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Introduction
During the last decade, the number of publicly available prokaryotic genomes has 
increased dramatically, roughly doubling each year [1]. While this deluge of data has 
opened new research perspectives in comparative genomics and related fields, it has 
been accompanied by the growing issue of the contamination of a number of genomes 
released in public databases [1–4].

The genome of a single organism is supposed to contain only genomic sequences from 
this organism, and the inclusion of foreign sequences along these genuine sequences 
is termed “genome contamination”. Mis-affiliation of individual sequences can be at 
the origin of various biases and false inferences. One of the most famous cases is the 
artifactual report of an important rate of horizontal gene transfer (HGT) in the tardi-
grade genome [5], which was actually due to overlooked bacterial contamination [6–8]. 
Contamination has also been reported in genomes of model organisms used by a large 
community, such as Nematostella vectensis [9] and Drosophila [10]. Not only bacterial 
contamination occurs, but human DNA has also for instance been detected numerous 
times in non-human databases [11–13]. The presence of foreign DNA in metagenomes 
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is an important problem for microbiome studies [14]. Genomic contamination is also 
known to be a source of artefacts in genome skimming [15] or in phylogenomic studies, 
with emblematic examples of incorrect results in high-profile articles about animal [16, 
17] and plant evolution [18, 19]. Moreover, contaminated sequences have the power to 
spread into and across databases over time [2, 12].

The introduction of foreign sequences can occur at many different steps of the 
sequencing process, from organism culture to data processing (see Fig. 1 for more dis-
cussion). The contamination of an axenic culture by unwanted organism(s) and the inclu-
sion of unwanted DNA either during DNA extraction or sequencing on shared platforms 
are well-known causes of genomic contamination [2, 20, 21]. Yet, less obvious sources of 
contamination do exist, like the sequencing of chimeric organisms [22] or the presence 
of plain taxonomic errors in reference databases [3]. The contamination can also appear 
after the sequencing per se, notably during the in silico processing of the data. The risk 
of in-silico contamination is higher when the data comes from metagenomic analyses 
where the DNA of multiple organisms is extracted in bulk. Indeed, such data can lead to 
chimeric sequences by merging similar genomic regions during metagenomic assembly 
[1, 23, 24]. The metagenomic binning (i.e. the partition of sequences from the constitutive 
organisms into individual Metagenome-Assembled Genomes (MAGs)) also results in 
some degree of contamination by lumping in a single MAG contigs reconstructed from 
different organisms [23] (Fig. 1). All these sources of contamination can be summarized 

Fig. 1 Sources of genomic contamination. Three types of issues lead to contamination of genomic sequence 
data: biological, experimental and computational. The contamination of “pure” cultures can be due to both 
experimental (e.g. accidental introduction of contaminating microorganisms) and biological causes (e.g. 
the presence of an endosymbiont). Redundant contamination occurs when a genomic segment is present 
multiple times in a genome (e.g. multiple SSU rRNAs from different organisms). Non-redundant contamination 
occurs when a genomic region of the main organism, the expected one, is replaced by the corresponding 
region of a foreign organism (e.g. the SSU rRNA of the main organism is replaced by the SSU rRNA from a 
foreign organism). An extra DNA segment, not part of the main organism but belonging to a contaminant, 
would also be considered as a non-redundant contamination (e.g. eukaryotic DNA in a bacterial genome). A 
mixed scenario is also possible, as represented in the redundant contamination part of the figure
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in two main types of contamination at the genomic level: redundant and non-redundant 
[1]. Redundant contamination occurs when a genomic segment is present multiple times 
in a genome assembly, due to the inclusion of homologous genomic regions from foreign 
organism(s). In contrast, non-redundant contamination occurs when an extra genomic 
segment is present in the assembly. Two sub-cases can then be distinguished: (1) a genu-
ine genomic segment is lacking in the target organism (i.e. the completeness is not opti-
mal) and is replaced by a foreign genomic region harbouring (some of ) the expected 
genes or (2) an extra genomic region, for which no homologous region exists in the tar-
get organism, is present due to the inclusion of a taxonomically distinct organism (e.g. 
genomic regions from another kingdom) (Fig. 1).

