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As a recent global health emergency, the quick and reliable diagnosis of COVID-19 is urgently needed.
Thus, many artificial intelligence (AI)-base methods are proposed for COVID-19 chest CT (computed
tomography) image analysis. However, there are very limited COVID-19 chest CT images publicly avail-
able to evaluate those deep neural networks. On the other hand, a huge amount of CT images from lung
cancer are publicly available. To build a reliable deep learning model trained and tested with a larger
scale dataset, the proposed model builds a public COVID-19 CT dataset, containing 1186 CT images syn-
thesized from lung cancer CT images using CycleGAN. Additionally, various deep learning models are
tested with synthesized or real chest CT images for COVID-19 and Non-COVID-19 classification. In com-
parison, all models achieve excellent results in accuracy, precision, recall and F1 score for both synthe-
sized and real COVID-19 CT images, demonstrating the reliable of the synthesized dataset. The public
dataset and deep learning models can facilitate the development of accurate and efficient diagnostic test-
ing for COVID-19.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since December of 2019, an outbreak of coronavirus disease
(COVID-19) has spread rapidly throughout the world, with an
ongoing risk of a pandemic [1,2]. In absence of specific therapeutic
drugs for COVID-19, it is essential to diagnose this disease effec-
tively and immediately. With currently reported cases and pub-
lished papers, lung CT (computed tomography) imaging has been
recommended as one of the effective screening tools for COVID-
19 pneumonia [3,4].

Although CT images can be examined to identify the COVID-19
pneumonia regions with specific pattern by naked human eyes, CT
screen is easy to miss those small and lightly infective regions
especially in the early stage. Therefore, the sufficient training is
necessary for radiologists to achieve an early-accurate diagnosis,
which is indispensable not only for the prompt implementation
of treatment but also for the population screening and response.
However, the time-consuming and difficulty in professional train-
ing leads to the lack of qualified radiologists, which makes accurate
diagnosis particularly challenging with the dramatically increasing
cases nowadays [5].

To improve the reliability and speed of CT-based COVID-19
diagnosis, a more automatic and higher efficiency method is
urgently demanded. Many researchers have noticed the Artificial
Intelligence (AI), which already show great performance in other
disease diagnosing cases [6,7], should also have the same feasibil-
ity in this novel pneumonia detection [8,9]. Lots of substantial evi-
dences supporting the potential for deep learning in chest CT
image analysis [10,11], particular in lung cancer analysis [12,13].
Thus, various deep learning-aided COVID-19 chest image analysis
models were proposed with high accuracy and efficacy in disease
diagnosis. Moreover, there are already hundreds of deep learning
papers proposed relating to COVID-19 chest CT or X-ray images,
and some of these results have been shown to be quite promising
in terms of accuracy. Top cited deep learning studies using chest CT
images of COVID-19 are summarized and listed in Table 1.

As shown in Table 1, Gozes et al proposed a deep learning-based
automated CT image analysis tools for detection, quantification,
and tracking of COVID-19 and demonstrated that they can differ-
entiate patients from healthy ones [14]. In the segmentation step,
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Table 1
Summary of top cited studies of deep learning-based COVID-19 analysis.

Ref Backbone Task Dataset Results

[14] U-Net Segmentation 6,150 CT images with lung abnormalities and their lung masks. AUC of 0.996, sensitivity of 98.2%, and
specificity of 92.2%.ResNet50 Classification 50 abnormal thoracic CT scans of patients that were diagnosed by a radiologist

as suspicious for COVID-19. Cases were annotated for each image as normal
(n = 1036) vs abnormal (n = 829).

[15] U-Net Classification 4352 3D chest CT images from 3,322 patients, consisting of 1,292 COVID-19,
1,735 community-acquired pneumonia, 1,325 Non-pneumonia.

AUC of 0.96, sensitivity of 90%, and
specificity of 96%.ResNet50

[16] ResNet Classification 618 CT images (219 COVID-19, 224 Influenza-A-viral-pneumonia, and 175
healthy case).
11,871 images (2,634 COVID-19, 2,661 Influenza-A viral pneumonia, and 6,576
healthy case).

Accuracy of 86.7%.

[17] DRE-Net
based on
ResNet50

Classification 88 COVID-19 patients with 777 CT images, 100 bacterial pneumonia patients
with 505 images, and 86 healthy people with 708 images.

AUC of 0.99 and recall of 0.93.

