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Abstract: P-glycoprotein (P-gp) is an important determinant of multidrug resistance (MDR) because
its overexpression is associated with increased efflux of various established chemotherapy drugs in
many clinically resistant and refractory tumors. This leads to insufficient therapeutic targeting of
tumor populations, representing a major drawback of cancer chemotherapy. Therefore, P-gp is a
target for pharmacological inhibitors to overcome MDR. In the present study, we utilized machine
learning strategies to establish a model for P-gp modulators to predict whether a given compound
would behave as substrate or inhibitor of P-gp. Random forest feature selection algorithm-based
leave-one-out random sampling was used. Testing the model with an external validation set revealed
high performance scores. A P-gp modulator list of compounds from the ChEMBL database was used
to test the performance, and predictions from both substrate and inhibitor classes were selected for
the last step of validation with molecular docking. Predicted substrates revealed similar docking
poses than that of doxorubicin, and predicted inhibitors revealed similar docking poses than that
of the known P-gp inhibitor elacridar, implying the validity of the predictions. We conclude that
the machine-learning approach introduced in this investigation may serve as a tool for the rapid
detection of P-gp substrates and inhibitors in large chemical libraries.

Keywords: artificial intelligence; drug discovery; machine learning; molecular docking; multidrug
resistance; P-glycoprotein

1. Introduction

ATP-binding cassette (ABC) transporters are energy-dependent efflux pumps responsible for the
active efflux of drugs, thereby reducing their intracellular concentration. Due to overexpression of
ABC transporters in tumor cells, multidrug resistance (MDR) develops, which leads to the failure of
chemotherapy with fatal consequences for cancer patients [1]. P-glycoprotein, being a well-known
member among the ABC transporter family, is encoded by the ABCB1/MDR1 gene. It is an important
determinant of MDR [2–4] and upregulated in many clinically resistant and refractory tumors [5,6].
Its overexpression in tumor cells is associated with efficient extrusion of a large number of established
anticancer drugs and natural cytotoxic products out of cancer cells, representing a major drawback
of cancer chemotherapy [7]. Resistance is either inherently present or will be acquired during
chemotherapy [8–10]. Hence, P-glycoprotein (P-gp) represents an important target to search for
pharmacological inhibitors to overcome MDR [11]. Targeting P-gp to overcome MDR is of importance
to achieve higher success rates for chemotherapy. The concept is to combine P-gp inhibitors with
established chemotherapy drugs to resensitize tumors [12–15].

Machine learning and artificial intelligence are recently acquiring increasing interest in the area of
drug discovery [16–18] because these methods have an enormous potential to speed up the preclinical
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development processes at minimal costs. For this purpose, we utilized a machine learning strategy in
order to establish a prediction platform that allows to predict whether a given compound behaves as a
substrate or an inhibitor of P-gp.

Available natural compound databases serve as an invaluable source to identify novel lead
compounds that possess activity against certain diseases or disorders by focusing on particular target
biomarker proteins. As a majority of established anticancer drugs are of natural origin [19], natural
products may serve as lead compounds for derivatization to obtain novel chemical entities with
improved pharmacological features. Analyses of the interaction between the compounds and the target
protein with molecular docking provide clues about the possible binding mode and binding energy,
as we reported before [11,20,21]. Selecting P-gp as target protein, the interaction of test compounds can
be compared with that of known P-gp inhibitors, such as verapamil, valspodar, tariquidar, or elacridar,
in order to assess their binding properties, docking poses, and binding energies. In those cases,
where the test compounds yielded by using the P-gp modulator prediction platform possess similar
docking poses and comparable binding energies as known inhibitors, it could be concluded that these
compounds may be potential P-gp inhibitors.

In the present study, we used machine learning strategies to establish such a P-gp modulator
prediction platform for compounds by using defined chemical descriptors to predict whether a given
compound can behave as a substrate or an inhibitor of P-gp. Selected compounds from inhibitor or
substrate classes were subjected to molecular docking for further verification and compared with
known P-gp inhibitors and substrates.

2. Material and Methods

2.1. Preparation of Compound List and Calculation of Chemical Descriptors

For the P-gp modulator/non-modulator prediction model, a compound list with modulators
and non-modulators from Broccatelli et al. [22] was used. Compounds for learning and validation
steps were randomly selected. Thirty-two modulator and thirty-two non-modulator compounds were
used for the learning step, while 16 modulator and 16 non-modulator substances were used for the
validation step (Table 1). For the P-gp inhibitor/substrate prediction model, a list of P-gp substrates
and inhibitors was prepared by referring to the literature [23], yielding a total of 60 compounds
(34 inhibitors, 26 substrates). Again, compounds for learning and validation steps were randomly
selected. Forty compounds (20 inhibitors, 20 substrates) were used for learning and model establishment.
The remaining 20 compounds (14 inhibitors, 6 substrates) were used for the external validation step
(Table 2).

