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Th17-mediated mucosal inflammation is related to increased Prevotella bacterial abundance. The actual involvement of Prevotella
in the development and accumulation of intestinal Th17 cells at a steady state, however, remains undefined. Herein, we investigated
the role of Prevotella in inducing intestinal Th17 cells in mice. Mice were treated with a combination of broad-spectrum antibiotics
(including ampicillin, neomycin sulfate, vancomycin hydrochloride, and metronidazole) in their drinking water for 4 weeks and
then gavaged with Prevotella for 4 weeks. After inoculation, 16S rDNA sequencing was used to verify the colonization of
Prevotella in the colon of mice. The IL-17A as well as IL-17A-expressing T cells was localized and quantified by an
immunofluorescence assay (IFA) of colon sections. Th17 cells in the mesenteric lymph nodes of mice were counted by flow
cytometry. Systemic immune response to Prevotella colonization was evaluated based on the serum levels of IL-6, TNF-α, IL-1β,
IL-17A, IL-10, IL-4, IFN-γ, and IL-2. Th17-polarizing cytokines (IL-6, TNF-α, IL-1β, and IL-2) induced by Prevotella were
evaluated by stimulation of bone marrow-derived dendritic cells (BMDCs). Results revealed that after inoculation, Prevotella
successfully colonized the intestine of mice and induced the production and accumulation of colonic Th17 cells in the colon.
Moreover, Prevotella elevated some of the Th17-related cytokines in the serum of mice. And Th17-polarizing cytokines (IL-6
and IL-1β) produced by BMDCs were mediated mainly through the interaction between Prevotella and Toll-like receptor 2
(TLR2). In conclusion, our data suggest that Prevotella induces the production of Th17 cells in the colon of mice, thus
highlighting the potential role of Prevotella in training the intestinal immune system.

1. Introduction

The central role of the microbiota in human disease and
health is gaining more attention since it can shape host
immune development and modulate host immune responses
[1]. Specific intestinal microbes have been suggested to
regulate the homeostasis of intestinal effector T cells. For
example, certain bacterial species from Bacteroides and Clos-
tridium have been identified to induce regulatory T cells in
the murine colon [2–5]. Another study showed that a sub-

group of microbes in the intestine, such as segmented
filamentous bacteria (SFB), Citrobacter rodentium, and
Escherichia coli O157, can induce the production of Th17
cells in the intestine [6].

Th17 cells are prominent among T cells present in the
intestines of both mice [7, 8] and humans [9]. The Th17
cytokines, IL-17A, IL-17F, and IL-22, induce the intestinal
epithelium to produce tight junction proteins and antimicro-
bial peptides, supporting the integrity of the gut barrier [10].
In addition, IL-17A and IL-17F recruit neutrophils by
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releasing granulocyte colony-stimulating factor, thereby
helping host fight against extracellular bacterial and fungal
infections [11]. As a result, humans with IL-17 signalling
defects are more susceptible to mucosal infections with
Staphylococcus aureus and Candida albicans [11, 12]. How-
ever, excessive Th17 responses have been associated with a
variety of autoimmune and inflammatory disorders [12,
13]. Recently, there is epidemiological evidence for the rela-
tionship between Prevotella and increased Th17-mediated
immune responses in many inflammatory diseases [14–16].

Prevotella strains are gram-negative anaerobes that are
members of the gut, oral, and vaginal microbiota [17]. In
human gut microbial communities, as one of the three gut
enterotypes [18, 19], Prevotella abundance is associated with
chronic inflammatory conditions [20], as well as plant-rich
diets [21]. Of note, emerging researches in humans have
associated the enrichment of Prevotella in the mucous mem-
brane with Th17-related inflammatory diseases, including
bacterial vaginosis [22, 23], periodontitis [15], and rheuma-
toid arthritis [16, 20, 24]. This is consistent with the marked
ability of Prevotella to induce Th17 in vitro. However, it is
unclear whether Prevotella has a similar effect on Th17 cells
in the absence of inflammatory diseases in vivo. In other
words, there is still no direct evidence that Prevotella induces
colonic Th17 cells. Therefore, we set out to assess the role of
Prevotella in the induction of Th17 cells in the colon of mice.