[18] VB-Net Segmentation 249 CT images of 249 COVID-19 patients were collected from other centers for
training. 300 CT images from 300 COVID-19 patients were collected for
validation.

Dice similarity coefficients of 91.6%±10.0%.

[19] DenseNet-
169

Classification 349 CT images of COVID-19 were extracted from 760 preprints about COVID-19
from medRxiv and bioRxiv.
463 Non-COVID-19 CT images were collected, consisting of 36 from LUNA, 195
from MedPix, 202 from PMC, and 30 from Radiopaedia.

F1 of 0.85, AUC of 0.95, and accuracy of 0.83.

[20] Conditional
GAN

COVID-19
image
generating

CT images of patients were positive or suspected of COVID-19 or other viral and
bacterial pneumonias (MERS, SARS, and ARDS).

Enhanced the identification and detection
capacities of the classification models.

[21] GAN COVID-19
image
generating

2143 chest CT images, containing 327 COVID-19 cases, were acquired from 12
sites across 7 countries.

Improve lung segmentation (+6.02% lesion
inclusion rate) and abnormality
segmentation (+2.78% dice coefficient).

[22] Conditional
GAN

COVID-19
image
generating

829 lung CT slices from 9 COVID-19 patients. Peak signal-to-noise ratio (PSNR) of 26.89,
and structural similarity index (SSIM) of
0.8936.
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they train U-net to extract the lung region of interest (ROI) using
6,150 CT images of cases with lung abnormalities (Non-COVID-
19) taken from a U.S based hospital. Then, the ResNet-50 deep con-
volutional neural network pretrained on ImageNet is trained with
suspected COVID-19 cases from several Chinese hospitals, which
were annotated per slice as normal (n = 1036) vs abnormal
(n = 829). They achieved an AUC of 0.996 (95%CI: 0.989–1.00) for
classify COVID-19 confirmed cases from 56 patients vs normal tho-
racic CT scans from 51 patients without any abnormal lung find-
ings in the radiologist’s report. This study used a manually
labeled dataset which limited the size of training samples.
Although they used over thousand patches for training, these
patches are from small amount patients’ cases.

Similarly, another high-cited paper also used a ResNet_50 based
framework for the detection of COVID-19, referred to COVNet [15].
It can extract both 2D local and 3D global representative features.
They also used the U-net for segmentation to extract the lung
region as the region of interest (ROI). The preprocessed image is
then passed to COVNet for the predictions. The newly developed
method achieved high sensitivity and high specificity in detecting
COVID-19, with the ability to differentiate COVID-19 and
community-acquired pneumonia (CAP) from chest CT images. This
study used a larger chest CT dataset, which contains 4352 chest CT
images (i.e., 1292 COVID-19, 1735 community-acquired pneumo-
nia (CAP), and 1325 Non-pneumonia) from 3322 patients. Never-
theless, the dataset is not open for public access. Thus, it is
impossible to determine the imaging features used by this model
to distinguish between COVID-19 and CAP.

Besides, Xu et al. established a deep learning model to distin-
guish COVID-19 pneumonia from Influenza-A viral pneumonia
and healthy cases with pulmonary CT images using a location-
attention classification model [16]. The study collected 618 CT
samples, including 219 from 110 patients with COVID-19, 224
from 224 patients with Influenza-A viral pneumonia, and 175
healthy cases. In this proposed system, useful pulmonary regions
were extracted firstly; then, a 3D CNN model was used to segment
multiple image cube candidates. Next, a location-attention classifi-
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cation model based on ResNet is followed to categorize image
patches to COVID-19, Influenza-A viral pneumonia, or irrelevant-
to-infection. Each image patch from the same cube was voted to
represent the entire candidate region. Finally, the comprehensive
analysis report for one CT sample was calculated using the
Noisy-or Bayesian function.

Ying et al. designed a Details Relation Extraction Neural Net-
work (DRE-Net) based on pretrained ResNet_50, on which the Fea-
ture Pyramid Network (FPN) was added to extract the top-K details
in the CT images. An attention module is coupled to learn the
importance of each detail. By using the FPN and attention modules,
DRE-Net achieved better performance in pneumonia classification
and diagnosis compared to ResNet, DenseNet and VGG16 [17].