Table 1. Compounds selected for learning and external validation for the P-glycoprotein (P-gp)
modulator/non-modulator prediction model.

Learning Set External Validation Set

Compound Category Compound Category Compound Category

Escitalopram Modulator Hydroxyzine Non-modulator Terfenadine Modulator
Simvastatin acid Modulator Oxybutynin Non-modulator Prazosin Modulator

Neostigmine Modulator Ethosuximide Non-modulator Prednisone Modulator
Zolmitriptan Modulator Warfarin Non-modulator Chloroquine Modulator
Atomoxetine Modulator Mexilitene Non-modulator Lopinavir Modulator
Methysergide Modulator Sulpiride Non-modulator Prednisolone Modulator
Famciclovir Modulator Thiopental Non-modulator Vincristine Modulator

Lovastatin acid Modulator Lamotrigine Non-modulator Sertraline Modulator
Darifenacin Modulator Diphenhydramine Non-modulator Loperamide Modulator
Paliperidone Modulator Enoxacin Non-modulator Etoposide Modulator

Trospium Modulator Methylphenidate Non-modulator Indinavir Modulator
Aprepitant Modulator Itraconazole Non-modulator Dipyridamole Modulator

Apomorphine Modulator Nortriptyline Non-modulator Mitoxantrone Modulator
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Table 1. Cont.

Learning Set External Validation Set

Compound Category Compound Category Compound Category

Cetirizine Modulator Galantamine Non-modulator Cimetidine Modulator
Cyclosporin A Modulator Ramelteon Non-modulator Bromocriptine Modulator

Labetalol Modulator Rivastigmine Non-modulator Reserpine Modulator
Amisulpride Modulator Ropivacaine Non-modulator Oxprenolol Non-modulator

5-Hydroxymethyl
tolterodine Modulator Zonisamide Non-modulator Alprazolam Non-modulator

Cabergoline Modulator Zolpidem Non-modulator Oxcarbazepine Non-modulator
Ximelagatran Modulator Sulfasalazine Non-modulator Tolterodine Non-modulator
Hoechst 33342 Modulator Metoclopramide Non-modulator Zaleplon Non-modulator

Rhodamine 123 Modulator Nalmefene Non-modulator Cyclobenzaprine Non-modulator
Actinomycin D Modulator Oxycodone Non-modulator Nimodipine Non-modulator

Olanzapine Modulator Topiramate Non-modulator Riluzole Non-modulator
Ranitidine Modulator Hydrocodone Non-modulator Tiagabine Non-modulator
Astemizole Modulator Rosuvastatin Non-modulator Nalbuphine Non-modulator
Verapamil Modulator Tropisetron Non-modulator Duloxetine Non-modulator

Ziprasidone Modulator Varenicline Non-modulator Pravastatin acid Non-modulator
Chlorpromazine Modulator Clemastine Non-modulator Promazine Non-modulator

Clozapine Modulator Clonazepam Non-modulator Bromazepam Non-modulator
Trimethoprim Modulator Ropinirole Non-modulator Lorazepam Non-modulator

Paroxetine Modulator Solifenacin Non-modulator Mirtazapine Non-modulator

Table 2. Compounds selected for learning and external validation for the P-gp inhibitor/substrate
prediction model.

Learning Set External Validation Set

Compound Category Compound Category Compound Category Compound Category

Ginsenoside Inhibitor Epirubicin Substrate Agosterol Inhibitor Colchicin Substrate

Laniquidar Inhibitor Etoposide Substrate Amiodarone Inhibitor Dexamethazone Substrate

Loratidine Inhibitor Fexofenadine Substrate Amorinin Inhibitor Digoxin Substrate

Mibefradil Inhibitor Hoechst 33342 Substrate Apigenin Inhibitor Docetaxel Substrate

Naringenin Inhibitor Idarubicin Substrate Atorvastatin Inhibitor Doxorubicin Substrate

Pgp-4008 Inhibitor Irinotecan Substrate Atovaquone Inhibitor Daunorubicin Substrate