During the last 6 years, no less than 18 algorithms for the detection of genomic con-
tamination have been published. A majority (11) of these tools have been published or 
updated during the last 3 years, which complicates determining which programs are 
currently optimal. Three recent studies, of which two from the first half of 2021, recom-
mend the use of multiple tools to achieve accurate detection [1, 3, 22]. In this review, 
we first summarize the basics of each tool as well as their specific advantages, so that 
researchers can make an informed choice when trying to deal with genome contamina-
tion. Then, we paint a general overview of the important concepts and open challenges 
of the field.

Overview of algorithms
The algorithms can be divided into two main categories, depending on if they are data-
base-free or, in opposition, if they rely on a reference database. The second category 
contains two different types of tools: genome-wide approaches and estimators based 
on single-copy gene markers (Fig. 2). All the programs reviewed in this article estimate 
the contamination level after genome assembly, at the exception of three software pack-
ages (Kraken, CLARK, CONSULT), which can also perform read filtering before genome 
assembly. The majority of the tools described below work on prokaryotes, while EukCC 
only works on Eukaryotes. Tools able to perform inter-domain detection (i.e. to simulta-
neously deal with prokaryotic and eukaryotic sequences) are indicated in Fig. 2. Binning 
algorithms commonly used in metagenomics to produce MAGs are not considered in 
this review because they are not designed to return individual genome contamination 
statistics.

Database‑free methods

The four programs (BlobTools, Anvi’o, ProDeGe, PhylOligo) of this category partition 
sequences according to the inherent nature of DNA, even if the majority (all at the 
exception of PhylOligo) also rely on taxonomy, labelling sequences for visualization 
or program calibration, to help with the partitioning. All the programs of this section 
require a case-by-case inspection by the user and are thus difficult to use for large-scale 
projects (Fig.  2). Database-free tools can detect both redundant and non-redundant 
contaminations.

BlobTools, initially published in 2013 under the name Blobology [25], permits the visu-
alization of sequences from low complexity metagenomic assemblies [26]. The program 
relies on Guanosine+Cytosine (GC) content and read coverage to represent contigs on 
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a bi-dimensional plot. Sequences in this plot are coloured according to the NCBI Tax-
onomy, which has to be provided by the user [26]. The authors state that sequence tax-
onomy can be obtained using tools such as BLAST [27] or DIAMOND blast [28]. In 
that sense, BlobTools is not completely independent of a reference database, even if the 
latter is not integrated in its workflow (Fig. 2). BlobTools, which works on prokaryotic 
genomes, has recently been upgraded, under the name BlobToolKit, to support eukary-
otic genomes too [29].

The other  three programs (Anvi’o, ProDeGe, PhylOligo) use short k-mers (i.e. DNA 
words of length 4 to 9 nt) frequencies to separate sequences. First, Anvi’o is a well-estab-
lished visualization tool in the metagenomic field [30]. It allows the user to represent 
sequences in an interactive “circoplot” and to organize them according to various sets 
of parameters [30]. It uses a combination of k-mer frequencies (4-nt long) and read cov-
erage to cluster the contigs, which help identify contaminants [7]. Anvi’o also provides 

Fig. 2 Overview of algorithms. The algorithms are clusterized based on their operating principles, as 
described in the section “Overview of algorithms”. Squares on the top of the figure represent specific 
features of the algorithms. Non-redundant means that the software can detect contaminant genes without 
equivalent in the surveyed genome. Intra-species means that the algorithm can detect contamination at the 
species level. Inter-domain means that the algorithm can detect prokaryotic and eukaryotic contamination 
simultaneously. Database features show that the algorithm can use the GTDB Taxonomy and/or a moderately 
contaminated reference database. Expected organism indicates whether the algorithm can detect the 
main organism by itself and/or if the user can specify it. Additional functionalities list interesting peculiar 
functions of the programs, such as outputting the completeness of a genome, cleaning a genome from its 
contaminants, filtering reads based on their taxonomy (positive filtering), or enriching Multiple Sequence 
Alignments (MSAs) in orthologous sequences while controlling the taxonomy
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a workflow to perform genome decontamination (see https:// meren lab. org/ 2015/ 06/ 
25/ scree ning- culti vars/). As for BlobTools, a NCBI Taxonomy layer, which in this case is 
built in Anvi’o, can be added by the user to the visualization (Fig. 2). Although this pro-
gram works on prokaryotic genomes by default, it can handle eukaryotic genomes, but 
the user has to carry out protein annotation separately.

