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Abstract

Task-specific, trajectory-based control methods commonly used in exoskeletons may be 

appropriate for individuals with paraplegia, but they overly constrain the volitional motion 

of individuals with remnant voluntary ability (representing a far larger population). Human-

exoskeleton systems can be represented in the form of the Euler-Lagrange equations or, 

equivalently, the port-controlled Hamiltonian equations to design control laws that provide task-
invariant assistance across a continuum of activities/environments by altering energetic properties 

of the human body. We previously introduced a port-controlled Hamiltonian framework that 

parameterizes the control law through basis functions related to gravitational and gyroscopic 

terms, which are optimized to fit normalized able-bodied joint torques across multiple walking 

gaits on different ground inclines. However, this approach did not have the flexibility to reproduce 

joint torques for a broader set of activities, including stair climbing and stand-to-sit, due to strict 

assumptions related to input-output passivity, which ensures the human remains in control of 

energy growth in the closed-loop dynamics. To provide biomimetic assistance across all primary 

activities of daily life, this paper generalizes this energy shaping framework by incorporating 

vertical ground reaction forces and global planar orientation into the basis set, while preserving 

passivity between the human joint torques and human joint velocities. We present an experimental 

implementation on a powered knee-ankle exoskeleton used by three able-bodied human subjects 

during walking on various inclines, ramp ascent/descent, and stand-to-sit, demonstrating the 

versatility of this control approach and its effect on muscular effort.
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I. INTRODUCTION

State-of-the-art powered exoskeletons are mainly controlled by tracking pre-defined 

reference trajectories, such as ReWalk [1], Ekso Bionics [2], and Wandercraft [3]. Despite 

their promising results in gait rehabilitation, significant challenges remain in the control 

design. The state-of-the-art exoskeletons mentioned above provide complete assistance with 

trajectory-based, kinematic control methods appropriate for paraplegia. These kinematic 

control methods replicate the normative joint kinematics associated with one specific task 

and user at a time [4]. However, the control structures enforce trajectories defined in a 

database, which cannot adjust to continuously varying tasks and volitional motion of people 

with remnant voluntary ability, e.g., due to advanced age, stroke, multiple sclerosis, etc. 

Moreover, these devices have to detect human locomotor intent accurately to transition from 

one task-dependent controller to another [1], [5], which is hard to realize in practice. The 

associated parameter tuning for multiple controllers requires more time for each subject and 

task, and re-tuning becomes necessary as the user progresses through gait therapy.

Fortunately, backdrivable exoskeletons [6]–[12] are now enabling a paradigm shift from 

task-specific, kinematic control approaches to task-invariant, torque control approaches that 

deliver partial rather than complete assistance to the user. Various assistive controllers have 

been proposed to amplify or augment voluntary human motion [12]–[16] or compensate 

for exoskeleton mass/inertia [17], [18]. However, the torque controllers in [12], [14], [17] 

require acceleration feedback or load cells to measure human-robot interaction, which are 

susceptible to noise and can destabilize the system if there is compliance or backlash 

in the actuation path. The controller in [18] also focuses on reducing the joint-level 

gravitational torques instead of considering the whole lower-limb model. On the other hand, 

energy shaping methods [19]–[22] have the potential to provide task-invariant assistance 

by altering the dynamic characteristics of the human body, as recently demonstrated in a 

backdrivable knee-ankle exoskeleton [10]. The dynamics of the body are represented by the 

Euler-Lagrange equations or, equivalently, the Hamiltonian equations, by which a control 

law is derived to achieve desired dynamics in closed-loop. Underactuated systems can only 

achieve closed-loop dynamics that satisfy a set of nonlinear partial differential equations 

called the matching conditions, which determine the achievable form of the closed-loop 

system’s energy and the existence of a feedback law that matches the original control 

system to the desired closed-loop system. Our prior work on potential energy shaping based 

on the controlled Lagrangian method provided virtual body-weight support (BWS) during 

walking in [23], [24]. To compensate for the inertia of the human limbs, we considered 

total energy shaping (TES) in [25], [26], where kinetic energy was modified through the 