Phloretin Inhibitor Kaempferol Substrate Biochanin Inhibitor

Quercetin Inhibitor Loperamide Substrate Biricodar Inhibitor

Quinine Inhibitor Mitomycin Substrate Catechin Inhibitor

Rotenone Inhibitor Mitoxantrone Substrate Cefoperazone Inhibitor

Sakuranetin Inhibitor Ondansetron Substrate Chrysine Inhibitor

Sertraline Inhibitor Paclitaxel Substrate Cyclosporine Inhibitor

Sinensetin Inhibitor Procyanidin B2 Substrate Diltiazem Inhibitor

Stigmasterol Inhibitor Rhodamine 123 Substrate Elacridar Inhibitor

Syringaresinol Inhibitor Tenoposide Substrate

Tamoxifen Inhibitor Topotecan Substrate

Tariquidar Inhibitor Vinblastine Substrate

Valspodar Inhibitor Vincristine Substrate

Verapamil Inhibitor Vindesine Substrate

Zosuquidar Inhibitor Vinorelbine Substrate
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Data Warrior software is a multipurpose chemistry data visualization and data analysis program
that calculates various molecular descriptors and properties for a given set of compounds. It was used
to calculate the chemical descriptors as previously reported [24,25]. After calculation of the 32 chemical
descriptors, correlation coefficients between descriptors and correlation of the descriptors with the P-gp
modulator category (substrate or inhibitor) were determined using SPSS statistics software version
23.0.0.3 (IBM, Armonk, NY: IBM Corp, USA). If the correlation coefficient between the P-gp modulator
category (substrate or inhibitor) and a certain descriptor was below 0.1, this descriptor was omitted.
Only descriptors correlating with the P-gp modulator (substrate or inhibitor) category above 0.1 were
selected for further processing. As a next step, descriptors having a pairwise correlation coefficient to
the P-gp modulator category lower than 0.9 were excluded [26]. By this strategy, relevant descriptors
without an issue of over-fitting can be selected.

2.2. P-Glycoprotein Modulator Prediction Model Establishment

At first, a model, which can predict whether a given compound is a P-gp modulator, was built by
using the compound list from Broccatelli et al. [22] After applying the descriptor selection criteria by
considering the relevancy and over-fitting issues, “logP”, “H-donors”, “polar surface area”, “ligand
efficiency dependent lipophilicity”, “molecular complexity”, “stereo centers”, “rotatable bonds”,
“rings closures”, “aromatic rings”, “sp-3 atoms”, “amides”, “amines”, “alkyl-amines, ”and “basic
nitrogens” were considered for the preparation of the P-gp modulator/non-modulator prediction
model. Various classification algorithms with the leave-one-out random sampling method were tested,
i.e., k-Nearest Neighboring (kNN), Neural Network, Random Forest (RF), and Support Vector Machine
(SVM). Receiver operating characteristic (ROC) curves are depicted in Figure 1. The receiver operating
characteristic (ROC) curve plotted the true positive rate (= sensitivity) against the false positive rate
(= 1-specificity). The RF algorithm performed better than the other classification algorithms both
in learning and validation steps. The overall performance for the established model based on RF
algorithm is summarized in Table 3. The establishment of the P-gp modulator/non-modulator and
P-gp inhibitor/substrate prediction models were performed by using the machine learning software
Orange (Ljubljana, Slovenia) [27].
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Figure 1. Receiver operating characteristic (ROC) curves of k Nearest Neighboring (kNN), Neural
Network, Random Forest (RF), and Support Vector Machine (SVM) classification algorithms based
on random leave-one-out sampling for the P-gp modulator/non-modulator prediction model for the
learning step.
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Table 3. Performance of the P-gp modulator/non-modulator prediction model based on the RF classifier algorithm.

Steps Sensitivity Specificity Overall Predictive Accuracy Precision

Learning 0.938 0.969 0.953 0.968

External Validation 0.938 0.938 0.938 0.938

After applying the descriptor selection criteria by considering the relevancy and over-fitting issues,
“logP”, “total surface area”, “shape index”, “molecular flexibility”, “rotatable bonds”, “aromatic rings”,
“aromatic atoms”, “aromatic nitrogens”, “basic nitrogens”, “symmetric atoms”, and “acidic oxygens”
were considered for P-gp inhibitor/substrate prediction model preparation. Various classification
algorithms with the leave-one-out random sampling method were tested, i.e., kNN, Neural Network,
RF, and SVM. The ROC curves are depicted in Figure 2. The RF algorithm performed better than the
other classification algorithms. The overall performance for the established model is summarized in
Table 4.
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Figure 2. ROC curves of kNN, Neural Network, RF, and SVM classification algorithms based on
random leave-one-out sampling for the P-gp inhibitor/substrate prediction model for the learning step.

Table 4. Performance of the P-gp inhibitor/substrate prediction model based on the RF classifier algorithm.