2. Materials and Methods

2.1. Experimental Animals and Microbial Strains. L-17A˗/˗

(KO) mice in the C57BL/6 background were purchased from
the Shanghai Model Organisms Center (Shanghai, China),
and age-matched C57BL/6 (WT) mice were from the Depart-
ment of Lab Animal Science of Air Force Medical University.
All mice were maintained in groups of 5 animals per cage
under specific pathogen-free conditions at the Department
of Lab Animal Science of Air Force Medical University.
Unless otherwise stated, 6–8-week-old female mice were
used. The protocols for animal experiments were approved
by the Laboratory Animal Welfare and Ethics Committee
of Air Force Medical University (no. KY20173518-1), and
all experiments were performed following the relevant guide-
lines. For the stimulation of BMDCs, Prevotella copri (DSMZ
18205) and Prevotella melaninogenica (ATCC®25845™) were
cultured on Columbia blood plates (Oxoid) at 37°C under
anaerobic conditions for 3 days prior to adjusting the con-
centration to an OD600nm of ~0.5 [15].

2.2. Antibiotic Treatment and Prevotella Inoculation. Ampi-
cillin (1 g/L, Amresco), neomycin sulfate (1 g/L, Amresco),
vancomycin hydrochloride (0.5 g/L, Vancocin), and metroni-
dazole (1 g/L, Alfa Aesar) were added into the drinking water
(ABX) of the mice for 4 weeks [25]. Microbial depletion was
confirmed by examining the presence of living microorgan-
isms in aerobic or anaerobic culture. Water containing anti-
biotics was changed twice a week, and treatment was
stopped 2 days prior to gavage of Prevotella. For preparation
of the bacterial inoculum, Prevotella was grown on fluid thio-
glycolate medium (Oxoid) at 37°C under anaerobic condi-

tions for 3 days before use. After centrifugation, the
bacteria were suspended in the fluid medium. Mice were
gavaged with 200μL of inoculum (dose 1 × 108) and received
the doses every other day for 4 weeks as previously described
[15, 26]. One hour prior to the bacterial gavage, mice were
injected intraperitoneally with 3mg of cimetidine HCl
(Sigma-Aldrich) in 100μL PBS to inhibit stomach acid secre-
tion to improve the colonization [26].

2.3. 16S rDNA Sequencing Analysis of Mouse Faeces. Fresh
faeces were collected aseptically from mice prior to euthani-
zation and were stored at ˗80°C before analysis. Genomic
DNA extraction from faeces was performed using the
QIAamp PowerFecal DNA Kit (Qiagen). The 16S ribosomal
DNA hypervariable regions V3+V4 were PCR-amplified
using primers 338F ACTCCTACGGGAGGCAGCAG and
806R GGACTACHVGGGTWTCTAAT. All PCR reactions
were carried out on an ABI GeneAmp® 9700 (Thermo
Fisher) with Trans Start Fastpfu DNA Polymerase (Trans-
Gen). The PCR products were purified with the AxyPrep
DNA Gel Extraction Kit (Axygen). Sequencing libraries were
generated using the TruSeq DNA Sample Prep Kit (Illumina)
and sequenced on an Illumina Miseq PE300 platform (Illu-
mina) following the manufacturer’s recommendations. The
Ribosomal Database Project (RDP) classifier (version 2.11)
Bayes algorithm was used to annotate the taxonomic infor-
mation of operational taxonomic units (OTUs) with ≥97%
similarity. And the relative abundance of each OTU was cal-
culated at each classification level (kingdom, phylum, class,
order, family, and genus). The composition of the gut micro-
biota was further analyzed as previously described [27].