mass/inertia matrices in addition to the modified potential energy. However, these methods 

had challenges with ensuring the existence of well-defined, closed-loop kinetic and potential 

energies in the presence of underactuation. These energy quantities are necessary to preserve 

passivity between the human muscular inputs and the human joint velocity outputs, which 

guarantees the change of the system energy is bounded by the energy injected through the 

input [27]. Passivity implies the human controls the energy growth of the coupled human-

exoskeleton system and enables proofs of stability under assumptions of human impedance 

control [26]. However, underactuation prevents all parts of the mass/inertia matrix from 
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being modified, risking a matrix singularity that prevents a well-defined kinetic energy and 

thus violates passivity [25]. Underactuation similarly prevents modification of all parts of 

the gravitational torques vector, possibly preventing the existence of a well-defined potential 

energy in closed loop. We later demonstrated that a closed-loop potential energy can be 

achieved by simply adding virtual springs, and velocity-dependent damping terms can be 

injected without modifying the inertia matrix (i.e., indirect kinetic energy shaping) [28]. 

Despite the promising simulation results, the indirect kinetic terms were limited by the range 

of the virtual spring stiffness in practice [28], so significant improvements could not be 

achieved over the potential energy shaping method.

Our recent work in [29] derived an energy-shaping exoskeleton control strategy based on 

the Interconnection and Damping Assignment Passivity-based Control (IDA-PBC) method 

[21], [22], which exploits the interconnection structure of the port-controlled Hamiltonian 

equations. This method enabled additional velocity-dependent modifications to the dynamics 

without changing the mass/inertia matrix. The control law depended on basis functions 

corresponding to gravitational and gyroscopic forces. Providing a fraction of the normative 

joint torque offloads musculature as in [7], [9], but in a time-invariant, state-based manner. 

Our prior work [29] optimized the basis functions to fit weight-normalized able-bodied 

joint torques across walking gaits on different ground inclines. However, this approach was 

not flexible enough to reproduce joint torques for a broader set of activities, including 

stair climbing and stand-to-sit. Modifications to the gravitational torques vector in [29] 

depended only on the actuated coordinates, as a convenient way to prove the existence of 

a closed-loop potential energy and thus passivity and stability. Without additional feedback 

like the leg’s orientation or ground reaction forces (GRFs), the controller was limited to 

nonlinear spring-like behavior.

This paper generalizes our prior IDA-PBC method to include unactuated coordinates such 

as leg orientation in a passivity-based, energy-shaping controller for optimal assistance of 

all primary activities of daily life (ADLs). In addition to global orientation, we include 

the vertical GRF in the basis functions to address prior problems with excessive torque 

as weight transfers from the assisted leg to the (unmodeled) contralateral leg during 

double support [24]. Incorporating these additional variables increases the candidate basis 

functions in the optimization process, enabling the controller to fit normalized able-bodied 

human joint torques more closely across more activities, including stand-to-sit and stair 

climbing tasks. This optimization process leverages “L1 regularization” to fit the data 

with as few parameters as possible to avoid overfitting with the additional basis functions. 

We formulate and solve this optimization problem using convex programming tools. The 

resulting controller is assessed in terms of the similarity to normalized able-bodied human 

torques in a data-driven simulation. This simulation returns the optimal parameters for the 

controller to provide proper torque assistance for multiple tasks. We apply these parameters 

to a real-time implementation of the controller on a powered knee-ankle exoskeleton used 

by multiple human subjects to demonstrate feasibility of the proposed multi-task optimized 

energy shaping method.

The contributions of this paper are summarized as follows. First, we generalize 

our optimization-based energy-shaping control framework based on the port-controlled 
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Hamiltonian equations by incorporating global planar orientation and GRFs in the basis 

functions, while preserving input-output passivity and stability for safe human-robot 

interaction. Second, this framework enables a single feedback controller to closely fit 

normalized able-bodied human joint torques for all primary ADLs: level-ground walking, 

walking at variable inclines/declines, stair ascent/descent with variable step heights, and 

stand-to-sit. While recent work in [30] proposed a deep learning approach to estimating 

subject-independent hip joint torques for walking on level ground, ramps, and stairs, no 

prior work has estimated more complicated knee and ankle torque profiles for all primary 

ADLs (without switching or adaptation between tasks). Third, we assess the muscular 

effort of multiple able-bodied human subjects with an experimental implementation of this 

task-invariant control method on a (knee-ankle) exoskeleton to assist the primary ADLs.