Steps Sensitivity Specificity Overall Predictive Accuracy Precision

Learning 0.750 0.700 0.725 0.714

External Validation 0.786 0.833 0.800 0.917

In order to evaluate the model performance further and select potential inhibitors, a P-gp
modulator compound list consisting of 643 compounds from ChEMBL was used.

2.3. Molecular Docking

The recently published human P-gp structure was used (nanodisc reconstituted in complex
with UIC2 fab and paclitaxel at the drug-binding pocket, PDB ID: 6QEX, in the absence of a lipid
bilayer) [28]. The Fab chains were deleted. The bound ligands marked as “HETATM” including taxol
were also deleted from the PDB structure file in order to prevent interference with molecular docking.
The preparation of the final receptor structure as “.pdbqt” file was performed with Autodock tools
1.5.7. Selected compounds from inhibitor and substrate classes have been subjected to an automated
and comprising molecular docking campaign by using the high-performance supercomputer MOGON
(Johannes Gutenberg University, Mainz). Compound flexibilities were taken into account and a
rigid receptor structure was used. At first, three independent screening of all 643 compounds from
ChEMBL with Autodock Vina algorithm was performed by focusing on the drug-binding pocket of
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P-gp, where the majority of the known inhibitors and substrates bind to. The grid parameters are listed
in Table 5.

Table 5. Grid parameters for molecular docking analyses on human P-gp.

x y z

Number of Points 126 98 116

Grid Center 168.614 166.372 162.000

Grid Spacing (Å) 0.375

Afterward, the top 20 compounds in terms of binding energy yielded from both inhibitor and
substrate predictions were selected for molecular docking. Each molecular docking was based on
three independent dockings each consisting of 2,500,000 calculations. This means that each data
point represents the mean value of 7,500,000 individual MOGON-based calculations. The Autodock 4
algorithm was used for defined molecular docking calculations on the drug-binding pocket of P-gp as
described before [11], and Visual Molecular Dynamics (VMD) software (Theoretical and Computational
Biophysics group at the Beckman Institute, University of Illinois at Urbana-Champaign) was used for
the visualization of the docking poses. Estimated inhibition constants were calculated by the Autodock
algorithm with the equation:

Ki = exp
( ∆G

R ∗ T

)
(1)

Ki (M)
∆G (cal/mol) = 1000 * LBE (lowest binding energy, kcal/mol)
R (cal/mol-K): gas constant, 1.986 cal/mol-K
T (K): room temperature, 298 K

2.4. Boxplot Analysis

The distribution of the values for the descriptors used for the P-gp inhibitor/substrate prediction
model and the comparison for the predicted inhibitors and substrates among the ChEMBL P-gp
modulator list were subjected to Boxplot analysis using Microsoft Excel 2019 (Microsoft, USA).
Statistical significances were evaluated by the t-test (two-tailed, two-sample unequal variance).

3. Results

3.1. P-glycoprotein Modulator Predictions

The P-gp modulator/non-modulator prediction model was evaluated with the validation set as
mentioned in the corresponding method part. The RF algorithm reached 0.938 for all parameters.
The ChEMBL P-gp modulator list of 643 compounds was tested, and 641 out of 643 substances were
correctly predicted as modulators.

The P-gp inhibitor/substrate prediction model with the ChEMBL P-gp modulator list of 643
compounds was evaluated. A total of 493 substances were predicted as inhibitors, and 150 compounds
were predicted as substrates. Subjecting all compounds to Autodock Vina screening allowed to rank
them according to their binding energies. The top 20 inhibitor predictions with strong interaction to
P-gp are shown in Table 6. These inhibitors were selected for subsequent molecular docking. The top
20 substrate predictions with strong interaction to P-gp are shown in Table 7. These substrates were
also selected substances for subsequent molecular docking. The complete predictions for all 493
inhibitors together with their binding affinities to P-gp are shown in Supplementary Table S1, while all
predictions for the 150 substrates and their affinities to P-gp are listed in Supplementary Table S2.
The average lowest binding energy (LBE) was -8.155 for the inhibitors and -9.289 for the substrates.
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Table 6. Prediction of the top 20 P-gp inhibitors identified by the RF classification algorithm using
the ChEMBL P-gp modulator list of 493 compounds. The results were validated by determining the
binding affinities using Autodock VINA.