The last two tools of this section (ProDeGe, PhylOligo) are conceptually very similar, 
since they both only rely on k-mer-based binning of sequences (k-mer size is user-spec-
ified). The partitioning is computed after a step of calibration of the k-mer frequencies 
using a sample of sequences from the target organism. ProDeGe calibrates the k-mer 
frequency profile by considering the taxonomy of the expected organism, which has to 
be provided by the user [31]. Taxonomy is assigned to each contig by homology search 
(BLAST) against a curated version of the Integrated Microbial Genome (IMG) database 
[32]. If the taxonomy corresponds to the label provided by the user, the contig is con-
sidered uncontaminated and serves to calibrate the k-mer frequency profile, which in 
turn will generate the binning [31]. In contrast, PhylOligo does not use a taxonomy to 
build its profile [33]. Instead, it provides a Neighbour-Joining tree, in which leaves cor-
respond to sequences, and lets the user select contigs that will serve for calibration [33]. 
To this end, the k-mer frequency profile of each contig is computed and a pairwise dis-
tance matrix is used to build the tree [33]. The user can then select the main organism in 
the tree, with the assumption that it corresponds to the target organism, and contigs are 
automatically loaded to calibrate the k-mer frequency profile and generate the binning 
[33] (Fig. 2). ProDeGe’s taxonomy is restricted to prokaryotes while PhylOligo can work 
on eukaryotic genomes too.

Methods associated to a reference database

Gene marker‑based estimators

The seven programs (SINA, ContEst16S, Forty-Two, ConFindR, CheckM, EukCC, 
BUSCO) of this section rely on widely distributed gene markers to assess redundant con-
tamination and non-redundant contamination for Forty-Two. These genes are present in 
a single copy in nearly all organisms and the presence of multiple copies is thus indica-
tive of such type of contamination (Fig. 2).

The simplest approach is to assess the number (and congruent taxonomy) of SSU 
rRNA genes present in a genome assembly with SINA [34]. This has been done notably 
to estimate the level of the contaminants in cyanobacterial genomes, in corroboration 
with other methods [22]. The use of this single locus is not frequent because it entails 
a higher risk of missing contaminants. SINA can work on prokaryotic and eukaryotic 
genomes, albeit separately. The same strategy is also used by ContEst16S, available as a 
website and restricted to prokaryotes [35].

Building upon the same idea, but extended to ribosomal protein reference databases, 
Forty-Two [36] uses BLASTP/BLASTX searches to roughly estimate contamination and 
completeness levels in genomes and transcriptomes. Taxonomic affiliation is based on 
a MEGAN-like algorithm [37] that infers a last common ancestor (LCA) from the set 
of reference sequences best matching each contig or transcript of the evaluated data-
set. Forty-Two can be used on prokaryotic or eukaryotic datasets, depending on the 
reference database considered, RiboDB [38, 39] or a set of manually curated eukaryotic 
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alignments [40], respectively. Recently, an inter-domain dataset has been assembled. The 
user can choose between a purely descriptive mode or a mode actively looking for con-
taminating sequences based on an expected organism. Forty-Two further supports the 
Genome Taxonomy Database (GTDB) [41], in addition to the NCBI Taxonomy. Finally, 
it is worth mentioning that the initial purpose of Forty-Two is orthologous enrichment of 
Multiple Sequence Alignments (MSAs) for phylogenomic applications [36, 42].

ConFindR identifies contaminants by using variations in 53 ribosomal proteins that are 
used in ribosomal multilocus sequence typing (rMLST) [43]. ConFindR first checks the 
presence of multiple genera in a sample by comparing raw reads, using the Mash “screen” 
option [44], on a custom version of NCBI RefSeq [45, 46] reduced to one genome per 
bacterial species [43]. ConFindR reports cross-genus contamination and does not pro-
cess further the data if more than one genus is present [43]. Otherwise, intra-species 
contamination is then estimated by extracting rMLST data from raw reads and assessing 
the presence of multiple alleles by SNP calling [43]. Among all tools, ConFindR presents 
the highest sensitivity to detect intra-species contamination, which have been reported 
to be the most damaging source of contamination for clustering analyses, such as phylo-
genetics or single-nucleotide polymorphism (SNP) discovery [47] (Fig. 2). The program 
can work on prokaryotic genomes only.