In another way, Shan et al. introduced a VB-Net based deep
learning framework with a human-in-the-loop (HITL) strategy for
segmentation of COVID-19 infection regions from chest CT scans
[18]. The HITL strategy is adopted to assist radiologists to refine
automatic annotation of each case. The system is trained using
249 COVID-19 patients and validated using 300 new COVID-19
patients, yielding high accuracy for automatic infection region
delineation. Moreover, compared with the cases of fully manual
delineation that often takes hours, the proposed human-in-the-
loop strategy can dramatically reduce the delineation time to sev-
eral minutes after three iterations of model updating.

In general, most of the listed highly cited works are based on
ResNet to realize a patches classification; insufficient CT images
are used to train deep learning models, which affects the general-
ization ability of the model. Notably, barely founded open-source
codes and datasets of proposed deep learning methods limited
the more profound understanding and improvement for the
research community to help more patients in this particular pan-
demic period.

Besides, building a reliable deep learning model always has the
challenging in requirement of vast amounts of data for training.
Since the sudden happening and short research of COVID-19, the
limited amount of lung CT images of COVID-19 are available and
open source. The lack of raw data badly hindered the development
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and evaluation of the deep learning model for COVID-19 detection.
Yang et al. build an open-sourced dataset to relieve this predica-
ment, which contains 349 COVID-19 CT images from 216 patients
and 463 Non-COVID-19 CTs [19]. Those CT images of COVID-19 and
Non-COVID-19 are extracted and collected from publications and
online databases. Using this dataset, DenseNet-169 model was
used for binary classification of COVID-19 or Non-COVID-19,
achieving an F1 of 0.85, an AUC of 0.95, and an accuracy of 0.83.
However, the scale of this dataset is not enough to train a reliable
deep learning model. On the other hand, a huge amount of public
lung CT images are accumulated because of the well-established
studies in lung cancer, such as LUNA16, LIDC-IDRI [23,24]. Those
chest CT images are publicly available with sufficient quantity
and can be developed to aid the deep learning model training,
especially in the lesion containing regions.

To solve the dataset limit challenge, a few proposed papers
focused on synthesizing COVID-19 from other large-scale lung CT
datasets based on GANmodels. Both Jiang’s team and Li’s team used
conditional GAN to synthesize the high-quality COVID-19 CT scans
to provide more data for corresponding machine learning models.
The generated CT scans can enhance the detecting and classifying
capability of models [20,22]. Liu et al. also proposed a GAN model
to generate COVID-19 related tomographic patterns on chest CTs
from negative cases. Synthetic data are used to improve both lung
segmentation and segmentation of COVID-19 patterns [21].

Inspired by the GAN models mentioned above, this paper tries
to leverage the rich label information and large scale in lung cancer
datasets by incorporating them into deep learning model for
COVID-19 detection. Moreover, CT examination of patients with
COVID-19 pneumonia showed extensive consolidation and
ground-glass opacity (GGO) pattern [25]. The COVID-19 lesions
with GGO pattern can be seen in Fig. 1A. With the guidance of this
prior knowledge from the radiologist on GGO pattern, our deep
learning study is the first research that uses this CT feature of
COVID-19. With particular focus on the GGO pattern, a deep
learning-based method is proposed to generate synthesized pneu-
monia CT images of COVID-19 from lung cancer images. This study
might provide an alternative solution for the reliable COVID-19
automatic diagnosis.

Our previous work shows that a Cycle Generative Adversarial
Network (CycleGAN) based deep learning method can transfer
expert knowledge formicroscopic image recognition [26]. CycleGAN
is an unsupervised learning model for image-to-image translation,
which learns the image style through competitive strategies. Cycle-
GAN is based on GAN [27], which is widely used in medical image
processing, including reconstruction [28], classification [29], detec-
tion [30] and segmentation [31]. Themutual generation of unpaired
images is an important feature for CycleGAN,which is different from
other GAN derivatives. Therefore, the CycleCAN is utilized in this
paper to generate the chest CT images of COVID-19 pneumonia by
image-to-image translation, which learns the style and pattern of
GGOandapplies thisGGOpattern toCT lung cancer images. Indetail,
themodel learns the GGO knowledge fromCOVID-19 images allow-
ing the lung nodule image with labelled information to adapt this
feature. To evaluate the efficacy of generated COVID-19 dataset on
automatically AI diagnosis, we test various deep learning models
for classification and demonstrate its excellent performance in
COVID-19 CT image analysis.
2. Materials and methods