Name ChEMBL ID Inhibitor Probability Class VINA LBE (kcal/mol)

Karavoate P CHEMBL1641677 0.849 Synthetic −12.200 ± 1.212

Tribenzoylbalsaminol F CHEMBL1928854 0.549 Synthetic −12.033 ± 0.896

Zosuquidar CHEMBL444172 0.513 Synthetic −11.967 ± 0.058

Latilagascenes D CHEMBL435917 0.566 Synthetic −11.700 ± 0.001

Dihydrocytochalasin B CHEMBL2074735 0.513 Synthetic −11.367 ± 0.231

Jolkinoate I CHEMBL2315618 0.593 Synthetic −11.300 ± <0.001

Karavoate K CHEMBL1641672 0.849 Synthetic −11.267 ± 0.493

Fanchinin CHEMBL176045 0.586 Synthetic −11.233 ± 0.208

Latilagascene I CHEMBL511018 0.586 Synthetic −11.167 ± 0.058

Karavoate L CHEMBL1641673 0.766 Synthetic −11.133 ± 0.808

3-Methylcholanthrene CHEMBL40583 0.788 Synthetic −11.100 ± <0.001

Lonafarnib CHEMBL298734 0.567 Synthetic −11.000 ± <0.001

Karavoate N CHEMBL1641675 0.666 Synthetic −10.933 ± 0.058

Tariquidar CHEMBL348475 0.619 Synthetic −10.933 ± 0.404

Pimozide CHEMBL1423 0.517 Synthetic −10.900 ± 0.100

Karavoate I CHEMBL1641670 0.766 Synthetic −10.767 ± 0.058

Cryptotanshinone CHEMBL187460 0.663 Natural −10.700 ± <0.001

Jolkinol B CHEMBL489265 0.577 Synthetic −10.700 ± <0.001

Astemizole CHEMBL296419 0.617 Synthetic −10.667 ± 0.115

Metergoline CHEMBL19215 0.732 Natural −10.600 ± <0.001

Table 7. Prediction of P-gp substrates identified by the RF classification algorithm using the ChEMBL
P-gp modulator list of 150 compounds. The results were validated by determining the binding affinities
using Autodock VINA.

Name ChEMBL ID Substrate probability Class VINA LBE (kcal/mol)

Vindoline CHEMBL526546 0.771 Synthetic −15.000 ± <0.001

Cepharanthin CHEMBL2074948 0.614 Natural −12.600 ± <0.001

Latilagascene G CHEMBL448193 0.514 Synthetic −12.300 ± <0.001

Mk3207 CHEMBL1910936 0.733 Synthetic −12.167 ± 0.058

Ergocristine CHEMBL446315 0.767 Natural −12.067 ± 0.058

Cytochalasin E CHEMBL494856 0.6 Natural −11.800 ± <0.001

Jolkinoate L CHEMBL2315621 0.567 Synthetic −11.533 ± 0.058

Irinotecan CHEMBL481 0.967 Natural −11.400 ± 0.819

Latilagascenes E CHEMBL373511 0.614 Synthetic −11.367 ± 0.116

Dofequidar CHEMBL65067 0.583 Synthetic −11.300 ± 0.001

Acetyldigoxin CHEMBL2074725 0.708 Natural −11.233 ± 0.808

Dihydroergocristine CHEMBL601773 0.767 Natural −11.133 ± 0.666

Telcagepant CHEMBL236593 0.517 Synthetic −11.067 ± 0.058

Ergotamine CHEMBL442 0.8 Natural −10.933 ± 0.058
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Table 7. Cont.

Name ChEMBL ID Substrate probability Class VINA LBE (kcal/mol)

Candesartan Cilexetil CHEMBL1014 0.567 Synthetic −10.900 ± 0.200

Digoxin CHEMBL1751 0.708 Natural −10.833 ± 1.097

Bromocriptine CHEMBL493 0.767 Natural −10.800 ± 0.100

Itrazole CHEMBL64391 0.564 Synthetic −10.700 ± 0.436

Digitoxin CHEMBL254219 0.725 Natural −10.667 ± 0.462

Paclitaxel CHEMBL428647 0.808 Natural −10.633 ± 0.462

Among the 493 inhibitor compounds were 117 natural products (= 23.7%), while all other
compounds were of synthetic origin (Supplementary Table S1). The proportion of natural products was
higher among the predicted P-gp substrates (69/150 = 46%) (Supplementary Table S2). This trend was
even more apparent if we focused on the top 20 inhibitor or substrate compounds only (Tables 6 and 7).
Here, 2/20 (= 10%) were predicted inhibitors, but 11/20 (= 55%) were predicted substrates, indicating
that P-glycoprotein may expel natural xenobiotics from cells with higher probability.

3.2. Molecular Docking

After running the prediction model on the P-gp modulator list from ChEMBL and the Autodock
VINA screening, the top 20 compounds from the inhibitor class and the top 20 compounds from the
substrate class were selected for molecular docking analyses on human P-gp. The lowest binding
energies (LBE) and predicted inhibition constants are listed in Table 8 for the inhibitors and Table 9 for
the substrates.