The last three programs of the current category (CheckM, EukCC, BUSCO) use phy-
logenetic placement to select lineage-specific sets of gene markers. The advantage of 
this approach is that more genes can be used when the taxonomy is more precise. In 
practice, genomes are placed on nodes of a precomputed phylogenetic tree to select the 
most appropriate markers. As an expected number of these makers should be present in 
a genome assembly, these three programs are able to estimate the completeness of the 
genomes [48–50]. The first tool to have implemented this strategy is CheckM [48], by far 
the most cited software package of this review. CheckM also differs from the two other 
tools by using colocated sets of markers. Reportedly, markers that are spatially close 
give a more robust estimation compared to isolated markers [48]. Gene markers and the 
phylogenetic tree have been computed once for all from a curated version of IMG [32]. 
CheckM begins by extracting the ribosomal proteins to determine the phylogenetic posi-
tion of the genome under study in its reference tree. Contamination and completeness 
are then estimated using specific markers based on this placement [48]. It reports intra-
species contamination through the “strain heterogeneity” value, which increases when 
the amino acid identity between two redundant markers is high [48] (Fig. 2). CheckM 
only works on prokaryotic genomes.

The last two programs (EukCC, BUSCO) use individual gene markers and are similar in 
terms of methodology. EukCC is designed to estimate contamination and completeness 
in eukaryotic genomes [49]. It uses fungal and protist genomes from NCBI RefSeq [45, 
46]. EukCC mimics the functionalities of CheckM and was the first tool to perform phy-
logenetic placement for eukaryotes, based on 55 (undocumented) single-locus marker 
genes [49]. Nevertheless, since version 5, BUSCO is also able to perform such kind of 
placement, but using an unreported number of single-gene markers [50]. For eukaryotic 
genomes, the main difference between the two programs is the use of RefSeq proteins in 
BUSCO [50] while EukCC used GeneMark-ES [51] for de novo protein annotation dur-
ing database construction, which is supposed to improve the accuracy of the estimation 
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[49]. Another difference between the two tools is that BUSCO can also work on bacte-
rial genomes, separately from eukaryotes [50], whereas EukCC is devoted to the latter 
domain (Fig. 2).

Genome‑wide approaches

The seven programs of this section use the entire genome to perform alignment against 
a reference database. The alignment step can use k-mer matching (Conterminator, 
Kraken, CLARK, CONSULT) or involve longer genomic regions and BLAST-like algo-
rithms (BASTA, Physeter, GUNC) (Fig. 2).

The programs based on k-mer matching (Conterminator, Kraken, CLARK, CONSULT) 
use longer k-mers than those of database-free methods, the minimal length being 21 
nt. At the exception of Conterminator, these tools are the only ones able to filter reads 
based on taxonomy and thus to estimate the contamination level before, but also after, 
genome assembly (Fig. 2). At the exception of CONSULT, their methods require exact 
k-mer matching. Conterminator is a tool designed to detect cross-domain (“across king-
doms” according to the wording of the authors) contamination in sequence databases 
by an all-vs-all alignment [2]. Sequences have to be taxonomically labelled for the pro-
gram to work. Conterminator can process large databases thanks to the use of Linclust 
[52], which minimizes the comparison time by first grouping sequence segments if they 
share canonical (i.e. independent of the strand) k-mers. Ungapped alignment of repre-
sentative sequences is then performed with MMseq2 [53] and contaminants are detected 
based on a minimal identity threshold [2]. Although it has been only tested in cross-
domain detection, Conterminator can in principle work at any taxonomic level, whether 
on nucleotide or protein sequences (Fig. 2).