2.4. Quantification of Cytokines in the Serum. Blood was col-
lected from the eyes of the mice and was allowed to clot for at
least 30min before centrifugation for 10min at 1000 × g.
Then, the serum was removed and assayed on a multiplex
LUMINEX xMAPMAGPIX instrument (Millipore Corpora-
tion). Antibody beads, controls, wash buffer, serum matrix,
and standards were prepared for the MILLIPLEX® MAP
Kit Mouse Th17 Magnetic Bead Panel (Millipore Corpo-
ration) following the manufacturer’s instructions [28].
Concentrations of eight cytokines (IL-6, TNF-α, IL-1β,
IL-17A, IL-10, IL-4, IFN-γ, and IL-2) were detected using
the Mouse Th17 Magnetic Bead Panel according to its
instructions. MAGPIX and xPONENT software were used
to read the results.

2.5. Bacterial DNA and Real-Time PCR. Faecal DNA was
extracted according to instructions (QIAamp Fast DNA
Stool Kit, Qiagen). Phylum-specific primers were used to
detect 16S rDNA by real-time PCR in triplicate [25]
(Table S1) with a ChamQ™ SYBR® Green PCR Master Mix
(Vazyme) performed on a Bio-Rad CFX96 System. The
universal 16S rDNA gene was used to normalize the values,
and the data were calculated using the 2-ΔΔCT method as
previously described [29]. The expression of multiple
changes in the experimental samples (ABX-treated group
or Prevotella-gavaged group) was compared with that in the
control samples (non-ABX-treated group).
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2.6. Cellular RNA Isolation and Real-Time RT-PCR. Total
RNA from mouse colons was isolated with the TRIzol
reagent (Invitrogen) after homogenization of the tissue.
RNA was reverse transcribed using a HiScript® III RT Super-
Mix for qPCR (+gDNA wiper) Kit (Vazyme). Real-time PCR
analyses were performed in triplicate on the Bio-Rad CFX96
System with a ChamQ™ SYBR® Green PCR Master Mix
(Vazyme) using gene-targeted primers (Table S1). The
gapdh housekeeping gene values were used to normalize the
values, and the data were calculated using the 2-ΔΔCT

method as previously described [29]. The expression of
multiple changes in the experimental samples (ABX-treated
group) was compared with that in the control samples
(non-ABX-treated group).

2.7. Bone Marrow-Derived Dendritic Cell Generation and
Stimulation. Bone marrow-derived dendritic cells (BMDCs)
were obtained as previously described [30]. Briefly, bone
marrow cells were isolated from 6- to 8-week-old C57BL/6
mice and cultured for 9 days with 20 ng/mL recombinant
murine GM-CSF (PeproTech). Cells were purified by posi-
tive selection [26] using anti-CD11c microbeads (Miltenyi
Biotec). The dendritic cell (DC) phenotype was controlled
by flow cytometry. The cytokine response to Prevotella was
assessed in 1 × 105 BMDCs incubated with LPS (10ng/mL,
Sigma) as a positive control, PBS as a negative control, or
heat-killed (30min at 60°C) Prevotella (1 × 107 cfu/well) for
24 h [15]. To compare the efficacy of Toll-like receptors
(TLRs), the BMDC medium was supplemented with inhibi-
tors of TLR2 [31] (C29, MCE, 50μM) or TLR4 [32] (TAK-
242, MCE, 100nM). For all experiments, TLR inhibitors were
added to the cells just prior to stimulation.

2.8. Cell Isolation and Flow Cytometry. Mice were sacrificed,
and mesenteric lymph nodes (MLNs) were harvested asepti-
cally. Then, MLNs were homogenized using a syringe and fil-
tered on 40μm cell strainers to make single-cell suspensions.
For intracellular cytokine staining, cells were incubated for
4 h with ionomycin and phorbol myristate acetate (PMA)
(1μg/mL and 50ng/mL, respectively, Sigma-Aldrich) at
37°C under 5% CO2 [26]. Antibody staining was performed
at 4°C for 30min. Antibodies raised against the following
mouse antigens were used: IL-17A (clone REA660, Miltenyi
Biotec), CD4 (clone GK1.5, Miltenyi Biotec), MHC II (clone
M5/114.15.2, Miltenyi Biotec), and CD11c (clone N418, Mil-
tenyi Biotec). Intracellular staining was done with an Inside
Stain Kit (Miltenyi Biotec) according to the manufacturer’s
instructions. Flow cytometry was performed on a BD FACS-
Canto™ II Flow Cytometer, with data subsequently analyzed
with FlowJo software (Tree Star).

