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As novel diagnostics, therapies, and algorithms are developed to improve case finding, diagnosis, and clinical management of
patients with TB, policymakers must make difficult decisions and choose among multiple new technologies while operating under
heavy resource constrained settings. Mathematical modelling can provide helpful insight by describing the types of interventions
likely to maximize impact on the population level and highlighting those gaps in our current knowledge that are most important
for making such assessments. This review discusses the major contributions of TB transmission models in general, namely, the
ability to improve our understanding of the epidemiology of TB. We focus particularly on those elements that are important to
appropriately understand the role of TB diagnosis and treatment (i.e., what elements of better diagnosis or treatment are likely to
have greatest population-level impact) and yet remain poorly understood at present. It is essential for modellers, decision-makers,
and epidemiologists alike to recognize these outstanding gaps in knowledge and understand their potential influence on model
projections that may guide critical policy choices (e.g., investment and scale-up decisions).

1. Introduction

Recent decades have seen renewed interest in tuberculosis
(TB) research, notably in areas of diagnostic test develop-
ment and novel treatment regimens for TB and multidrug
resistant TB (MDR-TB) [1–3]. New advances bring great
potential to reduce TB burden and mortality, but resources
remain highly constrained in most TB endemic settings.
Mathematical modelling can serve to estimate the impact
of various interventions on outcomes of interest; they can
provide helpful insight by describing the types of interven-
tions likely to maximize impact on the population level and
highlighting those gaps in our current knowledge that are
most important for making such assessments [4–8]. While
the term “mathematical modelling” is used to describe a
variety of techniques, this review will focus on transmission
models designed to assess or understand the population-level
(epidemiological) impact of TB control interventions.

The compartmental model, in which a population is
divided into subpopulations or “compartments” on the basis
of such characteristics as TB status, has historically been the
most common form of TB mathematical model. Although

other types of models, such as agent-based and network
models, have been used to model specific transmission
dynamics of TB [9–11], they are in general less frequently
used in TB transmission models, where we are modeling
airborne transmission of a chronic infection, compared to
other infectious disease systems. In this outlook, we focus
on compartmental models, which have been influential in
modeling transmission dynamics of numerous infectious
diseases, including droplet-borne respiratory diseases (e.g.,
influenza), sexually transmitted infections, and vector-borne
diseases [12, 13]. The prototypical “SIR” model divides the
population into susceptible (S), infected (I), and recovered
(R) compartments, and transmission dynamics are described
using rates of flow between these compartments. Given the
complexities of TB pathology and the presence of a poten-
tially long latency, compartmental models of TB are typically
modified reflecting TB pathology, relevant context, and the
research question of interest. Figure 1 depicts a simplified
compartmental model for TB transmission, in which the
population is subdivided into compartments of individuals
who have never been infected with TB, those who have been
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Figure 1: A simple epidemiological model of TB. Uninfected
individuals that are exposed to TB can become infected with
TB, which can result in either a long-standing infection that is
asymptomatic and noninfectious (latent TB) or progress at some
point (“reactivation”) to a condition that is infectious and generally
symptomatic (active TB). Detection and effective treatment can cure
active TB. For simplicity, some other important features of natural
history of TB are not shown here (but are generally included in
compartmental models of TB), including reinfection, spontaneous
resolution (“self-cure”), and mortality.

infected but are not currently infectious (latent TB), and those
who are actively infectious and symptomatic. By evaluating
the rates at which people flow from one compartment to
another under different scenarios, such models can provide
insight about not only the direct effects of those interventions
on those who receive them, but also the indirect effects that
occur through a reduction in transmission to the population
as a whole.

Here, we use the compartmental model as a tool to
highlight a major contribution of TB transmission models
in general, namely, the ability to improve our understanding
of the epidemiology of TB. We focus particularly on those
elements that are important to appropriately understand
the role of TB diagnosis and treatment (i.e., what elements
of better diagnosis or treatment are likely to have greatest
population-level impact) and yet remain poorly understood
at present. It is essential for modellers, decision-makers, and
epidemiologists alike to recognize these outstanding gaps
in knowledge and understand their potential influence on
model projections that may guide critical policy choices
(e.g., investment and scale-up decisions). Only through
such shared understanding can epidemiologists direct data
collection efforts at the highest-yield targets, decision-makers
understand both the value and limitations of model-based
projections, and modelers seek to refine their tools in
response to emerging data and policy needs.

2. Modelling Transmission

2.1. Infectiousness over Time. Akey advantage of transmission
models is that they incorporate the process of infection; in
other words, interventions that lead to faster diagnosis of TB
also benefit the population by reducing transmission [14].
However, the process of transmission is also an area of great
uncertainty in TB. A commonly used measure to describe
infectiousness is the effective reproductive ratio (𝑅

𝑒
), which

represents the average number of secondary cases arising
from a primary case of active TB in a population with its
existing level of immunity. Notably, 𝑅

𝑒
depend on both the

process of generating infectious particles and social mixing
or contact patterns within the host population.

The impact of a given diagnostic intervention on TB
transmission will depend on its effect on 𝑅

𝑒
, as it is deployed

in the population. Our ability to estimate the number of
effective secondary cases produced by each index case and
how a diagnostic intervention may reduce this number is
therefore critical. However, accurately assessing the repro-
ductive ratio for TB, much less the effect of a diagnostic
intervention on that ratio, requires a better understanding of
the context in which TB transmission occurs. Unfortunately,
we currently lack a tool that can reliably detect recent TB
transmission or infection: tests for latent TB infection do not
differentiate between recent and remote infection, and tests
for active TB likewise do not differentiate the timing of initial
transmission leading to infectiousness [15, 16]. Unlike acute
infections (e.g., influenza, measles, and diarrheal illness), the
time from infection to disease in TB can be as short as a few
months, or as long as decades. Even animalmodels are limited
in this regard; with the exception of nonhuman primates,
animal models including mice, guinea pigs, and rabbits do
not approximate the human latent TB infection phase [17],
and there is no animal model for human social interactions.