The other two programs using k-mer matching (Kraken, CLARK) are not strictly 
speaking designed for contamination detection. Their initial purpose was to classify 
reads in metagenomic studies. Nevertheless, their unique architecture makes them 
suitable for detecting contaminants [12, 22]. The first of these programs is Kraken [54], 
which has recently been updated to Kraken2 [55]. It builds its database from NCBI Ref-
Seq genomes [45, 46] and  by splitting those into k-mers. These k-mers are then mapped 
on the nodes of a phylogenetic tree: the more widely they are shared by multiple organ-
isms the deepest they are mapped on the tree. The unique k-mers, seen only once in the 
whole database, are mapped on terminal nodes [54]. Kraken classifies genomic regions, 
here genomes, by cutting them into k-mers of the same length as those of the database, 
and mapping the k-mers on the tree [54]. The mapping path forms a subtree for each 
sequence, which allows Kraken to compute a sequence-specific taxonomic label (i.e. a 
LCA) [54]. Kraken has been designed as a read classifier but it has also been used to 
remove contaminants from assembled genomes after cutting genomes into pseudo-reads 
[56]. Kraken2 can work on Bacteria/Archaea, human, fungi, plant, and viral genomic 
data at the same time [55]. CLARK uses a similar approach to classify sequences, with 
the exception that only signature k-mers, unique to a given taxon, are considered [57]. 
As there is no need to map shared k-mers on a phylogenetic tree, CLARK does not use 
it and instead classifies sequences at the genus and species level, with a sensitivity supe-
rior to Kraken [57]. Unlike Kraken2, CLARK works only on prokaryotic genomes (Fig. 2). 
This strategy of using only unique k-mers has also been implemented in Kraken-uniq, 
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but with the advantage to work on multiple taxonomic ranks [58]. To increase sensitiv-
ity, by matching more k-mers during classification, Kraken2 offers the possibility to mask 
positions in k-mers during database construction [55]. Starting at the end of the k-mer 
and going back to the beginning, positions are masked in alternance until a specified 
number, 7 by default, is reached [55]. A recent tool, CONSULT, offers the best sensitiv-
ity among long k-mer detection tools by using the Hamming distance instead of exact 
matching [59]. CONSULT is currently restricted to prokaryotes and does not output the 
taxonomy of the sequences like Kraken or CLARK do [59] but it represents an interest-
ing alternative, notably for rare genomes.

Genome-wide approaches also contain three tools (BASTA, Physeter, GUNC) that use 
BLAST [27] or DIAMOND blast [28] to perform gapped alignments against a reference 
database.

The first two programs (BASTA, Physeter) classify sequences using LCA labels, an 
approach again inspired by MEGAN [37]. The sequences from the genome under study 
are BLASTed against a database containing taxonomically labelled sequences. With 
Physeter, the query sequences can be cut into shorter “pseudo-reads” to increase sen-
sitivity [3, 22]. The alignments are parsed to filter out database hits based on identity 
percentage, value, and/or bit-score thresholds [22, 60]. For each query sequence, the 
accumulated hits and their associated taxonomy are used to compute an LCA [60]. The 
main difference between BASTA and Physeter is the possibility to perform a leave-one-
out analysis with Physeter, so as to reduce the impact of a potential contamination of the 
reference database [3]. To this end, the database is split into 10 parts and the LCA infer-
ence is run 10 times on 90% of the database. These two programs can work on prokary-
otic and eukaryotic genomes at the same time, both in nucleotides and proteins [3, 60]. 
Finally, Physeter is one of the three programs of this review to be able to use the GTDB 
Taxonomy in addition to the commoner NCBI Taxonomy (Fig. 2).

The last program of this review (GUNC) uses the taxonomic homogeneity of contigs to 
infer contamination [1]. GUNC relies on a curated microbial database derived from the 
representative species of the proGenome2 database [61]. To infer the taxonomy of genes 
along contigs, GUNC retains only top BLAST hits, without filtration since a downstream 
scoring is applied [1]. The authors of GUNC have indeed developed two scores to assess 
the robustness of the contamination estimation, which have to be considered altogether 
when reading the estimates [1]. The first one, the Clade Separation Score (CSS), quanti-
fies the degree of mixture of lineages [1]. A non-contaminated genome will have a CSS 
of 0, a genome with a different taxonomy for each contig (but homogeneous within the 
contigs) will have a CSS value of 1, and a genome with chimeric contigs will have inter-
mediate CSS values [1]. The reference representation score (RRS) measures how con-
fidently a given genome maps to the reference database, low RRS indicating novel (i.e. 
rare) lineages [1]. GUNC can work on prokaryotic genomes and is also able to use the 
GTDB Taxonomy [1] (Fig. 2).