2.9. ELISA Analysis of Cytokines. Supernatant from stimu-
lated BMDC cultures was collected and analyzed using Bos-
ter ELISA kits for cytokine concentrations, including IL-1β,
IL-6, IL-12p70, and TNF-α. The detection procedures were
carried out according to the instructions. Data were
expressed as the mean cytokine response minus the back-
ground (pg/mL) for each treatment from triplicate wells.

2.10. Immunofluorescence Assay. Colon samples were
embedded in O.C.T. (Sakura Finetek), cut in 4μm sections,
and adhered to microscope slides (Thermo Fisher Scientific).
All slices were blocked with 100μL of blocking solution for
30min at room temperature in a humidified chamber. Then,
the primary and secondary antibodies were incubated in a
humidified chamber each at room temperature for 60min.
Phosphate-buffered saline (pH 7.4) was used to wash the
slices following the primary and secondary antibody incuba-
tions three times for 5min. And sections were counterstained
with DAPI. The primary antibodies used were monoclonal
rabbit anti-IL17A (Abcam) and monoclonal rat anti-CD3
(Abcam), respectively, and both were diluted to 1 : 200 in
antibody dilution buffer (Solarbio). The primary antibodies
were fluorescently labelled separately with Alexa Fluor 488
goat anti-rabbit IgG (Abcam) and Alexa Fluor 647 goat
anti-rat IgG (Abcam) secondary antibodies, that were diluted
to 1 : 1000 in antibody dilution buffer (Solarbio).

2.11. Quantification and Statistical Analysis. Statistical analy-
ses were performed using GraphPad Prism 8 software. Data
obeying a normal distribution are represented as mean ±
SD and analyzed using the unpaired t-test (when two sam-
ples were compared) or ANOVA (when more than two sam-
ples were compared); data obeying a nonnormal distribution
are represented as median with interquartile range and ana-
lyzed using the Mann-Whitney (when two samples were
compared) or Kruskal-Wallis (when more than two samples
were compared) tests. Differences were considered signifi-
cant when p < 0:05. Mice were randomly assigned into exper-
imental groups with 5 mice per group.

3. Results

3.1. Depletion of Intestinal Flora Reduced il-17a Gene
Transcription and IL-17A-Positive T Cells in the Colon. As is
known to all that germ-free mice [33], rather than antibiotic-
treated mice [34], exhibit abnormal immune functions, so
we used the ABX-treated mice for the investigation of whether
Prevotella could induce colonic Th17 development in vivo.
Mice were treated with ABX for 4 weeks to deplete commensal
organisms in the gut and then gavaged with P. melaninogenica
(WT+PM), P. copri (WT+PC), or blank medium (WT+BM)
every other day for 4 weeks (Figure 1(a)).

The depletion effect on intestinal flora was verified by
aerobic, anaerobic, and fluid culture of mouse faeces
(Figure 1(b)). As the culture results showed, after being
treated with ABX for 4 weeks, mouse faeces contained virtu-
ally no culturable bacteria (Figure 1(b)). Furthermore, faecal
microbiota composition at the phylum level detected by
qPCR using phylum-specific primers indicated that the rela-
tive abundance of four major phyla including Actinobacteria,
Bacteroidetes, Firmicutes, and Proteobacteria all decreased
significantly after ABX treatment (Figure 1(d)).