The effective reproductive ratio for TB in different
populations depends on three processes: the generation of
infectious particles, contact between infectious individuals
and other members of society, and susceptibility of the host
population [7].The clinical course of TB infection and disease
comprises a spectrum that is dynamic over time and varies
between and within individuals [18] and includes elements
of infectiousness, symptom burden, and changing social
interactions (e.g., staying home when sick) that are all poorly
understood. Better data to inform these dynamic processes
would help to improve our estimates of the impact expected
fromdifferent TBdiagnostic interventions, andmathematical
models can highlight which data elements are most critical
[19].

2.2. Generation of Infectious Particles. As TB is an airborne
disease, generation of infectious particles (“droplet nuclei”)
is essential to transmission [20]. This process depends on
both the infectious agent (e.g., ability to survive in small
particles and to infect lung alveolar epitheliumwhen inhaled)
and the host (e.g., generation of particles sufficiently small
to remain airborne and that contain infectious organisms).
The presence of visibleM. tuberculosis bacilli on microscopic
examination of sputum (sputum smear status) is a correlate of
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Figure 2: (a) The rate of bacterial shedding over the duration of infection may be a constant function (black line) or change over time
(blue line). (b) The cumulative number of contacts exposed to TB over the duration of infection may increase linearly over time (black
line) or may plateau as contact pool becomes saturated or patient is too ill to circulate in the community. The potential impact of a novel
intervention may depend on this assumption; given a linear increase, earlier intervention (𝑡

1
) would be likely preferred. While given the

second curve with only a small increase and plateau, the impact between intervening at 𝑡
1
and 𝑡
2
might not be as great; therefore other factors

including cost-effectiveness may come into play. (c) The cumulative number of secondary cases resulting from one index case in relation to
the number of cumulative infected contacts: there are factors associated with bacterial virulence and host susceptibility that impact the rate
of progression from infection to disease. This rate may be steeper among immunosuppressed contacts, for example, (dotted line) compared
with immunocompetent contact (solid line). (d) The effective reproductive number (𝑅

𝑒
) is the number of secondary cases generated over

a given time period. Bacterial shedding, contact mixing pattern, and bacterial and host susceptibility all contribute to the overall rate of
secondary cases generated over time; depending on what assumptions are made these rates could be thought to stay constant over time or
vary, perhaps tapering off over the duration of infection. By reducing the time to diagnosis and treatment initiation we hope to reduce the
number of secondary cases but the amount of impact depends on assumptions around the shape of the curve over time. The hashed area
represents the secondary cases generated from one index case while the shaded area represents the potential reduction in secondary cases
given an intervention at 𝑡

2
. Figure adapted with permission from Dowdy et al. [7].

infectiousness, but individuals with smear-negative TB may
still contribute a substantial proportion of TB transmission
on the population level [21]. This has important implications
for diagnosis, which traditionally rests on sputum smear
microscopy as an integral part of the diagnostic algorithm.
For novel diagnostic tests to have important impact on TB
epidemiology, they must improve upon sputum smear, in
terms of its ability to identify those cases that contribute
to community transmission. Whole genome sequencing is
now frequently used in high-income countries to identify
transmission clusters and super-spreaders [22–25], but these
evaluations occur post hoc and only in lower-burden or
research settings. Understanding how other diagnostic inter-
ventions are likely to alter the total number of infectious
particles generated by a single representative individual with

active TB may help to understand the likely impact of those
interventions on the population level.

Within the context of diagnostic interventions, it
becomes important to understand how both the generation
of infectious TB particles and the rate of contact with
susceptible individuals change over time with the evolving
TB disease course (Figures 2(a) and 2(b)). Assumptions
relating to these processes have important implications for
the potential impact of diagnostic interventions [7]. For
example, if diagnostics are deployed in such a way that most
infectious contacts have already occurred by the time new
diagnostic tests can be accessed, the impact of those novel
tests on TB incidence will be limited—even if the tests are
perfectly sensitive and specific. Similarly, if diagnostic tests
are implemented without the infrastructure necessary to



4 Advances in Medicine

link people who test positive to appropriate treatment, the
infectious course will remain unaltered. Specifically, Dowdy
et al. used a model that included subclinical TB disease phase
and found that ignoring the possibility of infectiousness prior
to seeking care resulted in models that could overestimate
the impact of passive diagnostic testing (i.e., testing that
relies on symptomatic presentation by patients) by 50%
or more [7]. This model demonstrated that active case
detection of prevalent cases in the community is likely to
have greater impact on the duration of infectiousness, and
thus on TB incidence, than passive diagnosis. It also showed
that estimates of the relative impact of different diagnostic
strategies depend critically on improving our understanding
of when in the disease process TB transmission occurs.

2.3. Contact between Infectious Individuals and Other Mem-
bers of Society. Generation of an infectious particle will only
cause transmission of TB if that particle contacts the lung
epithelium of another individual. Such contact depends on
social mixing patterns between people with active TB and
other members of society. For example, if an index case
only has extended exposure to household contacts, close
friends and family there may be a point in time where the
cumulative number of infected contacts reaches a plateau,
with no or very few new contacts exposed (Figure 2(b)). In
such a scenario, increasing levels of bacterial shedding from
the index case may not result in more infections if the pool
of susceptible contacts has reached saturation. Similarly, low
levels of bacterial shedding during early onset of the disease,
even prior to the patient recognizing any symptoms, may
account for a significant proportion of transmission events
if the duration of that period is long and characterized by
more frequent airborne contacts (e.g., if people continue
to work and interact with society during that time). Like
the ability to generate infectious particles, the trajectory of
social contact is likely to vary between individuals and across
settings, and the point in that trajectory at which diagnostic
interventions are deployed will determine the population-
level impact of those interventions. Many models assume the
simplest case (constant rate of contact over time), but the
number of susceptible contacts most likely declines over time
unless index cases are hospitalized, imprisoned, or otherwise
introduced into a new population. This phenomenon likely
decreases the potential impact of passive diagnostic testing,
as most transmission events may occur early in the disease
course. Kasaie et al. [10] employed agent based models
to explore scenarios where transmission was dominated
by either community or household transmission and the
potential impact of household based contact tracing. The
authors found that 75–95% of household infections would
have occurred prior to the diagnosis of the focal case in
the household, and, hence, household contact tracing by
itself was unlikely to be transformative in terms of TB
epidemiology. Better understanding the degree to which
contact rate changes over time may be essential for better
estimating the impact of novel diagnostic tests for TB.