Table 8. Lowest binding energies (LBE) and predicted inhibition constants obtained by molecular
docking of the top 20 P-gp inhibitors.

P-gp Inhibitor AutoDock LBE (kcal/mol) Predicted Inhibition Constant (µM)

3-Methylcholanthrene −8.900 ± 0.001 0.300 ± <0.001

Astemizole −9.693 ± 0.047 0.079 ± 0.007

Cryptotanshinone −9.010 ± 0.001 0.251 ± <0.001

Dihydrocytochalasin B −10.460 ± 0.020 0.0212 ± 0.001

Fanchinin −9.937 ± 0.067 0.0522 ± 0.006

Jolkinoate I −10.440 ± 0.200 0.0232 ± 0.008

Jolkinol B −10.250 ± 0.044 0.0307 ± 0.002

Karavoate I −12.310 ± 0.235 0.001 ± <0.001

Karavoate K −12.330 ± 0.213 0.001 ± <0.001

Karavoate L −12.807 ± 0.200 0.0004 ± <0.001

Karavoate N −12.160 ± 0.560 0.002 ± 0.001

Karavoate P −13.537 ± 0.605 0.0002 ± <0.001

Latilagascene I −11.147 ± 0.561 0.009 ± 0.009

Latilagascenes D −12.220 ± 0.370 0.001 ± 0.001

Lonafarnib −11.433 ± 0.087 0.004 ± 0.001

Metergoline −9.737 ± 0.029 0.073 ± 0.004

Pimozide −10.220 ± 0.324 0.031 ± 0.025

Tariquidar −11.273 ± 0.274 0.006 ± 0.002

Tribenzoylbalsaminol F −12.403 ± 0.118 0.001 ± <0.001

Zosuquidar −11.257 ± 0.361 0.006 ± 0.004

Elacridar (positive control) −11.093 ± 0.361 0.008 ± 0.004
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Table 9. Lowest binding energies (LBE) and predicted inhibition constants obtained by molecular
docking of the top 20 P-gp substrates.

P-gp substrate AutoDock LBE (kcal/mol) Predicted Inhibition Constant (µM)

Acetyldigoxin −11.767 ± 0.480 0.003 ± 0.002

Bromocriptine −12.360 ± 1.02 0.002 ± 0.001

Candesartan Cilexetil −11.153 ± 0.370 0.007 ± 0.004

Cepharanthin −10.753 ± 0.006 0.013 ± <0.001

Cytochalasin E −10.957 ± 0.006 0.093 ± 0.001

Digitoxin −11.390 ± 0.517 0.006 ± 0.004

Digoxin −11.500 ± 0.151 0.004 ± 0.001

Dihydroergocristine −11.670 ± 0.056 0.003 ± <0.001

Dofequidar −10.970 ± 0.351 0.010 ± 0.006

Ergocristine −12.407 ± 0.012 0.001 ± <0.001

Ergotamine −11.227 ± 0.150 0.006 ± 0.001

Irinotecan −11.380 ± 0.020 0.005 ± <0.001

Itrazole −10.843 ± 0.186 0.012 ± 0.003

Jolkinoate L −10.643 ± 0.681 0.022 ± 0.016

Latilagascenes E −11.770 ± 0.185 0.002 ± 0.001

Latilagescene G −12.500 ± 0.316 0.001 ± <0.001

Mk-3207 −11.650 ± 0.020 0.003 ± <0.001

Paclitaxel −9.607 ± 0.359 0.103 ± 0.065

Telcagepant −9.333 ± 0.021 0.144 ± 0.005

Vindoline −7.337 ± 0.211 4.363 ± 1.389

Doxorubicin (positive control) −11.070 ± 0.135 0.008 ± 0.002

The negative control compounds (oxprenolol, promazine, riluzole) revealed weaker interaction
with P-gp (Table 10) and slightly different docking pose as well (Figure 3).

As can be seen in Figure 4, the predicted inhibitors possessed similar docking poses as elacridar
at the drug-binding pocket of P-gp. Similar results were observed for the substrates: The predicted
substrates revealed similar docking poses as doxorubicin. Hence, these results validated the precision
and reliability of the model.

Table 10. Lowest binding energies (LBE) and predicted inhibition constants obtained by molecular
docking of the non-modulators.

P-gp Inhibitor AutoDock LBE (kcal/mol) Predicted Inhibition Constant (µM)

Oxprenolol −5.743 ± 0.398 70.273 ± 40.057

Promazine −6.933 ± 0.021 8.273 ± 0.262

Riluzole −5.380 ± 0.010 114.080 ± 2.326
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as control drugs.