The rest of this paper is organized as follows. Section II reviews the concepts of the 

port-controlled Hamiltonian systems and the corresponding matching conditions for the 

human-exoskeleton dynamics with contact constraints. In Section III, we design the desired 

closed-loop Hamiltonian system and the corresponding control law by incorporating the 

global orientation variable and GRF. We highlight passivity and stability properties based 

on common human control policies. Section IV presents training and validation results for 

the optimized controller over a dataset of the primary ADLs. Section V then presents 

the hardware implementation and able-bodied human subject experiments. Finally, we 

summarize the limitation of the proposed study and provide possible future research 

directions.

II. REVIEW OF ENERGY SHAPING CONTROL FOR EXOSKELETONS

This section briefly reviews interconnection and damping assignment passivity-based 

control (IDA-PBC) for the human-exoskeleton system in [29]. We present the solution to 

the matching conditions with contact constraints, define the corresponding control law, and 

define input-output passivity.

A. PORT-CONTROLLED HAMILTONIAN DYNAMICS

We consider a 6-link sagittal plane human-exoskeleton biped model with a floating stance 

foot and five revolute joints (Fig. 1). The inertial reference frame (IRF) is coincident with 

the position of the heel, (px, py), during the heel contact phase. The global heel angle ϕ is 

defined with respect to the vertical axis. The stance ankle and knee angles are denoted by 

θa and θk, respectively. The inter-leg angle between the stance thigh and the swing thigh 

is denoted by θh, and the swing knee and ankle angles are θsk and θsa, respectively. The 

masses and moments of inertia in the model reflect the combination of the human and 

exoskeleton masses.

For the purpose of control derivation, the dynamics of the stance and swing legs 

are modeled separately with coupled interaction forces F = fx, fy, τz
T ∈ ℝ3 × 1. The 

five degree-of-freedom (DOF) stance leg model has the generalized coordinates 

q = px, py, ϕ, θa, θk
T ∈ ℝ5 × 1 in the 5-dimensional configuration space Q (solid in Fig. 1). 

The conjugate momenta p = M(q)q̇ ∈ ℝ5 × 1 are defined by the positive-definite inertia matrix 
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M(q) ∈ ℝ5 × 5 and the velocity vector q̇. The port-controlled Hamiltonian dynamics can be 

characterized by the Hamiltonian H(q, p):T*Q ℝ through the equations

q̇
ṗ =

05 × 5 I5 × 5
−I5 × 5 05 × 5

∇H +
05 × 1

τ + ATλ
, (1)

where the skew-symmetric matrix above is known as the interconnection matrix. The 

Hamiltonian function H(q, p) = 1
2 pTM−1(q)p + V (q) is given by the kinetic plus potential 

energy V (q) ∈ ℝ. The gradient ∇H = [∂qH, ∂pH]T is a column vector in ℝ10 × 1 with 

∂qH, ∂pH ∈ ℝ1 × 5 as row vectors. The vector of joint torques τ ∈ ℝ5 × 1 aggregates the 

exoskeleton input τexo = Gu and the human input τhum = Gυ + J(q)T F. The control inputs 

u ∈ ℝ2 × 1 and v ∈ ℝ2 × 1 respectively represent the exoskeleton and human torques (at the 

knee and ankle joints), which are mapped into the overall dynamics via matrix G ∈ ℝ5 × 2. 

The system is underactuated with the number of generalized coordinates larger than the 

number of control inputs. The interaction forces F are mapped into the system’s dynamics 

by the Jacobian matrix J(q) ∈ ℝ3 × 5.

