)

Number of modules 10.50 (3.4) 8.83 (4.4)

Mean connection frequencya 6.57 (5.7) 16.01 (10.6)

Delta connections 172.67 (96.0) 99.0 (99.7)

Theta connections 15.33 (25.4) 34.67 (45.4)

Alpha connections 4.00 (9.8) 15.33 (23.2)

Beta connections 68.33 (106.9) 58.33 (47.9)

Gamma connections 1.67 (4.1) 54.67 (64.5)

Data are presented as mean (standard deviation). Note. n = 6. aPaired samples t-test
between EtOH Naïve Baseline and Free-Access drinking p < 0.05; EtOH = ethanol.

brain regions that were members of the Rich Club for at least
three animals at any time point, again collapsing within regions.
A significant decrease in the commonality of regions in the Rich
Club across animals was observed from Baseline to Free Access,
t(9) = 2.74, p = 0.022. Tests of change in individual regions were
not significant.

DISCUSSION

The current study demonstrates that characteristics of the Rich
Club of alcohol-naïve brain networks are related to future
drinking behaviors. In addition, following extended chronic
drinking the connection strength in the network was altered;
however, no effect on network metrics was observed. Finally,
while hubs of the network were not observed to change
significantly over time, membership in the Rich Club was
significantly altered by chronic heavy drinking.

Aspects of alcohol-naïve resting-state functional brain
networks were demonstrated to predict future drinking
levels. Higher minimum degree of the Rich Club at Baseline
(alcohol-naïve) was strongly correlated with decreased alcohol
consumption during the future free access period. The Rich
Club is a community of nodes within the network that have
high degree and interconnectedness, serving as the ‘‘spine’’
of the network (Colizza et al., 2006). These nodes represent
hubs within the network and communication among these
nodes can often serve as ‘‘shortcuts’’ within the network,
increasing efficiency of communication across otherwise
distantly connected nodes. As the minimum degree of the
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TABLE 3 | Correlations between Baseline network metrics and Free-Access drinking levels.

Connection frequency Rich club coefficient Rich club nodes Rich club degree Clustering coefficient Assortativity

Free Access drinking 0.60 −0.26 0.71 −0.88a
−0.31 0.03

Note. n = 6, Free-Access Drinking = average daily consumption in grams/kilogram during the 180 days of unrestricted access, ap = 0.02.

FIGURE 1 | The minimum degree of the Rich Club of the alcohol naïve
(Baseline) functional brain network was strongly related to future drinking
when animals were provided free-access to alcohol (r = −0.88, p = 0.02).

Rich Club decreases, the centrality of Rich Club nodes also
decreases, meaning fewer aspects of communication are
routed through these nodes. Essentially, as the minimum
degree decreases, the Rich Club becomes less differentiated
from the other nodes in the network. This result suggests
that the level of Rich Club differentiation may be predictive
of future drinking levels, even when measured prior to
alcohol exposure.

Alterations to the Rich Club subnetwork are likely to
have broad and sweeping effects on brain communication and
information processing (van den Heuvel and Sporns, 2013).
Differences in Rich Club characteristics have been observed in
many neurodevelopmental disorders, including schizophrenia
(Collin et al., 2017), bipolar disorder (Wang et al., 2019), and
autism (Hong et al., 2019). As such, the broad differences in Rich
Club characteristics observed in this study are unlikely to serve as
a direct ‘‘neurophenotype’’ of AUD without further refinement
and empirical study. However, these results identify that
differences in network topology are important to understanding
individuals who might be at risk for future heavy drinking
or AUD. Further, these results are consistent with previous
work using the same NHP model indicating that premorbid
behaviors and those occurring early in the drinking history
may be predictive of future consumption levels. These factors
include low cognitive flexibility (Shnitko et al., 2019), early
drinking phenotypes (i.e., gulping vs. sipping; Grant et al., 2008;
Baker et al., 2017), age, latency to begin drinking, and the
number of ‘‘bouts’’ of drinking (Helms et al., 2014; Baker et al.,
2017). The current results are the first to provide a brain-based
factor indicative of future drinking in this model, suggesting
that alcohol-naïve differences in Rich Club characteristics of

TABLE 4 | The number of subjects for which each brain region was considered a
hub of the network.

Brain region Baseline Free-Access

Parietal 3 0
Thalamus 4 2
Precuneus 2 1
Cerebellum 4 2
Amygdala 2 2
Hippocampus 2 4

Nodes are considered hubs if they are in the upper 10% of the network for degree. Only
nodes considered a hub for at least two subjects at any time point are presented. Note.
n = 6.