2.1. Dataset

Publicly available CT images of COVID-19 pneumonia and lung
cancer are used in this study (Fig. 1A). This COVID-19 dataset
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includes a total of 349 COVID-19 CT images and 397 Non-COVID-
19 CT images [19]. These CT images are extracted from 760 pre-
prints reporting COVID-19 on medRxiv and bioRxiv. This dataset
is used as a priori knowledge domain to learn the ground-glass
opacity (GGO) pattern in the CT image. As a result of the large-
scale and rich label, LUNA16 dataset (lung cancer dataset) is used
in the experiment to synthesize COVID-19 images for detection.
This LUNA16 contains 888 lung cancer CT scans from 888 patients
with pulmonary nodules annotated. The size of each original 3D
image is 512 � 512 � 3 � S (S is the number of 2D slices). From
these, a total of 1186 2D images with lung nodules are used for
training the COVID-19 synthesizer, and the rest slides are used as
positive samples, which constitutes the Non-COVID-19 dataset to
train the COVID-19 classifiers [23]. For the further research, the
codes and data sets that support findings of this study are available
on https://github.com/jiangdat/COVID-19.
2.2. Generation of COVID-19 CT images from lung cancer based on
style transfer

This work proposes a dataset-driven deep learning strategy
based on style transfer for generating COVID-19 CT images
(Fig. 1B). Using the large-scale lung cancer CT dataset with rich
label information, the model learns the GGO style of COVID-19 to
synthesize a COVID-19 dataset using a CycleGAN model. The syn-
thetic COVID-19 dataset with the location label of the lesion is used
to train deep learning models for classification. In comparison, the
real COVID-19 is also tested to verify and validate the generated
COVID-19 images. An unpaired mapping-based approach is used
for generating COVID-19 CT images. Usually, a chest CT slice image
contains the entire lung structure, parts of which are lesions, and
the rest are normal regions. Their sizes, positions, and shapes vary
significantly; thus, this study applied the unpaired strategy.

The architecture of COVID-19 generation in Fig. 1C briefly illus-
trates that CycleGAN are used to generate COVID-19 CT images for
training the COVID-19 detection and classification models. The
CycleGAN framework can randomly learn a mapping between
COVID-19 CT images and unpaired lung nodule CT images. In other
words, the GGO styles is combined in the COVID-19 pneumonia
domain (C). And the deep learning is applied to take the advan-
tages of annotations and data richness in lung nodule domain
(N). Also, the adversarial loss and cycle consistency are used in a
dual-GAN architecture to transfer between domain (C) and domain
(N). This setup learns a reverse mapping from COVID-19 images to
lung nodule images. A detailed explanation is followed in the
below paragraphs.

As shown in Fig. 1C, our dual-GAN architecture consists of two
domains (COVID-19 domain (C) and lung nodule domain (N)), and
four networks including two generations (GC and GN) and two dis-
criminators(DN and DC). GC is from random COVID-19 to lung nod-
ule CT image and GN is from lung nodule to COVID-19 CT image, DN

and DC are corresponding to GN and GC separately.
As mentioned above, the loss of training is joint of adversarial

loss LGAN and cycle consistency loss Lcyc , where the adversarial loss
is applied in both generators. For the mapping function GC: C ! N
and its discriminator DN , the adversarial loss is expressed as:

LGANðGC ;DNÞ ¼ En�pdataðnÞ½logDNðnÞ�
þ Ec�pdataðcÞ½logð1 - DNðGCðcÞÞÞ� ð1Þ

in which GC aims to generate lung nodule images GCðCÞ that are
similar to real lung nodule images, while DN aims to distinguish
the generated images GCðCÞ from real images. And LGANðGC ;DNÞ is
a binary cross entropy (BCE) loss of DN in classifying real or fake.
DN and GC play a min–max game to maximize and minimize this