2.4. Susceptibility of the Host Population. A third important
determinant of the rate of TB transmission over time, and

thus of the impact of diagnostic testing, is the susceptibility
of the host population to developing active TB after a
potentially infectious contact. This concept of susceptibility
therefore encompasses both susceptibility to infection and
susceptibility to progression if infection occurs. While not
necessarily intrinsic to host susceptibility, bacterial strain
virulence also plays an important role [26, 27]. Further
determinants of TB susceptibility, including HIV, older age,
diabetes, smoking, and malnutrition, have been described
in the literature; however, the degree to which these deter-
minants of susceptibility overlap with potential transmission
events is only now becoming understood [28]. In settings
where many infectious contacts occur with individuals of
higher susceptibility profiles, 𝑅

𝑒
will be substantially higher

than if those contacts occur with less susceptible people, as
depicted in Figure 2(c). Indeed, one of the major reasons for
the dramatic declines in TB incidence seen throughout much
of theWestern world is likely a reduction in the susceptibility
profile of the population, while the TB rise in Africa is driven
by the HIV epidemic [29].

2.5. Sensitivity andUncertainty Analyses. Transmissionmod-
elling results are often accompanied by sensitivity and uncer-
tainty analyses, which can achieve two important goals.
First, some parameters used in the model can contain large
uncertainty or variability in the estimates, arising from either
the dearth of high quality data or the variability of estimates
derived from different sources. Uncertainty analyses help
give readers perspective on how uncertainty in model inputs
might translate into uncertainty in model results. Second,
sensitivity analyses of the model input parameters can pro-
vide critical information onwhichmodel parameters have the
most influence on model results. Typical sensitivity analyses
include one-way and multivariate sensitivity analyses. In
one-way sensitivity analysis, one observes changes in the
model outcome as a result of change in a single focal
parameter, holding other parameters constant. In contrast,
in a multivariate sensitivity analysis, one varies all or most
of the model parameters over selected ranges and computes
the model outcomes. By analyzing the correlation between
the model outcome and a given parameter, one can assess
the role of the parameter in the outcome [30]. Sensitivity and
uncertainty analyses also do not address uncertainties arising
from uncertainty or variability in the model structure.

3. The Role of Modeling: TB Diagnostics

3.1. Background. The field of TB diagnostics has seen major
growth in the last decade, and many novel technologies
are now available for use, with even more in the pipeline.
Arguably the greatest technological breakthrough in TB con-
trol over the past decade has been a new diagnostic test: Xpert
MTB/RIF, a molecular test for TB and rifampin resistance
capable of providing results in two hours with minimal
human resource requirement [31]. Important questions are
now arising as policymakers must consider implementing
rapidly expanding options for TB diagnostics, while drawing
on limited budgets.



Advances in Medicine 5

Mathematical modeling can help policymakers under-
stand the potential population-level impact and cost-
effectiveness associated with implementing novel diagnostic
tests. Importantly, models can consider a wide variety of
settings, populations, and diagnostic algorithms to help
inform the “right diagnostic approach for the right setting”—
in other words, helping us to understand what population
characteristicswill lead to different approaches having greater
or less impact. Whereas decision-makers often express an
interest in models that will project the future under different
implementation scenarios, understanding the factors that
drive the impact of different diagnostic approaches is often
a more important long-term goal—and models are uniquely
positioned to provide this kind of insight.

Lin et al. have conducted modelling studies to esti-
mate the potential impact of new diagnostic tools using
detailed models of the diagnostic pathway and integrating
operational and dynamic transmission models [32, 33]. This
work compared the reduction in incidence, prevalence, and
mortality of pulmonary TB achieved by new diagnostic
tools against a baseline case of sputum smear microscopy.
They demonstrated the importance of including operational
context and the diagnostic pathway in models evaluating
novel diagnostics; for example, the epidemiologic impact of
a new more accurate tool was greatest in settings where
access to tuberculosis care was good but existing diagnostic
strategies have poor sensitivity and was less dependent on its
relative performance. These models can be informative both
for guiding decisions around novel tools and the impact of
alternative diagnostic pathways; however useful projections
rely on capturing the relevant structure of the transmission
dynamics and diagnostic pathway at work.

Matching the appropriate diagnostic test and algorithm
to a given setting is an important task but one that
requires understanding of interactions between population
epidemiology, test characteristics, operational considerations
(e.g., feasibility of scale-up), and resource requirements.
Depending on the interventions being considered, different
assumptions may be required—such as those relating to test
accuracy (e.g., sensitivity and specificity), use (e.g., diagnostic
algorithm and purpose of the test), underlying population,
and costs. Improved understanding of which assumptions are
most critical to specific decisions regarding TB diagnostics
can help the TB control community direct data-gathering
efforts and make more informed decisions in the future.