TABLE 5 | The number of subjects for which each brain region was considered a
member of the Rich Club.

Brain region Baseline Free-Access

Putamen 5 4
Hippocampus 5 5
Thalamus 5 3
Insula 5 2
Cerebellum 5 3
Parietal 4 3
Amygdala 4 5
OrbitoFrontal 4 3
Caudate 3 3
Precuneus 3 2

Note. n = 6.

functional brain networks also predict future drinking in this
model.

These results extend recent findings in human participants
demonstrating that white matter brain networks of individuals
with AUD displayed lower Rich Club characteristics compared
to their non-abusing siblings, who displayed lower levels
compared to control participants (Zorlu et al., 2019). These
results are also consistent with recent findings using the same
NHP model indicating that chronic heavy drinking inhibits
white matter growth (i.e., reduced connectivity) during late
adolescence (Shnitko et al., 2019). While Zorlu et al. (2019)
suggest potential premorbid differences in white matter network
structure may be a marker of risk or susceptibility to AUD, the
results of the current study provide direct empirical support
for this hypothesis, showing that Rich Club characteristics of
premorbid functional brain networks are directly related to
future drinking levels. These results are also consistent with those
of several longitudinal projects conducted in humans including
the IMAGEN and NCANDA studies (Brumback et al., 2016;
Maričić et al., 2020; Silveira et al., 2020). However, the current
results examine functional RS brain networks and not reward
based processing or structural aspects. The current study also
did not acquire genetic or behavioral data as was acquired
by IMAGEN, limiting further comparisons. Findings from the
current study as well as these previous studies demonstrate that
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brain function and structure measured prior to exposure to
alcohol may be able to identify individuals at risk for future heavy
alcohol consumption.

Alcohol-induced changes in functional brain networks were
observed following a period of exposure and free access to
alcohol. The mean connection frequency increased following
chronic heavy drinking; however, changes in network metrics
were not observed. This suggests the general topology of
networks were not altered (e.g., path lengths, clustering, etc.)
Significant changes were seen in the membership of the Rich
Club. There was much less consistency in Rich Club membership
following chronic heavy drinking, suggesting the networks were
being altered in an inconsistent manner across animals. It should
be noted that the quantity of alcohol consumed during the free
access period was fully determined by each animal. These results
support the potential for a dose-dependent relationship between
patterns of alcohol consumption and the effect on functional
brain networks (Correas et al., 2015, 2016; López-Caneda et al.,
2017; Perez-Ramirez et al., 2017).

Limitations of the current pilot study include the small
sample size, which limits the complexity and sensitivity of
analyses that can be conducted. Neuroimaging was conducted
under anesthesia, which has known effects on brain function
(Boveroux et al., 2010; Xie et al., 2013; Guldenmund et al.,
2016). Possible interactions between the anesthetic and alcohol
could have occurred, if not directly, then through the indirect
development of tolerance. However, anesthesia was maintained
at consistent levels and physiological indicators of arousal were
monitored continuously, suggesting that levels of sedation were
consistent across scans and animals. Additionally, after baseline
data was acquired in the alcohol-naïve state, all animals entered
the alcohol self-administration paradigm. We are mindful that
this within-animal comparison across time limits insight into
potential non-alcohol related changes over time or changes as
a result of operant manipulations. However, test-retest scan
sessions in monkeys 1 year apart and in humans 6 years apart
(Stapleton-Kotloski et al., 2014) have established that networks
remain stable over time.

Neuroimaging under conscious conditions will be required to
completely understand the effects of alcohol on brain function
using this model. The interval between ethanol access and MEG
scans raises the possibility that some animals may have been
experiencing symptoms of withdrawal (Winger and Woods,
1973). However, signs of withdrawal were not observed during
the same time periods on non-imaging days (Pieper and Skeen,
1977; Cuzon Carlson et al., 2011). Also, propofol was used
as the anesthetic agent, helping to ensure animals were not
experiencing withdrawal symptoms during scans (Shin et al.,
2018). Finally, animals who ceased alcohol consumption prior

to scans did so voluntarily and in a time frame consistent with
non-imaging days and were not forcibly fasted.

CONCLUSIONS

The current study identified a relationship between functional
brain networks in the alcohol-naïve state and future alcohol
consumption, consistent with other work using this model
demonstrating early behavioral markers of future drinking. This
is the first brain-based predictor of future alcohol consumption
identified for this model. Additionally, significant alteration in
the Rich Club of the network was observed following 180 days
of chronic heavy consumption of alcohol, an earlier time point
than examined in previous works. Future work will be invaluable
in clarifying the changes, and specifying the timing of those
changes, that infer risk specific to AUD in humans.
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