The holonomic contact constraints in the human-exoskeleton dynamics (Fig. 2) can 

be expressed as aℓ(q) = 0c×1, where c is the number of constraints and the 

subscript ℓ ∈ {heel, flat, toe} indicates the contact configuration. The constraint matrix 

A(q) = ∂qaℓ ∈ ℝc × 5 = Aℓ 0c × 2  satisfies Aq̇ = A ∂pH T = 0 given the top row of (1). The 

possible cases are

Heel Contact Aheel(q) = I2 × 2 02 × 1 ,

Flat Foot Aflat(q) = I3 × 3,  and

Toe Contact Atoe(q) =
1 0 −lf sin(ϕ)
0 1 lf cos(ϕ) ,

where γ is the slope angle and lf is the length of the foot. The Lagrange multiplier λ ∈ ℝc × 1

represents the GRFs, which are mapped into the system through the constraint matrix A. 

Details for the contact constraints are given in [10], [23]. Henceforth we omit q and p terms 

in matrices to simplify notation.

The Lagrange multiplier λ can then be obtained by solving 
d
dt A ∂pH T = 0 ∂q A ∂pH T q̇ + ∂p A ∂pH T ṗ = 0 for

λ = A∂p2
2 HAT −1

− ∂q A ∂pH T ∂pH T + A∂p2
2 H ∂qH T − τ ,
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where ∂p2
2 H ∈ ℝ5 × 5 denotes the second-order derivative of H with respect to p.

For the swing leg model (dotted in Fig. 1), the configuration is given by qsw = [hx, hy, θth, 

θsk, θsa]T, where (hx, hy) are the positions of the hip with respect to the IRF. The angle 

between the vertical axis and the swing thigh is denoted as θth. The swing leg dynamics do 

not have contact constraints.

B. CONTROL LAW SATISFYING THE MATCHING CONDITIONS

Assume we have closed the feedback loop for exoskeleton input u, while the human 

inputs υ and F remain open-loop in the Hamiltonian system. We consider a desired, 

closed-loop Hamiltonian H(p, q) = 1
2 pTM−1p + V , where V = V + V  represents the new 

potential energy with shaping term V . The corresponding gravitational vector is 

N = ∂qV T = ∂qV T + ∂qV T = N + N ∈ ℝ5 × 1. We set M = M to simplify the matching 

process and passivity proof, and to avoid complicated calculations of the inertia matrix 

inverse in the control law. This implies ∇H = ∇H + ∂qV , 0 T  but we can still achieve 

velocity-dependent shaping by modifying the interconnection matrix of the closed-loop 

Hamiltonian system.

The desired closed-loop dynamics based on H are

q̇
ṗ =

0 I
−I J2

∇H +
0

Gv + JTF + ATλ + Tex
, (2)

where Tex ∈ ℝ5 × 1 denotes the new exogenous input compared to [29]. The skew-symmetric 

matrix J2 = − J2
T ∈ ℝ5 × 5 represents the extra shaping DOF provided in the interconnection 

structure by the IDA-PBC method [29]. This introduces artificial gyroscopic terms QT 

(∂pH)T, where Q(q) ∈ ℝ5 × 1 is a smooth vector-valued function and J2 = (∂qQ)T − ∂qQ. 

Moreover, the closed-loop GRFs in (2) are represented by

λ = A∂p2
2 HAT −1

− ∂q A ∂pH T ∂pH T + A∂p2
2 H ∂qH T − J2 ∂pH T − Gv − JTF − Tex .

Based on standard results in [20], Hamiltonian systems (1) and (2) match if we have

Gu = − ∂qH T + ∂qH T + J2 ∂pH T + AT (λ − λ) + Tex .