Moreover, il-17a mRNA expression in the mouse colon
reduced dramatically after the depletion of intestinal flora
(Figure 1(c)). And the results of flow cytometry revealed that
the proportion of Th17 cells from MLNs decreased dramati-
cally after ABX treatment (Figure 2(a)). Consistently, the
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Figure 1: ABX treatment reduced both gut microbial abundance andmRNA expression of il-17a in the colon. (a) Experimental design. Six- to
eight-week-old C57BL/6 female mice were treated for 4 weeks with a cocktail of broad-spectrum antibiotics (ampicillin, neomycin sulfate,
vancomycin, and metronidazole) in drinking water (ABX) or were given water without antibiotics (non-ABX). Then, the ABX-treated
mice were divided into 3 groups: the WT+BM group was gavaged with blank medium for 4 weeks, the WT+PM group was gavaged with
P. melaninogenica for 4 weeks, and the WT+PC group was gavaged with P. copri for 4 weeks. (b) Evaluation of the presence of microbial
flora in the faeces of ABX-treated mice by culture in either aerobic or anaerobic conditions. (c) Colonic il-17a mRNA expression in the
ABX vs. non-ABX groups. The graph represents mean ± SD, and data were analyzed using the unpaired Student’s t-test. (d) The faecal
microbiota was detected by qPCR using phylum-specific primers. Relative Ct value compared to universal 16S rRNA gene Ct value (ΔCt)
and the mean of ΔCt values in the non-ABX group (ΔΔCt). The graph shows the median with interquartile range, and data were analyzed
using the Mann-Whitney test. Statistical significance is displayed as ∗p < 0:05 and ∗∗p < 0:01.
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Figure 2: ABX treatment reduces Th17 in the colon of mice. (a) Expression of IL-17A in CD4+ cells from the mesenteric lymph nodes
(MLNs) of the WT mice treated with or without ABX, as well as the IL-17A-/- mice. (b) Immunofluorescence assay (IFA) of sections of
the colon in the WT mice treated with or without ABX, as well as the IL-17A-/- mice. The colon slices were stained with monoclonal
antibodies of IL-17A (green) and CD3 (red). And DAPI (blue) stained the nucleus. Scale bar: 20μm.
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6 Journal of Immunology Research



immunofluorescence assay (IFA) showed that colonic T cells
coexpressing IL-17A and CD3 decreased after ABX treat-
ment (Figure 2(b)). Of interest, the lack of IL-17A-
expressing T cells in ABX-treated mice was similar to that
in IL-17A-/- mice (Figure 2(b)). These results indicate that
the intestinal microbiota is indispensable for the develop-
ment of colonic Th17 cells.

3.2. Prevotella Induced IL-17A Production and Th17 Cell
Accumulation in the Colon of Mice. After verifying the deple-
tion of the intestinal microbiota, we gavaged ABX-treated
mice with P. melaninogenica (WT+PM), P. copri (WT+PC),
or blank medium (WT+BM), respectively, for 4 weeks
(Figure 1(a)). Compared with WT+BM, both WT+PM and
WT+PC groups showed significant elevation of Th17 cells
in the MLNs (Figure 3(a)). Similarly, proportions of colonic
cells coexpressing CD3 and IL-17A of the two Prevotella-
gavaged groups (WT+PM and WT+PC) were higher than
that of the blank medium-gavaged control group (WT
+BM) (Figure 3(b)). Of note, the IFA results showed clearly
that the majority of IL-17A is distributed in the intestinal epi-
thelial cells, indicating its major effects on them (Figure 3(b)).

To determine whether the induction of Th17 cells authenti-
cally depends on the inoculation of Prevotella in the current
study, we checked themicrobial community compositions of fae-
ces from the WT+PM, WT+PC, WT+BM, and non-ABX mice
by using 16S rDNA sequencing. The results revealed relatively
higher proportions of Prevotellaceae in the microbiota of WT
+PM and WT+PC mice compared to WT+BM mice
(Figure 4). Besides, relative abundances of four major phyla

(Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria)
in the faecal microbiota from WT+PM, WT+PC, and WT+BM
recovered asynchronously from ABX treatment (Figure S1).

The 16S rDNA sequencing analysis indicated that both
ABX treatment and Prevotella inoculation changed the com-
positions of the intestinal microbiota of mice and that Prevo-
tella colonized successfully after its inoculation. Combined
with the accumulation of colonic Th17 cells after Prevotella
inoculation, the induced development and accumulation of
Th17 cells definitely resulted from the colonization of Prevo-
tella in the colon of mice.