https://github.com/jiangdat/COVID-19


Fig. 1. Overview of CycleGAN-base deep learning for COVID-19. (A) Representative chest CT images. Publicly available COVID-19 pneumonia images have infected areas with
GGO pattern, and images of lung cancer with distinct nodules source from LUNA16. (B) COVID-19 analysis model based on style transfer. The COVID-19 dataset synthesized
from lung cancer images is used to train classifiers, and synthesized or real COVID-19 chest CT images are used for testing. (C) A graphical illustration of CycleGAN based deep
learning for COVID-19 CT image construction. This structure is divided into two symmetrical parts, for domain C, Generator C tries to transform the GGO style of COVID-19
into the nodule style of lung cancer. The Discriminator C is used to compare the real COVID-19 with fake COVID-19 learned from domain N. Cycle loss is used for supervising
the continuity of the input and the image circulated after two generations.
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loss term respectively. And for the reverse N ! Cgeneration with a
similar objective, its adversarial loss can be denoted as:
1394
LGANðGN;DCÞ ¼ Ec�pdataðcÞ½logDCðCÞ�
þ En�pdataðnÞ½logð1 - DCðGNðNÞÞÞ� ð2Þ
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The cycle consistency loss Lcyc term ensures that the forward
and back translations between the COVID-19 images and lung nod-
ule images are lossless and cycle consistent, i.e., GNðGCðCÞÞ � C (for-
ward) and GCðGNðNÞÞ � N (backwards). Lcyc is defined as below:

LcycðGC ;GNÞ ¼ kCEc�pdataðcÞ½k GNðGCðCÞÞ � C k1�
þ kNEn�pdataðnÞ½k GCðGNðNÞÞ � N k1� ð3Þ

where kC and kN control the relative importance of the two objec-
tives, and the full objective for synthetic data generation can thus
be written as:

argmin
GC ;GN

ðargmax
DC ;DN

ðLGANðGC ;DNÞ þ LGANðGN ;DNÞ þ LcycðGC ;GNÞÞÞ ð4Þ

During the training, the deep network iterates and optimizes
the parameters based on the above objective to obtain a reliable
COVID-19 synthesizer.

2.3. Deep learning-guided classifiers for COVID-19 CT images

In this study, the data and knowledge-driven high-precision
classifiers to distinguish between COVID-19 and Non-COVID-19
are established and compared, by taking the advantages of a
large scale of synthetic COVID-19 CT images. To evaluate the
generated COVID-19 dataset, some of best performing CNNs,
including VGG [32], ResNet [33], Inception-v3 [34], Incep-
tion_ResNet_v2 [35] and DenseNet [36], are deployed in the clas-
sification experiments.

2.4. Training and evaluation metric

The implementation of all networks is deployed on the Ten-
sorFlow framework [37] in Ubuntu 16.04. And the training hard-
ware configure is one Tesla K40C GPU and 128-GB memory. Two
datasets are used in our experiments, containing 1186 lung cancer
and 349 COVID-19 CT images. The general data pre-processing
(Augmentation + Resize) is applied: (i) the data augmentation pro-
cedure includes scaling, flipping, cropping, and rotating. After the
augmentation, the two original datasets are expanded to a 3000-
images dataset. (ii) the resize operation scales the COVID-19 data-
set (various size) to the same size as lung cancer images
(512 � 512 � 3). In the training of COVID-19 synthesizer, the gen-
eral settings are followed the original CycleGAN [38], for example,
the parameters kC and kN in formula (3) are both set as 10. And the
regular training parameters batch size and learning rate are set as 4
and 2� 10 - 4 individually. Besides, the network is optimized by
Adam optimizer [39].

When training the COVID-19 classifier, the dataset includes
1000 images of synthetic COVID-19 and 1000 images of normal
lung CT. And two test datasets are used to evaluate the effec-
tiveness of the synthetic images and the classifier, including
the real test dataset with 300 images of real COVID-19 and
300 images of Non-COVID-19, and the synthetic test dataset
with 300 images of synthetic COVID-19 and 300 images of
Non-COVID-19.

For measuring the performance of the classification task, accu-
racy, recall, precision and F1 score are calculated, and their formu-
las can be represented as:

Accuracy ¼ TP þ TN
TP þ FN þ TN þ FP

ð5Þ

Recall ¼ TP
TP þ FN

ð6Þ

Precision ¼ TP
TP þ FP

ð7Þ
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F1 ¼ 2
Precision� Recall
Precisionþ Recall

¼ 2TP
2TP þ FP þ FN

ð8Þ

where TP, FP, FN,TNare True Positive, False Positive, False Negative
and True Negative. As one of most important metrics, F1 is used
to measure the accuracy of a test, by considering both the precision
and the recall of the test to compute the score.