By plugging GRFs λ and λ and following the steps in [29], we have

Gλu = Xλ − ∂qH T + ∂qH T + J2 ∂pH T + Tex , (3)

and the corresponding matching condition:
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0 = Gλ
⊥Xλ − ∂qH T + ∂qH T + J2 ∂pH T + Tex , (4)

where Gλ
⊥ ∈ ℝ3 × 5 is the (full-rank) left annihilator of Gλ = XλG, i.e., Gλ

⊥Gλ = 0, and 

Xλ = I − ATW A∂p2
2 H ∈ ℝ5 × 5 with W = A∂p2

2 HAT −1
∈ ℝc × c.

To solve the matching condition (4), we decompose matrix M into four sub-matrices as in 

[29]:

M =
M1 M2

M2
T M4

,

where M1 ∈ ℝ3 × 3 corresponds to the floating base joints (px, py, ϕ) and M4 ∈ ℝ2 × 2

corresponds to the actuated joints (θa, θk). Then we obtain

M−1 =
Δ−1 −Δ−1M2M4

−1

−M4
−1M2

TΔ−1 M4
−1 + M4

−1M2
TΔ−1M2M4

−1 ,

where Δ = M1 − M2M4
−1M2

T ∈ ℝ3 × 3. The solution of the matching condition (4) can be 

simplified as

0 = I − Zλ 03 × 2 − ∂qH T + ∂qH T + J2 ∂pH T + Tex ,
= I − Zλ 03 × 2 −N + N + J2M−1p + Tex ,

(5)

where Zλ = Aℓ
TW AℓΔ−1 ∈ ℝ3 × 3 and W = AℓΔ−1Aℓ

T −1 ∈ ℝc × c. By zeroing the unactuated 

parts (first three elements) of −N + N + J2M−1p + Tex, the matching condition (4) is 

satisfied. More details can be found in [29].

The control law for the feasible shaping structure satisfying (3) is

Gu = ∂qH T − ∂qH T + J2M−1p + Tex
u = G+ −N + J2M−1p + Tex ,

(6)

with G+ = (GT G)−1GT being the left pseudoinverse of G. Note that velocity dependence is 

introduced via the conjugate momenta p. In [29], the exogenous input Tex = 0. Moreover, the 

closed-loop system (2) is integrable with a well-defined potential energy if the unactuated 

parts of N and Q(q) are zero and the actuated parts depend only on actuated state variables 

[29, Proposition 1]. Integrability guarantees there exists an equivalent Lagrangian (or 

Hamiltonian) L(q, q̇) = 1
2 q̇TMq̇ + q̇TQ − V  to ensure passivity [27]:

Definition 2.1: Consider a general mechanical system
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ẋ = f(x, u), y = ℎ(x, u), (7)

where x ∈ ℝn × 1, u ∈ ℝp × 1 is the input and y ∈ ℝp × 1 is the output. Let E(x):ℝn × 1 ℝ be 

a continuously differentiable, positive semi-definite function, then the system (7) is passive 

from input u to output y if Ė(x) = ∂E
∂x f(x, u) ≤ yTu.

Input-output passivity means that for a continuously differentiable, positive semi-definite 

function, the time derivative is restricted by the input times the output. In other words, 

the change in the system energy is bounded by the energy injected through the input u. 

The system absorbs power but does not generate energy on its own. Having well-defined 

energy provides a useful storage function E for passivity analysis. However, it has previously 

limited the flexibility of the closed-loop dynamics [29], which we address next.

III. PASSIVITY-BASED OPTIMAL CONTROLLER DESIGN

The modified gravitational vector N in [29, Proposition 1] depends only on the 

actuated variables to ensure the closed-loop system satisfies matching conditions, i.e., 

the corresponding potential energy must have a zero partial derivative with respect to 

the unactuated coordinates to avoid applying torque at the unactuated joints. However, 

this restricts the controller to virtual spring behaviors, limiting its flexibility to reproduce 

normative joint torques over multiple ADLs.

Instead of restricting the potential energy as in [29], we now pursue a strategy of designing 

an unrestricted potential energy function. This energy function has a non-zero partial with 

respect to the unactuated coordinates, so we introduce a new exogenous input Tex that 

cancels out the unactuated component of the joint torques. We call this input a “power leak,” 

as it can add and remove energy through a port comprising the aforementioned unactuated 

joint torques and the unactuated joint velocities. Thus we can then incorporate the global 

variable ϕ into the actuated part of N and J2 M−1p, where the matching condition (4) is 

satisfied.