3.2. Summary: Infectiousness over Time and Implications for
Models of Diagnostic Interventions. Figure 2(d) depicts the
rate of transmissions that will ultimately lead to a secondary
case of infectious TB, over the disease course of an index
case. Upon contact with a diagnostic intervention (𝑡

2
) that

results in treatment that would otherwise be delayed (𝑡
3
),

the shaded area between those two times and under the
curve represents the reduction in 𝑅

𝑒
achieved. This figure

demonstrates that the potential impact of diagnostic inter-
ventions depends on not only their accuracy but also how
early in the disease course they can be deployed and the
shape of the “transmission curve” before versus after contact
with the diagnostic intervention. Understanding this shape is

key to the development of accurate models of TB diagnostics
and incorporates the elements discussed above: generation of
infectious particles, contact, and susceptibility. The duration
between 𝑡

2
and 𝑡
3
likewise depends on characteristics of the

health system and patients’ interactions with that system
[32, 33]. The potential impact of novel diagnostics can be
attenuated not only by flaws in the test, but also by delays in
care seeking, diagnosis, and treatment (i.e., longer time to 𝑡

2

in Figure 2(d)).
In summary, although active case finding is a stated goal,

at present we must still rely on symptomatic presentation
by patients for most TB diagnoses to occur. Mathematical
models can help decision-makers understand the potential
impact of novel TB diagnostic tests, but they also high-
light the key data gaps that prevent us from being able to
make more accurate, evidence-based projections. Those data
gaps include insufficient knowledge about the trajectories
of infectiousness, mixing, and population susceptibility over
time, including how those trajectories are influenced by the
pathogen, host, and health system. If we are to understand
the population-level impact of novel TB diagnostics, the next
wave of epidemiological data gathering must address these
deficiencies in our current understanding.

4. The Role of Modeling: TB Drugs and
Drug Resistance

4.1. Background. For the first time in many decades [34] new
first-line drug regimens are being considered for treatment
of TB. Some of these regimens make repurposed use of
existing drug compounds (e.g., fluoroquinolones) and others
use novel compounds (e.g., PA-824) [35–37]. The possibility
of new first-line drug regimens for TB offers an opportunity
to further investigate the dynamics of TB drug resistance,
which will be a key consideration in the roll-out of any such
regimen. Existing second-line regimens require prolonged,
costly, uncomfortable treatment (often 24 months with up
to 8 months of daily injections) with a much greater risk
of side effects including neuropsychiatric effects, loss of
hearing, and kidney failure [38–40]. Since such regimens
are very challenging to complete, it is essential to limit our
dependence on such regimen from a population perspective.
However, transmission of resistance can spur a vicious cycle:
as resistant strains of TB becomemore prevalent, they spread
more rapidly, in turn increasing the transmission burden
of drug resistant TB. Mathematical models can help guide
decision-making and elucidate key knowledge gaps in this
complex arena [41–46]. In the context of resistance to new
first-line drug regimens, the role of modeling is particularly
important for two different reasons.

First, drug resistance is a multifactorial process, and the
emergence of drug resistance in a population setting depends
on several underlying factors [47]. As with diagnostic consid-
erations above, these include factors intrinsic to the pathogen,
including genetic barriers to drug resistance [48–52]; factors
related to contact/transmission, includingTBprevalence (i.e.,
transmission burden) and treatment success [48]; and factors
related to host susceptibility, including HIV prevalence [53].
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While we have developed a rudimentary understanding of
some of these factors, models can help to demonstrate where
more comprehensive data are necessary to understand the
likely dynamics of TB drug resistance under pressure from
new drugs and new regimens.

Second, novel regimens are, by definition, implemented
in settings that have no data as to how the regimen will
affect TB dynamics on the population level. In such data-
free situations, models are essential for making “first-pass”
projections and for informing which data are the most
essential to collect. Mathematical models can shape our
understanding by extrapolating relevant information from
existing epidemics (e.g., of MDR-TB). Such understanding
can form a basis for well-informed, targeted policies for
appropriate deployment of new regimens, augmentation of
those regimens with drug susceptibility testing (DST), and
ongoing collection of epidemiological data.

4.2. A Simple Model of Drug Resistance in TB. In the absence
of detailed data, a reasonable approach to understand the
emergence and transmission dynamics of drug resistance is
to construct simplified transmission models of drug resistant
TB. One such simplified model might subdivide TB strains
into two categories: those that are sensitive to a hypothetical
first-line TB drug regimen (DS-TB) and those that are
resistant (DR-TB) [46, 54, 55].This is illustrated schematically
in Figure 3. In this framework, resistance is acquired during
treatment via de novo mutations and propagated via ongoing
transmission thereafter. In comparison to the model shown
in Figure 1, the model in Figure 3 now consists of two arms,
representing transmission cycles of DS-TB and DR-TB. This
framework allows for exploration of different aspects of DR-
TB including the relative fitness of DS-TB and DR-TB, rela-
tive treatment success, and acquisition of resistance during
treatment. These characterizations can be informed by data
from existing experience with other resistant strains (e.g.,
MDR-TB) and expanded to consider additional illustrative
scenarios.

4.3. Reproductive Fitness of Drug Resistant TB. Analogous to
the effective reproductive ratio 𝑅

𝑒
discussed above, we can

develop a similar concept of 𝑅
𝑒,dr as applied to drug resistant

strains. This quantity is the average number of secondary
DR-TB infections resulting from a single primary DR-TB
infection, in the presence of an existingDS-TB epidemic.This
effective reproductive ratio can serve as a theoretical basis
of the reproductive fitness of the resistant strains—resistant
strains with 𝑅

𝑒,dr of 1 have comparable potential as DS-TB to
spread throughout the population, whereas those with𝑅

𝑒,dr <
1 have less potential to spread, and those with 𝑅

𝑒,dr > 1 have
the potential, given sufficient time, to replace DS-TB in the
population.