A detailed perspective on detection
Negative vs positive filtering

Seven of the 18 tools presented in this review work by applying a “negative filter” on 
genome sequences. For this, they need an expected taxon, either specified by the user 
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(BlobTools [25, 26, 29], Anvi’o [30], ProDeGE [31], PhylOligo [33], Forty-Two [36, 42]) or 
determined by autodetection of the main organism (Conterminator [2], BASTA [60], 
Physeter [3]). Then, contaminants are detected when the input sequence taxonomy 
diverges from the expected taxon. The usage of “positive filtering”, i.e. retaining only 
sequences with a specific taxonomy, can solely be achieved with four programs (Kraken 
[54, 55], CLARK [57], BASTA [60], Physeter [3]). All these tools indeed have the possibil-
ity to label taxonomically each individual sequence of a genome (or read for Kraken [54, 
55] and CLARK [60]) and thus to apply a positive filter. In practice, a positive filter is 
useful when a researcher knows the expected taxon of the sequenced organism or after 
an overview of the taxonomy of the sequences found in the genome (based on a Kraken-
like report, see Supplemental Note 1, available only for Kraken [54, 55], CLARK [60], 
and Physeter [3]). Such positive or negative filters are not included in algorithms based 
on gene markers (ConFindR [43], CheckM [48], EukCC [49], BUSCO [50], at the excep-
tion of Forty-Two [36, 42], or on the chimerical structure of the contigs (GUNC [1]) since 
these do not infer the taxonomy of the sequences.

Correlation vs union

Formally, researchers can either use the intersection (i.e. corroboration) or the union of 
the results of multiple methods to assemble a list of contaminated genomes. The inter-
section can be used to assess that a given program is specific enough and has not pro-
duced false positives [3]. In this respect, database-free methods are useful, especially 
when only a few genomes from a key taxon are available. Nevertheless, the most frequent 
rationale for using multiple approaches is to increase the sensitivity and catch more con-
taminated genomes by considering the union of the methods. This is especially useful in 
large genomic projects where the loss of individual genomes is not too important.

Comparison and benchmarking of algorithms

We tested and benchmarked a representative sample of six algorithms among the 18 
presented in this review on artificial chimerical genomes containing both redundant 
and non-redundant as well as inter-domain contaminations (see Supplemental Note 
1). We only selected algorithms relying on a reference database because those require 
no user interaction and are thus more convenient. First, we tested the tools based on 
gene markers. CheckM [48] and EukCC [49] are built on the same theoretical schema, 
the first one being specialized in prokaryotes [48] and the second in eukaryotes [49] 
CheckM and EukCC are the most widely used tools based on gene markers. We have 
selected Forty-Two [36, 42] because it is the only gene-marker-based software pack-
age able to perform inter-domain detection. Among genome-wide tools, Kraken2 [55] 
is based on long k-mer matching and was selected because of its importance in the 
domain (the Kraken suite has been maintained for the last 10 years [62]) and its abil-
ity to perform inter-domain detection. The two last tools tested are Physeter [3], both 
because of its inter-domain support and ability to minimize the adverse effects of a con-
taminated reference database [3], and GUNC [1], because it is the only tool exploiting 
the chimerical structure of contigs in prokaryotes [1]. The Supplemental Note 1 com-
paring these tools shows typical command lines and output for each of them. We also 
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provide Singularity [63] definition files to help researchers with the installation and 
testing of these tools (Supplemental Note 1).