The corresponding modified potential energy for the stance 

leg model is denoted as V = V ϕ, θa, θk , where the associated 

conservative force vector N = ∂qV T = 0, 0, N3 ϕ, θa, θk , N4 ϕ, θa, θk , N5 ϕ, θa, θk
T . 

We define Nact = 0, 0, 0, N4 ϕ, θa, θk , N5 ϕ, θa, θk
T  and the exogenous input 

Tex = 0, 0, N3 ϕ, θa, θk , 0, 0 T . Vector Nact comprises only the actuated components in N, 

i.e., N4 and N5 correspond to the conservative force vector acting on the ankle and knee 

joints. The difference Tex = N − Nact between the desired torque vector N and the applied 

underactuated torques Nact can be treated as a new “power leak” port that transfers power 

into and out of our system. We investigate the energetic influence of this power leak in our 

passivity analysis of the exoskeleton-human system as follows.
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Proposition 3.1: If V  is continuously differentiable, then the closed-loop system (2) is 

passive with two input ports: the human input with effort τhum and flow q̇, and the power 

leak port with effort N3 and flow ϕ̇.

Proof: Consider the storage function E = H = H + V  and the closed-loop system (2), where 

∂pH = ∂pH and ∂qH T = ∂qH T + N. The time derivative of E(q, p) is

Ė = ∂qH q̇ + ∂qV q̇ + ∂pH ṗ

= ∂qH ∂pH T + NT ∂pH T + ∂pH − ∂qH T −N + τℎum + J2 ∂pH T + ATλ + Tex

= ∂pH τhum + ∂pH Tex + ∂pH J2 ∂pH T + ∂pH ATλ
= q̇Tτhum + ϕ̇N3,

where we use the skew-symmetry property of the interconnection structure J2 (the quadratic 

form with a skew-symmetric matrix is zero), and ∂pH ATλ = 0 due to the fact that 

constraint forces do no work [31]. Thus, energy growth in the system is controlled by the 

two input ports. ■

In practice, the power leak results in a small contribution relative to the power input from the 

human, who essentially controls the power growth of the system alone. This provides safe 

interaction with the exoskeleton, but stability depends on the human control law. Although ϕ 
is unactuated with respect to the muscles on the ipsilateral leg, the interaction forces with the 

rest of the body can actuate this DOF (especially during double support phase). We assume 

that the human is modulating joint impedance [10], [32] and compensating the missing 

gravitational component in N, where.

τhum = − Kpe − Kdė − 0, 0, N3 ϕ, θa, θk , 0, 0 T . (8)

The constant diagonal matrices Kp, Kd are positive semi-definite, and e = q − q represents 

the difference between q and the human’s constant set-point vector q. We assume these 

impedance parameters remain (piecewise) constant during small movements, as often 

modeled in human-inspired finite state machine controllers [18], [32]. We can show the 

stability of the closed-loop system (2) around the equilibrium point (q⋆, 0), where the 

forces along the shaped potential energy balance the muscular forces and the GRFs, i.e., 

N + N − τhum − ATλ(q, 0) − Tex = N + ∂qV T + Kpe − ATλ(q, 0) = 0.

Proposition 3.2: Considering the closed-loop system (2), the equilibrium point (q⋆, 0) is 

stable in the sense of Lyapunov given human input (8).

Proof: We choose the Lyapunov function as

W(q, p) = E + 1
2eTKpe − ∫q0

q
A(s)Tλ(s, 0) ⋅ ds − W0, (9)
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where q0 is the state at t = 0 and W0 is a constant such that W(q, p) is positive definite and 

vanishes at the equilibrium point (q⋆, 0). The integral ∫q0
q A(s)Tλ(s, 0) ⋅ ds is a constant value, 

where

d
dt ∫q0

q
A(s)Tλ(s, 0) ⋅ ds = ∂

∂q ∫q0
q

A(s)Tλ(s, 0) ⋅ ds q̇

= q̇TA q Tλ(q, 0) = 0.