The relationship between key drivers of drug resistance
and 𝑅

𝑒,dr can inform the relative importance of each factor
in influencing the long-term emergence of DR-TB. One
revealing insight afforded by this exercise is that the rate of
acquisition of drug resistance does not affect the effective
reproductive ratio. This implies that transmission of DR-TB
is much more important than the acquisition of resistance
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Figure 3: A simple epidemiological model of drug resistant
(DR-)TB. This model divides the transmission cycle of TB into two
arms: transmission of DS-TB and DR-TB (which is shown in red).
For simplicity and comparability, the transmission cycle of DR-
TB is structurally similar to DS-TB. The difference between DS-TB
and DR-TB can be characterized by difference in rates of transition
between different compartments. (E.g., if the transmission fitness of
DR-TB is less than that of DS-TB, the rates of new infections of DR-
TB are lower compared toDS-TB.)The acquisition of drug resistance
during treatment resulting from de novo mutations is a primary
way in which drug resistance enters the population. Subsequently,
drug resistance can spread via transmission events. Increasing the
rate at which DR-TB is successfully diagnosed and treated (e.g.,
through drug susceptibility testing and regimen modification) can
be modeled as an increase in the flow from compartment “Active
DR-TB” back to “Latent DR-TB” (or, in an alternative formulation,
back to uninfected).

during treatment in terms of affecting long-term trajectories
of DR-TB after scale-up of a new first-line regimen. Just as the
product of transmission rate (cases per time) and the effective
duration of infectionmake up the effective reproductive ratio
𝑅
𝑒
(see Figure 2), the relative transmission rate and relative

duration of infectiousness of DR-TB versus DS-TB determine
𝑅
𝑒,dr relative to 𝑅𝑒,ds, as shown in Figure 4(a).

4.4. The Trajectories of DR-TB after Launch of a New First-
Line Drug Regimen. Trajectories of the prevalence of DR-TB
produced by simulating this model can further elucidate the
role of these different drivers of TB drug resistance over time.
During the first years following regimen introduction (first 5
years after the launch of new first-line drug regimen), acqui-
sition during treatment is a more important determinant of
DR-TB at the population level than is transmission, whereas
transmission becomes more important in later years. This
shift reflects the changing balance between a constant risk of
acquisition per treatment episode and a transmission risk that
is proportional to an expanding pool of prevalent DR-TB.
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Figure 4: Proliferation of drug resistance following the launch of new first-line drug regimen. (a) The effective reproductive ratio of DR-
TB (𝑅

𝑒,dr) is the expected number of secondary cases of active, resistant TB resulting from a single case of DR-TB (shown as the grey shaded
area). An increase in the relative transmission fitness of DR-TB (e.g., due to compensatorymutations; shown by the blue arrow) increases𝑅

𝑒,dr
(shown by the blue hatched area). Shortening the average duration of DR-TB infections (e.g., by deployment of DST, and effective second-line
treatment; shown by the red arrow) decreases 𝑅

𝑒,dr (shown by the red hatched area). However, the rate of acquisition of drug resistance (e.g.,
due to de novo mutations against drugs in the treatment regimen) does not factor in the calculation of 𝑅

𝑒,dr (b, c, and d). The trajectories
of the prevalence of DR-TB just following the launch of a hypothetical new drug regimen are affected by both the acquisition rates and the
𝑅
𝑒,dr of DR-TB, but their effects will be more pronounced at different time periods. Acquisition-driven drug resistance is expected to be more

frequent in the first 5 years (pink area), while transmission-driven TB relatively later (blue area). (b) For two hypothetical DR-TB strains with
similar𝑅

𝑒,dr, but different acquisition rates, wemay observe difference in their prevalence in the short term, but over time they are expected to
result in similar levels of resistance. (c) In contrast, for strains with similar acquisition rates, but different𝑅

𝑒,dr, we may not observe significant
difference in their prevalence in the short term, but the levels of drug resistance can diverge significantly. Factors that affect 𝑅

𝑒,dr will affect the
trajectories of DR-TB prevalence—for example, deployment of DST that achieve reduction in average duration of infection (red arrow) can
reduce prevalence of DR-TB over longer term. (d) DR-TB strain with larger acquisition rate and smaller 𝑅

𝑒,dr is expected to be more prevalent
over the short term compared to a strain with lower acquisition rate and higher 𝑅

𝑒,dr, but the prevalence of DR-TB is flipped between two
hypothetical strains over longer term. Hence, short term prevalence of DR-TB alone may not be a reliable predictor of the prevalence over
longer term. Figures are only illustrative and not drawn to scale.

4.5. Consequences of Public Health Interventions. Themethod
by which new drug regimens are rolled out, and in particular
the role of concomitant drug susceptibility testing, will ulti-
mately shape the trajectory of DR-TB prevalence over time.
In particular, the effect of various implementation strategies
on the effective duration of DR-TB (i.e., shortening that
duration by speeding the process of diagnosis and initiation
of appropriate treatment) will be critical. Individuals with

active DR-TB that remain undetected or untreated will
fuel drug resistance through ongoing transmission. Early
detection of drug resistance via drug susceptibility testing
(DST) and rapid initiation of effective therapy will be key to
controlling this spread. Surveillance data on the prevalence
of DR-TB during the first few years after the launch of
new first line regimens will reflect acquisition rather than
transmission burden and therefore may not be indicative of
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longer term trajectories. It is therefore important to collect
not only surveillance data, but also data to inform the relative
transmission fitness and treatment success of DR-TB. As
with models of new diagnostic tests, models of new drug
regimens can therefore informnot only appropriate decision-
making with respect to scale-up of interventions, but also the
epidemiological data-gathering efforts that are most likely to
enhance our ability to project impact at the population level.