3.3. Prevotella Partly Elevated Th17-Related Cytokines in the
Serum of Mice. Since Th17 cells exhibit a proinflammatory
effect, we seek to determine whether intestinal Th17 expan-
sion in Prevotella-colonized mice was accompanied by
inflammatory response. Results of serum cytokine detection
showed that P. melaninogenica colonization augmented the
serum concentration of IL-6 and TNF-α while P. copri colo-
nization only elevated IL-6 in serum (Figures 5(a) and 5(b)),
whereas the concentration of IL-1β showed no significant
difference between the three groups (Figure 5(c)). It's no sur-
prise that compared with the WT+BM group, P. melanino-
genica and P. copri colonization elevated the serum IL-17A
significantly (Figure 5(d)). Other serum cytokines including
IL-4, IFN-γ, and IL-2 remained stable after the colonization
of Prevotella, except for the increase in IL-10 related to P.
melaninogenica colonization (Figures 5(e)–5(h)). Analysis
of serum cytokines revealed that Prevotella colonization
mainly promoted Th17-related cytokines (i.e., IL-17A and
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IL-6) and had no effect on the Th1- (i.e., IFN-γ and IL-2) and
Th2- (i.e., IL-4) related cytokines. Meanwhile, the effect of P.
melaninogenica colonization on serum cytokines was more
extensive than that of P. copri.

3.4. Prevotella Activates TLR2-Mediated Th17-Polarizing
Cytokine Production by BMDCs In Vitro.As signals transmit-
ted from the luminal bacteria to the immune system are
mainly through detection of bacteria by dendritic cells
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Figure 5: Prevotella elevated Th17-related cytokine levels in the serum of mice. (a–h) Serum cytokines (IL-6, TNF-α, IL-1β, IL-17A, IL-10,
IL-4, IFN-γ, and IL-2) were quantified in the three groups of mice. Data are presented as the mean ± SD. The p values were calculated using
one-way ANOVA. Statistical significance is displayed as ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:001.
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[35], BMDCs were chosen for our in vitro experiments.
We examined whether Prevotella would stimulate BMDCs
to produce Th17-polarizing cytokines. To this end, mouse
BMDCs were obtained and stimulated with heat-killed P.
melaninogenica and P. copri along with the TLR2 and
TLR4 inhibitors to determine the effects of TLRs. LPS
was used as the positive control, and PBS as the negative
control. Phenotypes of BMDC were identified by flow
cytometry analysis (Figure S2).

Comparison of the production of various cytokines
induced by the two species of Prevotella revealed that both of
them were capable of inducing IL-6, TNF-α, and IL-1β
(Figures 6(a)–6(c)). Notably, IL-6 and TNF-α were induced
more dramatically by LPS than by Prevotella, whereas the
opposite was true for IL-1β (Figures 6(a)–6(c)). For the induc-
tion of IL-12, there was no significant difference between the
two species of Prevotella, although compared with PBS, P.
copri showed statistical difference while P. melaninogenica
did not (Figure 6(d)). These findings suggest that Prevotella

can induce BMDCs to produce innate cytokines (i.e., TNF-α
and IL-1β) and Th17- (i.e., IL-6 and IL-1β) and Th1- (i.e.,
IL-12) related cytokines. Additionally, IL-1β, which is indis-
pensable for Th17 differentiation, can be induced more dra-
matically by P. melaninogenica and P. copri than by LPS.

To determine the mechanisms involved, we investi-
gated the roles of TLRs in the observed effects of Prevo-
tella strains on BMDCs. C29 and TAK-242 were used as
inhibitors of TLR2 [31] and TLR4 [32], respectively. For
P. melaninogenica stimulation, IL-6, TNF-α, and IL-1β
production by BMDCs was TLR2-dependent. This was
also the case for P. copri, with the exception of P. copri
inducing BMDCs to produce IL-6, where cytokine produc-
tion was mainly dependent on TLR2 but with some con-
tribution by TLR4 (Figures 7(a)–7(c)). Moreover, the
induction of IL-12 by P. copri was completely mediated
by TLR2 (Figure 7(d)). These data indicate the involve-
ment of TLR2 on BMDCs in driving the differentiation
of the Th17 subset upon recognition of Prevotella.
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Figure 6: Prevotella induced Th17-polarizing cytokine production by BMDCs. (a–d) BMDCs were stimulated with heat-killed P.
melaninogenica or P. copri. Then, cytokines in the cell culture supernatant were measured, including IL-6, TNF-α, IL-1β, and IL-12p70.
One-way ANOVA was used to calculate p values, ∗ indicates statistical significance compared with the PBS control, and # indicates
statistical significance compared with LPS. ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, ∗∗∗∗p < 0:0001, and ####p < 0:0001.
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4. Discussion