Predicted inhibitors and substrates interact with P-gp significantly stronger than the negative
control compounds. This is clear both from the binding energies and predicted inhibition constants.
Binding energies of non-modulators are within −5.380 (piluzole) to −6.933 (promazine) kcal/mol and
the predicted inhibition constants are within 8.273–114.080 µM, whereas binding energies for the
predicted substrates are within −7.337 (vindoline) to −12.500 (latilagescene G) and for the predicted
inhibitors−8.900 (3-methylcholanthrene) to−13.537 (karavoate P). Predicted inhibition constants for the
predicted substrates are within 0.001–4.363 and for the predicted inhibitors 0.0002–0.300 µM. Docking
pose of the negative control compounds differs from that of inhibitors and substrates. Overall, it can



Cells 2019, 8, 1286 11 of 17

be speculated that the predicted inhibitors interact with P-gp stronger than the predicted substrates
and the non-modulators are making weak interactions with P-gp and they bind to a different site.

The distribution of the values for the descriptors used to build the model and the comparison
for the predicted inhibitors and substrates in terms of those descriptor values were performed with
Boxplot analysis. As can be seen from Figure 5, the inhibitors revealed significantly different values for
all descriptors except logP and acidic oxygens. The average values of descriptors for inhibitors and
substrates are listed in Table 11.Cells 2019, 8, x 11 of 17 
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Table 11. Average values of descriptors for inhibitors and substrates.

Descriptor Inhibitor Substrate

cLogP 3.498 ± 2.464 3.134 ± 2.962
Total surface area 311.199 ± 188.142 461.870 ± 286.187

Shape index 0.529 ± 0.125 0.429 ± 0.081
Molecular flexibility 0.395 ± 0.141 0.332 ± 0.114

Rotatable bonds 6.799 ± 12.158 9.818 ± 11.778
Aromatic rings 1.450 ± 1.168 1.918 ± 1.330
Aromatic atoms 8.237 ± 6.470 10.759 ± 7.098

Symmetric atoms 2.649 ± 3.637 3.582 ± 4.477
Aromatic nitrogens 0.301 ± 0.772 0.559 ± 1.141

Basic nitrogens 0.441 ± 0.625 0.659 ± 0.762
Acidic oxygens 0.117 ± 0.361 0.171 ± 0.462

4. Discussion

In the present study, we utilized machine learning methods based on leave-one-out random
sampling in order to develop a P-gp modulator prediction platform by using chemical descriptors.
The main focus was to predict whether a given compound can behave as substrate or inhibitor of P-gp.
The RF classification algorithm (AUC:0.774) outperformed the other tested algorithms (kNN—0.676,
Neural Network—0.745, SVM—0.720). Performance scores for the external validation set were even
higher than the learning set with better sensitivity (0.786 vs. 0.750), specificity (0.833 vs. 0.700), overall
prediction accuracy (0.800 vs. 0.725), and precision (0.917 vs. 0.714). Further testing with the P-gp
modulator list from ChEMBL yielded promising results with accurate predictions. Four compounds
from inhibitor and four compounds from substrate prediction list were selected for molecular docking
analyses. Validations with molecular docking on a recently released human P-gp structure were
performed in terms of binding energy and docking poses by including known inhibitor (elacridar)
and substrate (doxorubicin) as controls. Curcumin, miconazole, tacrolimus, and venlafaxine revealed
a similar docking pose at the drug-binding pocket of P-gp with comparable binding energies with
that of elacridar. MK-3207, rifampin, vindoline, and voacamine revealed similar docking poses and
comparable binding energy with those of doxorubicin. Overall, the precision and reliability of the
model were further confirmed.

Machine learning and artificial intelligence attracted increasing interest in the drug discovery
area [18,29,30], and utilizing these methods possess great potential for drug discovery, as they save
time and costs during the preclinical steps. The RF algorithm depends on multiple decision trees
that are built based on the training data, and a majority voting scheme is used to make classification
or regression predictions [31]. RF application to drug discovery has been recently reported, and it
outperformed other algorithms such as SVM and NN in terms of feature selection [32].