4.6. Summary: Models of Drug Resistance under New First-
Line Regimens. Emergence of drug resistance is a multifac-
torial process that includes the interplay between pathogens
(e.g., genetic barriers to resistance), contact patterns, and
duration of infectiousness. Two of themost important drivers
of drug resistance are the relative competitive fitness of DR-
strains and the relative treatment success (which in turn
determines the relative duration of disease). Regarding com-
petitive fitness, lab experiments (e.g., competition assay) may
provide basic insight, but fitness in the lab may not correlate
with fitness as transmitted via aerosols between host sys-
tems with heterogeneous mixing [56, 57], different pathogen
characteristics [58–60], and in the possible presence of com-
pensatory mutations [61, 62]. Regarding treatment success,
program data can provide a helpful start, but detailed data
on relapse after treatment and duration of infectiousness for
those failing treatment are also critical. Mathematical models
again play an important role in understanding the system of
DR-TB, deploying appropriate interventions (e.g., DST), and
driving the collection of key epidemiological data.

5. Conclusions

Mathematical models continue to provide valuable insight
into potential impact and cost-effectiveness of strategies
to improve both diagnosis and treatment of TB. While
often expected to provide projections of alternative futures,
their greater contribution may lie in informing decisions
as to the best path given existing data, providing better
understanding of the key drivers of impact, and informing
more relevant data collection efforts in the future. In both of
the systems described here (diagnostics and drug regimens),
host, pathogen, and health system factors combine to drive
infectiousness, mixing patterns, and population susceptibil-
ity. Models can demonstrate how the interplay between these
elements drives TB epidemiology under the influence of
novel interventions; one important way of achieving this
aim is by describing interventions’ effects on the effective
reproductive ratio 𝑅

𝑒
. Future efforts to control TB will ben-

efit from increased collaboration between epidemiologists,
decision-makers, and modellers. Models of TB diagnostics
and novel drug regimens represent two realms in which such
discussions are starting to take place.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Authors’ Contribution

Alice Zwerling and Sourya Shrestha contributed equally to
the conception and writing of this paper.

References

[1] R. McNerney, M. Maeurer, I. Abubakar et al., “Tuberculosis
diagnostics and biomarkers: needs, challenges, recent advances,
and opportunities,” Journal of Infectious Diseases, vol. 205,
supplement 2, pp. S147–S158, 2012.

[2] C. C. Boehme, S. Saacks, and R. J. O’Brien, “The changing
landscape of diagnostic services for tuberculosis,” Seminars in
Respiratory and Critical Care Medicine, vol. 34, no. 1, pp. 17–31,
2013.

[3] TBAlliance,Confronting TB:What It Takes, Global Report 2008,
TB Alliance, New York, NY, USA, 2008.

[4] A. Y. Sun, M. Pai, H. Salje, S. Satyanarayana, S. Deo, and D.
W. Dowdy, “Modeling the impact of alternative strategies for
rapid molecular diagnosis of tuberculosis in Southeast Asia,”
TheAmerican Journal of Epidemiology, vol. 178, no. 12, pp. 1740–
1749, 2013.

[5] M. O. Fofana, G. M. Knight, G. B. Gomez, R. G. White, and D.
W.Dowdy, “Population-level impact of shorter-course regimens
for tuberculosis: a model-based analysis,” PLoS ONE, vol. 9, no.
5, Article ID e96389, 2014.

[6] D. W. Dowdy, I. Lotia, A. S. Azman, J. Creswell, S. Sahu, and
A. J. Khan, “Population-level impact of active tuberculosis case
finding in an Asian megacity,” PLoS ONE, vol. 8, no. 10, Article
ID e77517, 2013.

[7] D. W. Dowdy, S. Basu, and J. R. Andrews, “Is passive diag-
nosis enough? The impact of subclinical disease on diagnostic
strategies for tuberculosis,”American Journal of Respiratory and
Critical Care Medicine, vol. 187, no. 5, pp. 543–551, 2013.

[8] C. M. Denkinger, M. Pai, and D. W. Dowdy, “Do we need to
detect isoniazid resistance in addition to rifampicin resistance
in diagnostic tests for tuberculosis?” PLoS ONE, vol. 9, no. 1,
Article ID e84197, 2014.

[9] T. Cohen, C. Colijn, B. Finklea, and M. Murray, “Exogenous
re-infection and the dynamics of tuberculosis epidemics: local
effects in a networkmodel of transmission,” Journal of the Royal
Society Interface, vol. 4, no. 14, pp. 523–531, 2007.

[10] P. Kasaie, J. R. Andrews, W. D. Kelton, and D. W. Dowdy,
“Timing of tuberculosis transmission and the impact of house-
hold contact tracing: an agent-based simulation model,” The
American Journal of Respiratory and Critical Care Medicine, vol.
189, no. 7, pp. 845–852, 2014.

[11] M. Murray, “Determinants of cluster distribution in the molec-
ular epidemiology of tuberculosis,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 99, no.
3, pp. 1538–1543, 2002.

[12] R. Anderson, R. May, and B. Anderson, Infectious Diseases of
Humans: Dynamics and Control, Oxford Science Publications,
1991.

[13] M. J. Keeling and P. Rohani, Modeling Infectious Diseases in
Humans and Animals, Princeton University Press, Princeton,
NJ, USA, 2007.

[14] N. A. Menzies, T. Cohen, H.-H. Lin, M. Murray, and J. A.
Salomon, “Population health impact and cost-effectiveness
of tuberculosis diagnosis with Xpert MTB/RIF: a dynamic
simulation and economic evaluation,” PLoSMedicine, vol. 9, no.
11, Article ID e1001347, 2012.



Advances in Medicine 9

[15] M. Pai, C. M. Denkinger, S. V. Kik et al., “Gamma interferon
release assays for detection ofMycobacterium tuberculosis infec-
tion,”ClinicalMicrobiology Reviews, vol. 27, no. 1, pp. 3–20, 2014.

[16] S. D. Lawn, “Diagnosis of pulmonary tuberculosis,” Current
Opinion in PulmonaryMedicine, vol. 19, no. 3, pp. 280–288, 2013.

[17] A. S. Dharmadhikari and E. A. Nardell, “What animal models
teach humans about tuberculosis,” American Journal of Respi-
ratory Cell and Molecular Biology, vol. 39, no. 5, pp. 503–508,
2008.