Th17 cells are rich in the intestines in a stable state but are
not found in the intestines of germ-free mouse, suggesting
that this subgroup is produced through the reaction to the
intestinal flora [36]. While numerous studies have docu-
mented associations between Prevotella and Th17 cells in
many inflammatory diseases [17, 24], the underlying interac-
tion between Prevotella and intestinal Th17 cells at a steady
state was not previously known. The current study has
identified two species of Prevotella that can induce robust
Th17 cells in the murine colon, providing potential targets
for the treatment of diseases related to Th17 responses.

Generally, two classic mouse models are used to detect
the role of the intestinal flora in immunity. Germ-free

mice are born and raised in aseptic conditions, resulting
in abnormal immune functions due to the deprivation of
the microbiota involved in the immune system education
[33]. But for the antibiotic-treated mice, the situation is
quite different. With the transiently depleted microbiota,
they possess a mature immune system [34], So we used
the ABX-treated mice for further study (Figure 1(a)). A
previous study demonstrated that treatment with antibi-
otics significantly reduced intestinal Th17 cells in newborn
mice [8]. In accordance with previous findings [37, 38],
our data suggest that ABX-treated mice have a paucity of
Th17 cells in both the colon and MLN (Figure 1).

After inoculation, we validated the abundance of Pre-
votella in the intestinal microbiota of mice by 16s rDNA
sequencing (Figure 4). The composition of the intestinal
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Figure 7: Prevotella activates TLR2-mediated Th17-polarizing cytokine production by BMDCs. (a–d) Inhibitors of TLR2 and TLR4 were
used to investigate the involvement of Toll-like receptors in cytokine production by BMDCs induced by Prevotella. Data are presented as
the mean ± SD. The p values were calculated using two-way ANOVA, ∗ indicates statistical significance between the TLR2 or TLR4
inhibitor-treated cells and the no-inhibitor control, and # indicates statistical significance between the TLR2 and TLR4 inhibitors. ∗p <
0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, ∗∗∗∗p < 0:0001, #p < 0:05, and ####p < 0:0001.
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bacterial communities demonstrate that, indeed, the major
bacterial phyla are represented analogously between the
Prevotella-gavaged mice (WT+PM and WT+PC) and the
control mice (WT+BM) (Figure 4, Figure S1). These data
indicate that the induction of intestinal Th17 cells is not
dominated by the existence of diverse bacteria, but rather
by the existence of specific bacteria (i.e., Prevotella in the
current study).

The IFA of colon sections as well as flow cytometry anal-
ysis of the MLNs confirmed the robust production and accu-
mulation of colonic Th17 cells induced by P. melaninogenica
and P. copri (Figure 3). Thus, we conclude that Prevotella is
among the symbiotic gut microbiota, specifically inducing
the production of intestinal Th17 cells. Prevotella is especially
common in non-Westerners who consume a plant-rich diet
[21]. As one of the three gut enterotypes [39], the abundance
of Prevotella in the gut changes with age [40, 41]. A study on
metagenomic sequencing of intestinal microbes from 281
children at 6-9 years of age identified the enterotype driven
by a high abundance of the genus Prevotella (n = 74), and
P. copri is the dominant contributor [39]. Thus, P. copri
and P. melaninogenica are likely to be common Th17-
inducing bacteria in humans.

IL-17A is an important effector cytokine derived from
Th17 cells that has a direct effect on epithelial cells, inducing
antimicrobial peptides and recruiting neutrophils [42]. This
is consistent with our observation that Prevotella-induced
IL-17A is mainly located on intestinal epithelial cells
(Figure 3(b)).