There are various studies in the literature that utilized machine-learning strategies focusing on
P-gp. One study pointed out a P-gp substrate prediction model based on RF algorithm to estimate
transport potential for central nervous system drugs, accuracy lies between 0.713 and 0.846 whereas
precision is between 0.633 and 0.777 [33]. Our P-gp modulator prediction model involves an accuracy
of 0.953 for the learning set and 0.938 for the validation set, and our P-gp inhibitor prediction model
has an accuracy value of 0.725 for the learning set and 0.800 for the validation set. In terms of precision,
our models also perform better. Modulator prediction model involves a precision of 0.968 for the
learning set and 0.938 for the validation set. Inhibitor prediction model has a 0.714 precision for the
learning set and 0.917 for the validation set. Similarly, a P-gp substrate efflux ratio prediction model
has been recently reported based on SVM algorithm [34]. The affinities of flavonoids to P-gp have
been evaluated with an SVM-based model and a high correlation with the experimental data has
been achieved [35]. Another study involving P-gp inhibitor prediction was performed for chalcone
derivatives and selected inhibitor candidates were analyzed in terms of their docking pose on a
homology model of human P-gp [36]. The prediction of blood–brain barrier permeability mechanism
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of central nervous system drugs has been utilized with an SVM-based model [37]. Binding pattern
prediction based on pharmacophore ensemble/SVM method for potential P-gp inhibitors was also
recently reported [38]. Another SVM-based model coupled with molecular docking aimed to predict
whether a given compound may act as P-gp substrate, the accuracy lies between 0.750 and 0.800,
specificity between 0.750 and 0.810, and sensitivity between 0.740 and 0.790 [39]. Our modulator
prediction model outperforms that model in all those parameters. Our inhibitor prediction model
outperforms in the validation set. Similarly, in 2004, SVM-based P-gp substrate prediction model was
reported; sensitivity was 0.812, specificity was 0.792, and accuracy was 0.794 [40]. Our modulator
prediction model outperforms that model in all those parameters. Our inhibitor prediction model
outperforms in the validation set for the specificity and accuracy parameters. In general, these previously
published studies have certain disadvantages, e.g., low performance scores in terms of prediction,
focusing on only P-gp substrate prediction or molecular docking with homology models but not
crystal structures. Our model is superior compared to the previously published studies for several
reasons. It is based on leave-one-out random sampling RF algorithm, focused on both natural as
well as synthetic compounds, has high sensitivity, specificity, predictive accuracy, and precision to
predict at first P-gp modulator/non-modulator and as a next step to predict P-gp substrate/inhibitor
depending on various chemical descriptors, and it was coupled with molecular docking using the
recently released crystal structure of human P-gp. The fact that predictions on the P-gp modulator
list of compounds from ChEMBL was validated with accurate molecular docking results was also
advantageous for our model. Furthermore, after the initial compound screening, selected inhibitors
revealed similar docking poses as elacridar (as positive control for an inhibitor) and selected substrates
revealed similar docking poses as doxorubicin (as positive control for a substrate). Non-modulators
have significantly weaker interaction with P-gp and they bind to a slightly different position. Overall,
those observations provide further clues for the reliability of the prediction model.

Selected inhibitors and substrates after the virtual screening are supported by literature;
astemizole [41], cryptotanshinone [42], dihydrocytochalasin B [43], jolkinol B [44], latilagascenes D [45],
lonafarnib [46], tariquidar [12], zosuquidar [47], acetyldigitoxin [48], bromocriptine [49], candesartan
cilexetil [50], cepharanthin [51], cytochalasin E [52], digitoxin [53], digoxin [54], dihydroergosrictine [55],
dofequidar [56], ergocristine [55], irinotecan [57], latilagascenes E [45], MK-3207 [58], paclitaxel [59],
vindoline [60].

Many cancer types involve P-gp overexpression, which is associated with increased efflux of
established anticancer drugs and natural cytotoxic products out of cancer cells. This phenomenon
represents a major drawback of cancer chemotherapy with limitations in killing tumor populations due
to MDR [61,62]. P-gp overexpression is indeed one of the main reasons for MDR and thus inadequate
chemotherapy success rate. Targeting P-gp is critical to achieve high success rates for chemotherapy,
therefore, identification of novel P-gp inhibitors is critical in that regard.

Our prediction platform for P-gp modulators facilitates to predict whether a given compound
can behave as a substrate or an inhibitor of P-gp. The selection of potential inhibitors can be further
validated by molecular docking and the comparison of the binding energy and docking pose with those
of known P-gp inhibitors. As a next step in the future, our model may be helpful to identify potential
novel P-gp inhibitors and to develop effective chemotherapy strategies involving combination therapy
with targeted chemotherapy drugs and identified P-gp inhibitors.

5. Conclusion

In the present study, we established P-gp modulator/non-modulator and inhibitor/substrate
prediction models based on the RF algorithm and leave-one-out random sampling. Validation
with molecular docking was performed. The identification of novel P-gp inhibitors is critical to
overcome MDR and to achieve better chemotherapy strategies. This model can predict whether a
given compound can behave as substrate or inhibitor of P-gp, and will be, thus, helpful to identify
potential P-gp inhibitors.
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