The Lyapunov function W achieves its minimal point when 

∇W = 0, i.e.,  ∂pW T = ∂pH T = M−1p = q̇ = 0 and

∂qW T = ∂qH T + ∂qV T + Kpe − ATλ(q, 0)
= N + ∂qV T + Kpe − ATλ(q, 0) = 0, (with p = 0)

i.e., at the equilibrium point (q⋆, 0). The incorporation of ∫q0
q A(s)Tλ(s, 0) ⋅ ds guarantees the 

appearance of the GRFs when ∇W(q, 0) = 0, which coincides with the equilibrium point (q⋆, 

0) at N + ∂qV T + Kpe − ATλ(q, 0) = 0. As a result, the Lyapunov function W is positive 

definite and vanishes only at the equilibrium point (q⋆, 0).

Applying (8), the time-derivative of Lyapunov function (9) is

Ẇ = Ė + q̇TKpe − q̇TATλ(q, 0) = q̇Tτhum  + ϕ̇N3 + q̇TKpe
= q̇T −Kpe − Kdė + q̇TKpe = − q̇TKdq̇ ≤ 0,

which shows that the shaped system is stable in the sense of Lyapunov. ■

Because matrix Kd is only positive semi-definite and Ẇ does not depend on the full system 

state, asymptotic stability has not been guaranteed. Proposition 3.2 assumes the human 

neuromuscular control stabilizes the combined human-exoskeleton system by compensating 

the moment for global planar orientation. Furthermore, on a trajectory that approaches an 

equilibrium, our controller will add a bounded amount of energy, where the response of the 

system will remain in a neighborhood of the equilibrium under human impedance control. 

This result satisfies our control objective of partial torque assistance while the human 

controls their kinematics. The human is ultimately responsible for ensuring stability (via 

impedance control or otherwise), and the passivity property of Proposition 3.1 ensures the 

stabilization problem is not more difficult with the exoskeleton. Hence, this control approach 

would not be appropriate for individuals with paraplegia.

IV. DATA-DRIVEN OPTIMIZATION RESULTS

In [29], we formed multiple basis functions for the shaping terms in (6) and converted our 

controller design into an optimization process to fit weight-normalized able-bodied joint 

torque data for variable-incline walking. Although these basis functions aim to change 
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the effect of the gravitational vector and the gyroscopic forces that act within the system, 

they do not have the flexibility to reproduce joint torques for a broader set of activities, 

including stair climbing and stand-to-sit. We now re-design the optimization procedure with 

the incorporation of the global variable ϕ and vGRF and validate this procedure with a 

data-driven simulation. The parameters provided by the optimization are ultimately used in 

the real-time implementation in Section V.

A. DESIGN OPTIMIZATION

We design N = − α1ξ1 − ⋯ − αiξi and J2 M−1p = αi+1ξi+1 + … + αwξw as linear 

combinations of the basis functions {ξ1, ξ2, …, ξw} with the constant coefficients 

α ∈ ℝw × 1, where ξi ∈ ℝ5 × 1 and w is the total number of basis functions. We adopt the 

GRF-based torque tapering strategy from [24] to prevent excess torques during double 

support, noting that the model (1) does not know the state of the contralateral leg. The 

vertical GRF (vGRF, which is normalized to one at 100% body weight) and basis functions 

are incorporated into (6) via

u = G+ α1ξ1 + α2ξ2 + ⋯ + αwξw ⋅ vGRF
= Φ(q, p)α ⋅ vGRF, (10)

where G+ = [02×3, I2×2] for the stance leg model and Φ(q, p) ∈ ℝ2 × w.

We optimize the constant coefficients α so the outputs of control law u best fit normalized 

able-bodied human joint torques y when inputting able-bodied human kinematic trajectories. 