Additionally, the ROC (Receiver Operating Characteristic) curve
is also plotted to show the performance of each model. The vertical
axis of the ROC curve is True Positive Rate (TPR), and the horizontal
axis is False Positive Rate (FPR), and AUC (Area Under Curve) is
defined as the area under the ROC curve and the coordinate axis,
the ROC curve is connected by fðx1; y2Þ; ðx2; y2Þ; . . . ; ðxm; ymÞg, AUC
is expressed as:

AUC ¼ 1
2

Xm�1

i¼1

ðxiþ1 � xiÞ � ðyi þ yiþ1Þ ð9Þ

ROC curve and AUC are used to evaluate the performance of the
model.
3. Results

3.1. Synthetic datasets description

As the result of the experiment and the main contribution, we
have established a COVID-19 dataset, which are 2D images synthe-
sized from CT images of lung cancer. This dataset contains 1186 CT
images of COVID-19 pneumonia with the size of 512 � 512 � 3.
Each CT image contains apparent COVID-19 lesion features with
GGO pattern. According to our experiments, this dataset can be
used for further analysis of COVID-19, such as classification exper-
iments. More details and images can be obtained at https://data.
mendeley.com/datasets/kdn5v76wb3/draft?preview=1.
3.2. Generation of synthetic COVID-19 CT images from lung cancer

To construct COVID-19 synthetic images, the style strategy is
applied to transfer the GGO features of COVID-19 into the lung
cancer CT image. Therefore, a GAN-based deep learning model is
trained to achieve an optimal result. The training dataset contains
349 images of COVID-19 and 1186 images of lung cancer. Each
image patch has a size of 512� 512 pixels, and the raw input lung
cancer CT images to the network are collected from LUAN16. The
results of the network are compared against the ground truth (real
COVID-19 images). A random example of the network input image
is shown in Fig. 2A, where the generated CT images of COVID-19
have GGO pattern not only similar to ground truth, but also with
annotations of nodule regions. Details of GGO pattern are shown
in the zoomed-in regions of interest (ROIs) in Fig. 2B, C. A pre-
trained CycleGAN based deep neural network is applied to these
input images (lung cancer and COVID-19), and the output is the
GGO pattern enabled COVID-19 CT images with annotations,
where GGO features of COVID-19 are clearly resolved. The model
provides an excellent agreement with the ground truth images
(COVID-19) shown in Fig. 2C.

Moreover, from the result in the Fig. 2, the generated image
shows more lesions with GGO pattern compared to the COVID-
19 images, and these generated GGO pattern located around the
original lung nodules. This factor does not affect the further net-
work evaluation for COVID-19 analysis as more lesions with GGO
pattern might be the benefits of training. Note that all the network
output images shown in this article are blindly generated by the
deep network, that is, the input images are not previously seen
by the network.



Fig. 2. Deep-learning enabled CT image transformation from lung cancer to COVID-19. (A) Input lung cancer CT image. (B) Reconstructed image obtained using the CycleGAN
based deep learning method. (C) Input COVID-19 CT image. Zoomed-in regions of lesion in COVID-19 and lung cancer, highlights the success of generation of GGO pattern.
Experiments are repeated through the whole lung cancer dataset, achieving similar results.
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3.3. Effectiveness of our method

To compare the similarity of the synthetic and real COVID-19
images, statistical distribution and quantitative measurement are
tested on our dataset [40–42]. For statistical analysis, the pixels
of chest CT images are first counted, including CT images of lung
cancer (source domain), synthetic COVID-19 (generation domain)
and real COVID-19 (target domain). Then the histograms of three
randomly sampled CT images are plotted in Fig. 3A. The image his-
togram is a gray-scale value distribution showing the frequency of
occurrence of each gray-level value. The histogram analysis
showed that the gray-scale values of lung cancer (purple curve)
and both COVID-19 images (red curve: real image; green curve:
synthetic image) are distinguishable (Fig. 3A). This results in curves
shifted appearing on the histogram of lung cancer to two COVID-19
images. In addition, both gray-scale values of synthetic and real
COVID-19 image are very close, indicating a high level of agree-
ment. With respect to the lesions, the local distribution of lung
nodule (purple curve) and GGO pattern of COVID-19 (red curve:
real one; green curve: synthetic one) are plot with similar results
obtained (Fig. 3B).