[18] G. Delogu and D. Goletti, “The spectrum of tuberculosis
infection: new perspectives in the era of biologics,” Journal of
Rheumatology, vol. 41, no. 91, pp. 11–16, 2014.

[19] D. Dowdy, C. Dye, and T. Cohen, “Data needs for evidence-
based decisions: a tuberculosis modeler’s ‘wish list’,” Interna-
tional Journal of Tuberculosis and Lung Disease, vol. 17, no. 7, pp.
866–877, 2013.

[20] E. A. Nardell, “Catching droplet nuclei: toward a better under-
standing of tuberculosis transmission,” American Journal of
Respiratory and Critical Care Medicine, vol. 169, no. 5, pp. 553–
554, 2004.

[21] A. Tostmann, S. V. Kik, N. A. Kalisvaart et al., “Tuberculosis
transmission by patients with smear-negative pulmonary tuber-
culosis in a large cohort in the Netherlands,” Clinical Infectious
Diseases, vol. 47, no. 9, pp. 1135–1142, 2008.

[22] J. M. Bryant, S. R. Harris, J. Parkhill et al., “Whole-genome
sequencing to establish relapse or re-infection with Mycobac-
terium tuberculosis: a retrospective observational study,” The
Lancet Respiratory Medicine, vol. 1, no. 10, pp. 786–792, 2013.

[23] J. M. Bryant, D. M. Grogono, D. Greaves et al., “Whole-genome
sequencing to identify transmission ofMycobacteriumabscessus
between patients with cystic fibrosis: a retrospective cohort
study,”The Lancet, vol. 381, no. 9877, pp. 1551–1560, 2013.

[24] T. M. Walker, C. L. C. Ip, R. H. Harrell et al., “Whole-genome
sequencing to delineate Mycobacterium tuberculosis outbreaks:
a retrospective observational study,” The Lancet Infectious Dis-
eases, vol. 13, no. 2, pp. 137–146, 2013.

[25] A. Roetzer, R. Diel, T. A. Kohl et al., “Whole genome sequencing
versus traditional genotyping for investigation of a Mycobac-
terium tuberculosis outbreak: a longitudinalmolecular epidemi-
ological study,”PLoSMedicine, vol. 10, no. 2, Article ID e1001387,
2013.

[26] M. Beisiegel, H.-J. Mollenkopf, K. Hahnke et al., “Combination
of host susceptibility andMycobacterium tuberculosis virulence
define gene expression profile in the host,” European Journal of
Immunology, vol. 39, no. 12, pp. 3369–3384, 2009.

[27] M. Beisiegel, M. Kursar, M. Koch et al., “Combination of
host susceptibility and virulence ofmycobacterium tuberculosis
determines dual role of nitric oxide in the protection and
control of inflammation,” Journal of Infectious Diseases, vol. 199,
no. 8, pp. 1222–1232, 2009.

[28] P.D.O.Davies and J.M.Grange, “Factors affecting susceptibility
and resistance to tuberculosis,” Thorax, vol. 56, supplement 2,
pp. ii23–ii29, 2001.

[29] E. L. Corbett, C. J. Watt, N. Walker et al., “The growing burden
of tuberculosis: global trends and interactions with the HIV
epidemic,” Archives of Internal Medicine, vol. 163, no. 9, pp.
1009–1021, 2003.

[30] M. A. Sanchez and S. M. Blower, “Uncertainty and sensitivity
analysis of the basic reproductive rate: tuberculosis as an
example,”American Journal of Epidemiology, vol. 145, no. 12, pp.
1127–1137, 1997.

[31] C. C. Boehme, P. Nabeta, D. Hillemann et al., “Rapid molecular
detection of tuberculosis and rifampin resistance,” The New
England Journal ofMedicine, vol. 363, no. 11, pp. 1005–1015, 2010.

[32] H.-H. Lin, I. Langley, R.Mwenda et al., “Amodelling framework
to support the selection and implementation of new tuberculo-
sis diagnostic tools,” International Journal of Tuberculosis and
Lung Disease, vol. 15, no. 8, pp. 996–1004, 2011.

[33] H.-H. Lin, D. Dowdy, C. Dye, M. Murray, and T. Cohen, “The
impact of new tuberculosis diagnostics on transmission: why
context matters,” Bulletin of the World Health Organization, vol.
90, pp. 739–747, 2012.

[34] S. Keshavjee and P. E. Farmer, “Tuberculosis, drug resistance,
and the history of modern medicine,”The New England Journal
of Medicine, vol. 367, no. 10, pp. 931–936, 2012.

[35] C. Lienhardt,M.Raviglione,M. Spigelman et al., “Newdrugs for
the treatment of tuberculosis: needs, challenges, promise, and
prospects for the future,” Journal of Infectious Diseases, vol. 205,
supplement 2, pp. S241–S249, 2012.

[36] World Health Organization (WHO), STOP TB: Working Group
on New TB Drugs Pipeline of TB Drugs, World Health Organi-
zation (WHO), Geneva, Switzerland, 2014, http://www.newtb-
drugs.org/pipeline.php.

[37] K. E. Dooley, E. L. Nuermberger, and A. H. Diacon, “Pipeline
of drugs for related diseases: tuberculosis,” Current Opinion in
HIV and AIDS, vol. 8, no. 6, pp. 579–585, 2013.

[38] E. W. Orenstein, S. Basu, N. S. Shah et al., “Treatment outcomes
among patients with multidrug-resistant tuberculosis: system-
atic review and meta-analysis,” The Lancet Infectious Diseases,
vol. 9, no. 3, pp. 153–161, 2009.

[39] J. S. Mukherjee, M. L. Rich, A. R. Socci et al., “Programmes and
principles in treatment ofmultidrug-resistant tuberculosis,”The
Lancet, vol. 363, no. 9407, pp. 474–481, 2004.