When a contamination occurs, it can be complicated to determine the source and 
the importance (in quantity) of the contamination. In Supplemental Note 1, a bacte-
rial chimerical genome was constructed by adding 11% of a Firmicutes genome to a 
Gammaproteobacteria genome, equally distributed among redundant and non-redun-
dant contaminants (see Supplemental Note 1 for detailed methods). This chimerical 
genome was further concatenated to a fungal genome, so as to simulate the inter-
domain contamination of a eukaryotic genome, here contaminated by a contaminated 
bacterial genome. As expected, the two uncontaminated bacterial genomes (Gam-
maproteobacteria and Firmicutes) are well classified by all the tools, at the exception 
of EukCC, which was designed for eukaryotic contaminants in eukaryotic genomes 
(Supplemental Note 1). Regarding the chimerical bacterial genome, different levels 
of contaminants are reported by the remaining five tools (1.65% for CheckM, 10% for 
GUNC, 25% for Physeter, 10.5% for Kraken2 and 48.8% for Forty-Two). Only GUNC 
and Kraken2 are close to the correct proportion of contaminants (11%). The most 
surprising result is the low contamination level reported by CheckM, 1.65%, which 
would make the genome pass below the standard recommendation of 5% to consider 
a genome as contaminated [64]. CheckM is a program designed to detect redundant 
contamination [1, 48], which is represented by half of the Firmicutes sequences (5-6%) 
in our artificial genome, but the contamination detected by CheckM is nonetheless 
lower than expected here. This highlights the need for considering the union of mul-
tiple methods to catch contaminants, as recently suggested [1, 3, 22]. Moreover, the 
different amounts of contaminants estimated on this artificial genome demonstrate 
that when using multiple tools to assess the contamination level, it is very difficult to 
compute meaningful correlations, a limitation that we have already explained in the 
past (see [3, 22]). The results for the reference fungal genome are more complicated 
to interpret. Inter-domain detection tools (Forty-Two, Kraken, Physeter) and EukCC, 
designed for eukaryotes, logically do not detect (too many) contaminants, but the 
programs calibrated on prokaryotes (CheckM and GUNC) identify this genome as a 
bacterium, CheckM inferring a low level of completeness and a high proportion of 
contamination, whereas GUNC reports a low level of representation in its database 
(Supplemental Note 1). Altogether, the values provided by CheckM and GUNC con-
firm that their algorithms are not suitable for this genome, since they were designed 
for prokaryotes. Inter-domain contamination (a fungus and a chimeric bacterium in 
the same file) can produce the same difficulties of interpretation. Hence, CheckM and 
EukCC both report a high contamination level (122.41% for CheckM, 14% for EukCC). 
CheckM classifies the genome as a bacterium, as with the purely eukaryotic genome, 
and finds a high proportion of contaminants, whereas EukCC classifies the genome as 
a eukaryote and finds less contaminants (Supplemental Note 1). These results are sur-
prising as CheckM should not detect eukaryotic contaminants [48] while EukCC is not 
supposed to detect bacterial contaminants [1]. The false-positive detection is caused 
by similarities between prokaryotes and eukaryotes in the set of gene markers used 
(e.g. ribosomal proteins whether universal or Alphaproteobacterial, due to eukaryotic 
mitochondria). This shortcoming can lead to interpretation errors when analyzing 
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complex samples. GUNC finds few contaminants but also reports a weak representa-
tion score in its database and is thus less subject to drawing incorrect conclusions. The 
three inter-domain detection tools (Forty-Two, Kraken, Physeter) correctly identify the 
main organism (Opistokontha) and the two bacteria (Gammaproteobacteria and Fir-
micutes). These software packages are also able to provide a taxonomic analysis of the 
contaminants (Supplemental Note 1). Among the three tools, Kraken2 is the only one 
reporting an accurate proportion of each organism after a normalization of sequence 
length (Supplemental Note 1). Rachtman et  al. [59] have recently demonstrated that 
CONSULT performs better than Kraken2 on rare genomes [59], by using the Hamming 
distance instead of exact matching of long k-mer. While CONSULT does not currently 
output the taxonomy and is restricted to prokaryotes, it might be a promising alterna-
tive for the years to come.

Futures challenges
Improvement of the detection of inter-domain and sub-species contamination, as well as 
better detection of non-redundant contamination in future algorithms, would certainly 
broaden researchers’ choice. However, other challenges remain complicated to address, 
notably the presence of taxonomic errors and rare genomes in databases, contamination 
of reference databases or the distinction between contamination and HGT events.