For quantitative measurement, KL divergence is computed to
compare the agreement of both synthetic COVID-19 image and
lung cancer image (Fig. 3C). KL divergence quantifies the level of
agreement relative to real COVID-19 CT image. The KL divergence
of synthetic image to real COVID-19 is 0.043, while the divergence
Fig. 3. Comparison the synthetic and real COVID-19 CT images. A and B show the graysc
As shown in the histogram, the pixels in both synthetic image and real COVID-19 CT res
COVID-19 one. C. The KL divergence is computed to compare the agreement of both synt
relative to real COVID-19 CT image. The increased value indicated a lower level of simil
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value of cancer image to real COVID-19 is 0.097, showing a strong
correlation between real COVID-19 image and synthetic one.

3.4. Classification performance on synthetic COVID-19 CT images

In this study, various deep learning-based COVID-19 classifica-
tion methods are evaluated on this newly synthesized COVID-19
CT image dataset. Specifically, VGG16, ResNet-50, Incep-
tion_ResNet_v2, Inception_v3, and DenseNet-169 models are
trained in the generated dataset, which is consisted of 1000 images
of synthesized COVID-19 and 1000 images of Non-COVID-19. To
compare, various classification models are trained on the synthetic
COVID-19, and tested with synthetic COVID-19 dataset and real
COVID-19 dataset and the two test sets are named as Synthetic
Test and Real Test respectively. Here, the synthetic COVID-19 data-
set contains 300 generative COVID-19 images and 300 Non-COVID-
19 images. While, the real COVID-19 dataset includes 300 real
COVID-19 images and 300 Non-COVID-19 images. The perfor-
mance metrics of above mentioned 5 classification models, includ-
ing accuracy, precision, recall and F1 score, are summarized in
Table 2. And the ROC curves are also plotted in Fig. 4 to help the
performance evaluation.

According to the results (Table 2), all models achieve the excel-
lent results (all the average metrics are greater than 90%), which
means that the reliable model for diagnosing COVID-19 can be
trained by the synthesized dataset. In the Synthetic Test, the gen-
ale image of global and local distribution using the histogram method, respectively.
ide more on the larger scale, and hence the synthetic CT image is similar to the real
hetic COVID-19 image and lung cancer image by quantifying the level of agreement
arity.



Table 2
Test result of different classification models on real and synthetic COVID-19 CT images.

Model Synthetic Test Real Test

Accuracy Recall Precision F1 Accuracy Recall Precision F1

VGG16 94.19 88.15 100.00 93.70 94.80 88.15 98.52 93.05
ResNet_50 94.83 89.47 100.00 94.44 94.10 89.47 95.32 92.30
Inception_v3 96.55 96.05 96.90 96.47 95.32 96.05 92.40 94.19
Inception_ResNet_v2 95.91 91.67 100.00 95.65 96.70 91.67 100.00 95.65
DenseNet_169 98.92 97.80 100.00 98.89 98.09 97.80 97.37 97.92
Average 96.08 92.63 99.38 95.83 95.80 92.63 96.72 94.62

Fig. 4. ROC curves of five classification models on real or synthetic dataset. The lines colored by red, green, blue, yellow, pink are the ROC curves of DenseNet_169,
Inception_ResNet_v2, Inception_v3, ResNet_50 and VGG16 respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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eral performance is slightly better than the Real Test: the average
accuracy is around 96% and the average precision even over 99%.
This is an acceptable phenomenon because the models are trained
by the synthetic data and the synthetic test data has more similar-
ity with the train data. For the Real Test, all average metrics are
over the 90%, which reflects that the classification models still
can recognize COVID-19 cases, even though the models are only
trained by generated data without one real COVID-19 images.
The Real Test has achieved a 95.80% average accuracy and 94.62%
F1 score, which are very closed to Synthetic Test. This result is
already better than the performances reported by other AI-based
diagnosis methods.

In detail, the simplest VGG16 model has relatively worse per-
formance in synthetic set and ResNet_50 in the real set, but their
F1 score are still over 90%. This may be in result of its shallower
structure as the basic model. Furthermore, the DenseNet model
has showed the great capacity in the COVID-19 recognition in both
Real and Synthetic Tests. It has obtained approximate 98% accuracy
in Real Test, which can be totally believed in real-world
application.

From the Fig. 4, the ROC curves generally show the coincident
result with numeric metrics. The DenseNet has the largest AUC
area in both Synthetic and Real Tests. It can be summarized from
the AUC results of the two test sets that we synthesized a large-
scale and high-quality COVID-19 dataset and constructed a reliable
COVID-19 automated diagnostic model.