Th17 cells are believed to have dual roles in human
health, so are microbiota-dependent Th17 cells. On the one
hand, they appear to support host mucosal defence through
various mechanisms, including enhancing the integrity of
the barrier, providing cross-protections against pathogens
in the early stages of infection, and shaping the gut microbi-
ota [43]. On the other hand, symbiont-driven intestinal Th17
responses have been linked to IBD and some extraintestinal
autoimmune diseases [20]. Our findings from the detection
of serum cytokines in Prevotella-colonized mice indicate that
Prevotella does not influence the cytokine profile in serum
except a part of Th17-related cytokines (Figure 5). We saw
no increase in either Th1- (IFN-γ and IL-2) or Th2-related
(IL-4) cytokines (Figure 5). Notably, despite similar Th17
induction, P. melaninogenica and P. copri exhibited differen-
tial effects on the serum cytokine profile. In contrast to P.
copri, P. melaninogenica appeared to be an inducer of IL-10
in vivo (Figure 5). Therefore, P. copri seems to be a purer
Th17 inducer. Future studies are warranted to clarify
whether P. melaninogenica induces the increase in IL-10
directly or through the modulation of community composi-
tion of the intestinal microbiota.

In addition, pathways activated by Prevotella have been
elucidated preliminarily. It has been demonstrated that in
response to bacterial contact, DCs are activated to secrete
cytokines driving the unique differentiation and expansion
of the CD4+ T cell in the intestine [44, 45]. Such in vivo con-
ditioning of DCs by bacteria appears to extend outside the
intestine such as BMDCs [46]. And our results revealed that
both species of Prevotella (P. copri and P. melaninogenica)

induced the production of IL-6, TNF-α and IL-1β by BMDCs
(Figure 6). Among them, IL-6 and IL-1β have been reported
to play crucial roles in the development of Th17 cells [47–49].
The Th17 differentiation process has previously been classi-
fied into two stages: a priming stage and a maturation stage
[50]. IL-6 participates in the priming stage [51]. IL-1β has
been verified to promote the expression of RORγt through
the IRF4 pathway, resulting in IL-1-dependent Th17 cell
polarization [52]. Moreover, another study showed that
blocking of TNF-α markedly reduced the levels of IL-6, IL-
1β, and IL-17 in patients with rheumatoid arthritis, indicat-
ing that Th17 cell differentiation is promoted by TNF-α
through IL-6 and IL-1β [53]. All these findings suggest that
Prevotella can induce Th17-driving cytokines by stimulation
of BMDCs in vitro.

We further revealed that Prevotella mainly signals
through TLR2 on BMDCs to induce the production of
Th17-polarizing cytokines (Figure 7), which is in line with
the previous report describing TLR2 as the main receptor
involved in IL-1-driven Th17 responses through stimulation
on antigen-presenting cells [15]. It is generally accepted that
TLR4 mediates LPS signalling and that TLR2 mediates sig-
nalling of other cell surface components of bacteria, such as
lipoprotein, peptidoglycan, and lipoarabinomannan [54].
However, it is reported that the LPS specimens prepared
from Prevotella have chemical and biological characteristics
that are different from those of LPSs from the Enterobacteri-
aceae [55]. A previous study has indicated that a Prevotella
glycoprotein (PGP) extracted from P. intermedia activates

Prevotella

TLR2
IL-17

IL-6

�17

IL-1𝛽

Figure 8: Mechanistic figure of the current study.
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monocytes in a TLR2-dependent way [56] and this observa-
tion is in support of our results.

This study is exploratory, and more work remains to be
done to better understand the mechanisms used by Prevotella
and the effects caused by the accumulation of Prevotella-
induced colonic Th17 cells. The current study provides
the first demonstration that P. copri and P. melaninogenica
can induce robust Th17 populations in the colon and the
Th17-polarizing cytokines produced by DCs are mainly
mediated by TLR2 (Figure 8). Given the ubiquitous distri-
bution of Prevotella in the intestinal microbiota, it is highly
plausible that therapeutic modulation of the Prevotella-reg-
ulated pathway will inform new attempts for enhancing
mucosal immunity and reducing risk of inflammatory dis-
ease in susceptible hosts.
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