Taxonomic errors and rare genomes

Genomes are downloaded from public repositories, often based on their declared 
taxonomy. Researchers interested in a specific taxonomic group can, in this way, eas-
ily obtain hundreds of genomes for comparative genomic or phylogenomic studies. 
Lupo et al. [3] demonstrated that mis-affiliated genomes are present in NCBI RefSeq. 
These genomes may not be contaminated sensu stricto, but the main organism is not 
the expected one. The inclusion of organisms from unwanted taxa in a study can obvi-
ously lead to artifactual results [16, 17]. However, these cases are not detected by the 
majority of algorithms, as the genome is not chimeric. In principle, Physeter is the only 
tool able to detect mis-affiliated genomes by automatically downloading the taxonomy 
associated to the genomes from NCBI or GTDB servers and comparing the declared 
organism with the main detected organism [3]. In practice, this approach only works 
partially because it is difficult to distinguish taxonomic errors from two other cases: 
(1) when the genome data is so heavily contaminated that the expected taxon becomes 
very scarce and (2) when dealing with rare genomes with no close representative in ref-
erence databases [3].

Contamination of reference databases

Fourteen of the 18 programs presented in this review are associated to a reference data-
base constructed from public genomes (Fig. 2). The contamination of a fraction of the 
genomes in these public repositories (Fig.  1) is an issue that has been demonstrated 
in the recent literature [3, 12, 22, 48, 65]. These algorithms are thus subject to false 
positives or negatives if they rely on wrongly classified sequences. This danger of incor-
rect inference (whether over- or under-detection) is especially true for tools using the 
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taxonomy of their reference database (Forty-Two, Conterminator, Kraken, CLARK, 
CONSULT, BASTA, Physeter, GUNC). Indeed, algorithms relying on an extra number 
of gene markers to infer contaminations (ConFindR, CheckM, EukCC, BUSCO) are less 
subject to incorrect conclusions due to a contamination of their database because they 
do not infer taxonomy. Physeter offers the possibility of using a leave-one-out approach 
when inferring contamination, which minimizes the adverse effects of individual con-
taminated genomes in the reference database [3]. Nevertheless, this approach is only 
successful if the database is rich enough to maintain genome diversity during the leave-
one-out step. Rare taxonomic groups, typically only represented by a few genomes, 
might suffer from this strategy. Furthermore, if a taxonomic group is represented by 
numerous contaminated genomes in public repositories, the leave-one-out approach 
might not be enough to discard all of them at once. Therefore it is important to keep 
working on the curation of public databases, with the aim of making these sufficiently 
diversified from a taxonomic point of view but with a minimal amount of contamina-
tion, in order to maintain the efficacity of the detection algorithms in the future.

Horizontal gene transfer and contamination

HGT is a natural cause of genetic material exchange between organisms. The rate of 
HGT in prokaryotes is expected to be high, since the majority of bacterial genes have 
been transferred at least once in the past [66, 67]. HGT has also been reported in gut-
inhabiting microorganisms [68, 69], suggesting that such events also affect metagenomic 
samples. HGT is not limited to bacteria and can involve eukaryotes too. For example, 
numerous cases of gene exchange between bacteria and fungi have been reported [70–
75]. Two different problems can be distinguished when considering HGT and contami-
nations. First, the detection of HGT is complicated by the background noise created by 
the contaminants. Studies have reported that contaminants can be mistaken for HGT 
candidates in tardigrade [6–8], rotifers [76], human [77] and, recently, in arthropods 
[78]. Secondly, in the opposite way, the detection of contaminants can be complicated by 
“genuine” HGT. Programs for contamination detection are thus prone to errors in this 
case, especially those that rely on reference databases for genomic comparison. The only 
tool that has been tested against HGT is GUNC [1]. Authors report less than 10% of false 
positives due to HGT events following the analysis of an HGT-enriched dataset derived 
from proGenomes2 (Khedkar et  al., unpublished). Until now, genomic contamination 
and HGT have been considered as exclusive scenarios, a foreign sequence being either a 
contamination or the result of an HGT. Yet, a genomic region can actually undergo both 
types of events, depending on the considered taxon, which thus represents a challenge to 
be addressed in future algorithms.

Other types of contamination

This review focused on the tools designed for the detection of foreign prokaryotic or 
eukaryotic sequences in assembled genomes. It is important to mention that the pro-
grams presented here are not able to detect all type of sequences. Indeed no study has 
been conducted with these tools on mobile elements in prokaryotes, such as plasmids, 
which are also subject to contaminating genomic data [79]. Furthermore, viral data have 
not been considered in this review.
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