This experiment demonstrates that CycleGAN-synthesized
COVID-19 CT images trained deep learning-based COVID-19 classi-
fication models are reliable approaches. Therefore, the generated
dataset can be used to enlarge the data for deep learning training
in the COVID-19 classification. Instead of collecting large clinically
1397
relevant data, a small amount real data is enough to build a large
synthesize COVID-19 chest CT images dataset for the deep learning
to realize the diagnosis. This shows the potentials to solve the
biomedical data-lacking problem in many deep learning trainings.
The further research can focus on the fine tuning the classification
model by a mixture dataset, including small amount real data and
large amount synthetic data, to improve the diagnosis performance
further.
4. Discussion and conclusions

This work illustrates the feasibility of the synthetic data in solv-
ing the lack of data in deep learning-based COVID-19 analysis.
Recent advances in deep learning-based COVID-19 analysis are
systematically reviewed, including the CT-images based classifica-
tion, detection, and segmentation. These earlier researches reveal
that one of the most important factors, hindering the advancement
of deep learning in COVID-19 analysis, is lacking a large number of
clinical COVID-19 CT images. The more data used in training the
networks, the more reliable deep learning model can be obtained.
Thus, big dataset preparation is fatal in intelligent automatic diag-
nosis implementation in COVID-19. Using the strategy of CycleGAN
style learning, this study establishes a public COVID-19 CT image
dataset from lung cancer CT image, comprising 1186 synthetic
COVID-19 CT images. The combination of those converted CT
images with additional annotations and labels turns the dataset
into a rich resource for the development and the evaluation of deep
learning algorithms for COVID-19 CT image analysis.

Using this generated COVID-19 CT dataset, five widely used
deep learning models, including VGG16, ResNet-50, Incep-



H. Jiang, S. Tang, W. Liu et al. Computational and Structural Biotechnology Journal 19 (2021) 1391–1399
tion_ResNet_v2, Inception_v3, and DenseNet-169 are trained, and
their performances are compared with the synthetic or real
COVID-19 CT images. All models achieve the excellent results with
over than 90% classification accuracy in both synthetic and real
dataset. Although the classification models have never been
learned on the real COVID-19 CT images, synthetic and real test
set have similar results, which demonstrate they have similar fea-
tures and the real COVID-19 can be replaced by our generated
dataset. Among those models, DenseNet_169 model achieve best
performance with all the metrics beyond 97% in both test datasets,
which is much better than previously reported deep learning-
based classification models. This also proves that the GGO charac-
teristics can be learned very well in CycleGAN model.

Besides, CycleGAN-based image convert model learns the char-
acteristics of the entire lung and generates a large infection area
with GGO pattern. Although this is unexpectable, the phenomenon
has not affected the results in evaluation of deep learning models
for classification. Nevertheless, the further research is worth to
conduct in order to identify the clinically relevant regions while
ignoring the unrelated ones. One possible improvement is to estab-
lish attention and localization-based conversion models for lesion
regions.

In summary, recent progresses in deep learning for COVID-19
chest CT image analysis are reviewed and compared. To address
the major obstacles of current deep learning in COVID-19 CT image
analysis, CycleGAN is utilized to generate a public COVID-19 CT
image dataset from lung cancer. The proposed model can synthe-
size large amount of COVID-19 data from a small amount of pub-
licly available data, which can assist the development of deep
learning-based COVID-19 diagnostic method. The lesson learned
from the work of deep learning in lung cancer will reduce data
curation and model development time dramatically for COVID-
19, by relieving the shortness of high-quality labelled data and
well-established model.
5. Importance

As of Feb. 2021, COVID-19 has been confirmed around 107 mil-
lion people worldwide and caused over 2.3 million deaths as
reported. Lung CT imaging is one of effective screening tool for
COVID-19. The time-consuming and labour intensity make the
accurate diagnosis particularly challenging. Deep learning shows
great potential in CT image analysis. However, the major problem
is the lack of public datasets with well-defined labels to allow com-
parisons of different deep learning models. A style transferring
strategy based on CycleGAN is employed to synthesize a publicly
available COVID-19 dataset from lung cancer. Various deep learn-
ing models are trained and tested on the synthesized COVID-19
dataset in order to systematically compare different models. The
lesson learned from the work of deep learning in lung cancer will
reduce data curation and model development time dramatically
for COVID-19, by relieving the shortness of high-quality labelled
data and well-established model.
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