[40] N. R. Gandhi, P. Nunn, K. Dheda et al., “Multidrug-resistant
and extensively drug-resistant tuberculosis: a threat to global
control of tuberculosis,”TheLancet, vol. 375, no. 9728, pp. 1830–
1843, 2010.

[41] M. Lipsitch and B. R. Levin, “Population dynamics of tuber-
culosis treatment: mathematical models of the roles of non-
compliance and bacterial heterogeneity in the evolution of
drug resistance,” International Journal of Tuberculosis and Lung
Disease, vol. 2, no. 3, pp. 187–199, 1998.

[42] B. R. Levin, M. Lipsitch, V. Perrot et al., “The population
genetics of antibiotic resistance,”Clinical InfectiousDiseases, vol.
24, supplement 1, pp. S9–S16, 1997.

[43] C. Dye, B. G. Williams, M. A. Espinal, and M. C. Raviglione,
“Erasing the world’s slow stain: strategies to beat multidrug-
resistant tuberculosis,” Science, vol. 295, no. 5562, pp. 2042–
2046, 2002.

[44] C. Dye and M. A. Espinal, “Will tuberculosis become resistant
to all antibiotics?” Proceedings of the Royal Society B: Biological
Sciences, vol. 268, no. 1462, pp. 45–52, 2001.

[45] T. Cohen, C. Dye, C. Colijn, B. Williams, and M. Murray,
“Mathematicalmodels of the epidemiology and control of drug-
resistant TB,” Expert Review of Respiratory Medicine, vol. 3, no.
1, pp. 67–79, 2009.

[46] S.M. Blower, P.M. Small, andP.C.Hopewell, “Control strategies
for tuberculosis epidemics: new models for old problems,”
Science, vol. 273, no. 5274, pp. 497–500, 1996.

[47] B. Müller, S. Borrell, G. Rose, and S. Gagneux, “The het-
erogeneous evolution of multidrug-resistant Mycobacterium
tuberculosis,” Trends in Genetics, vol. 29, no. 3, pp. 160–169, 2013.



10 Advances in Medicine

[48] M. Zignol,W. vanGemert, D. Falzon et al., “Surveillance of anti-
tuberculosis drug resistance in the world: an updated analysis,
2007–2010,” Bulletin of the World Health Organization, vol. 90,
no. 2, pp. 111D–119D, 2012.

[49] J. G. Pasipanodya and T. Gumbo, “A new evolutionary and
pharmacokinetic-pharmacodynamic scenario for rapid emer-
gence of resistance to single and multiple anti-tuberculosis
drugs,” Current Opinion in Pharmacology, vol. 11, no. 5, pp. 457–
463, 2011.

[50] D. Laurenzo and S. A. Mousa, “Mechanisms of drug resistance
in Mycobacterium tuberculosis and current status of rapid
molecular diagnostic testing,” Acta Tropica, vol. 119, no. 1, pp.
5–10, 2011.

[51] M. Coscolla and S. Gagneux, “Does M. tuberculosis genomic
diversity explain disease diversity?” Drug Discovery Today:
Disease Mechanisms, vol. 7, no. 1, pp. e43–e59, 2010.

[52] S. Borrell and S. Gagneux, “Strain diversity, epistasis and the
evolution of drug resistance in Mycobacterium tuberculosis,”
Clinical Microbiology and Infection, vol. 17, no. 6, pp. 815–820,
2011.

[53] N. R. Gandhi, A. Moll, A. W. Sturm et al., “Extensively drug-
resistant tuberculosis as a cause of death in patients co-infected
with tuberculosis and HIV in a rural area of South Africa,”The
Lancet, vol. 368, no. 9547, pp. 1575–1580, 2006.

[54] S. M. Blower, A. R. McLean, T. C. Porco et al., “The intrin-
sic transmission dynamics of tuberculosis epidemics,” Nature
Medicine, vol. 1, no. 8, pp. 815–821, 1995.

[55] S. Shrestha, G. M. Knight, M. Fofana et al., “Drivers and
trajectories of resistance to new first-line drug regimens for
tuberculosis,” Open Forum Infectious Diseases, vol. 1, 2014.

[56] R. J. F. Ypma, H. K. Altes, D. van Soolingen, J. Wallinga,
and W. M. van Ballegooijen, “A sign of superspreading in
tuberculosis: highly skewed distribution of genotypic cluster
sizes,” Epidemiology, vol. 24, no. 3, pp. 395–400, 2013.

[57] J. L. Gardy, J. C. Johnston, S. J. H. Sui et al., “Whole-genome
sequencing and social-network analysis of a tuberculosis out-
break,”TheNew England Journal of Medicine, vol. 364, no. 8, pp.
730–739, 2011.

[58] C. Colijn, T. Cohen, and M. Murray, “Latent coinfection and
the maintenance of strain diversity,” Bulletin of Mathematical
Biology, vol. 71, no. 1, pp. 247–263, 2009.

[59] T. Cohen, P. D. van Helden, D. Wilson et al., “Mixed-strain
Mycobacterium tuberculosis infections and the implications
for tuberculosis treatment and control,” Clinical Microbiology
Reviews, vol. 25, no. 4, pp. 708–719, 2012.

[60] T. Cohen and M. Murray, “Modeling epidemics of multidrug-
resistant M. tuberculosis of heterogeneous fitness,” Nature
Medicine, vol. 10, no. 10, pp. 1117–1121, 2004.

[61] B. R. Levin, V. Perrot, and N. Walker, “Compensatory muta-
tions, antibiotic resistance and the population genetics of
adaptive evolution in bacteria,”Genetics, vol. 154, no. 3, pp. 985–
997, 2000.

[62] G. Brandis, M. Wrande, L. Liljas, and D. Hughes, “Fitness-
compensatory mutations in rifampicin-resistant RNA poly-
merase,”MolecularMicrobiology, vol. 85, no. 1, pp. 142–151, 2012.