The optimization problem is defined as

arg min
α

∑
j

vGRF ⋅ U qj, pj, α − Y j
T ⋅ W j U, Y j ⋅ vGRF ⋅ U qj, pj, α − Y j

+ UB qj, pj, α − Y j
B TW k UB qj, pj, α − Y j

B + U q0, p0, α TW rU q0, p0, α

+ Λ W sα 1,

(11)

where the subscript j represents the number of different walking tasks, including 

level-ground walking, ramp walking, stair climbing, and stand-to-sit. The state vectors 

qj, pj ∈ ℝm × 1 comprise samples over time for the given task j with the number of time 

samples m.

The objective function comprises four parts, where the first part corresponds to the least 

squares error of the exoskeleton control inputs U ∈ ℝ2m × 1 and the normalized able-bodied 

human torques Y j ∈ ℝ2m × 1 for the ankle and knee joints with the weighting matrix Wj(U, 

Yj). The weighting matrix Wj(U, Yj) depends on the exoskeleton and human inputs (U, Yj) 

and adjusts the weights according to sign(U(i) · Yj(i)), where i ∈ {1, …, 2m} represents the 

sample index. We enlarge the weights when U(i) and Yj(i) have opposite signs to empha-size 

the importance of assisting rather than resisting human torques.
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The second part of the objective function with UB and YB aims to minimize the difference 

between the control inputs and normalized able-bodied torques during the initial 15% and 

late 15% of stance phase boundaries with weighting matrix Wk, i.e., the early and late stance 

phases during the gait cycle, without the effect of GRFs. This helps regulate the exoskeleton 

torques u at endpoints of the stance phase. This also minimizes the dependence on vGRF for 

real-time implementation to avoid aggressive torques when the custom force sensor in [24] 

returns inconsistent measurements of vGRF compared to the force plates in the dataset [33].

We also include Wr with states p = p0 = 0 and q = q0 in the third part of the objective 

function, where q0 is the state when ϕ, θa = 0 and θk is hyper-extended. This encourages 

the optimization to provide minimal knee torque during hyper-extension for safety. Lastly, 

similar to [34], we apply “L1 regularization” to enforce sparsity in the model by zeroing the 

least important parameters in vector α, which avoids over-fitting and improves the prediction 

of untrained tasks. The term Λ weights the penalty on the number of basis functions. 

The weighting matrix Ws adjusts the optimal parameters α to focus more on shaping the 

gyroscopic terms or the modified potential energy. We use “fmin-con” with sequential 

quadratic programming in MATLAB to find the optimal solution α*. The corresponding 

control law equals u = Φ(q, p) α* · vGRF · LOA%, where LOA% (level-of-assistance) 

scales down the controller to a desired fraction of normative torque.

We compare two shaping strategies: 1) Hamiltonian without ϕ (WOP) has basis functions 

depending on θa and θk only, and 2) Hamiltonian with ϕ (PHI) has the global variable 

ϕ incorporated into the basis functions. To begin, we defined 67 basis functions in 

ξankle, ξknee ∈ ℝ67 × 1 in the form of gyroscopic or potential forces, where the total 

number was determined empirically (see Supplementary Material). The PHI method 

uses all 67 basis functions, whereas the WOP method removes all terms depending on 

ϕ (satisfying [29, Proposition 1]) for a total of 35 basis functions. Both cases have 

Φ(q, p) = ξankle, ξknee
T ∈ ℝ2 × w in (10). Column vectors in Φ(q, p) associated with the 

shaped gyroscopic terms are orthogonal to θ̇a, θ̇k
T . In contrast, column vectors in Φ(q, p) 

associated with the shaped potential energy introduce conservative forces corresponding to 

modified gravity and nonlinear virtual springs.

We optimize the constant coefficients α to fit the control law outputs to normalized values 

of the across-subject (ten subjects) averaged human joint torques over level-ground, ramps, 

stairs walking [33], and stand-to-sit [35]. The optimization process provides the optimal 

parameters α*, where we neglect those parameters with absolute values contributing less 

than 0.1% ∥α*∥2. The vGRFs during locomotion tasks in [33] are normalized by the body 

weight. Because the stand-to-sit data in [35] does not provide vGRFs, we set the vGRF to 

a constant value during the optimization process (a reasonable assumption for a quasi-static 

task like stand-to-sit). The training tasks include level treadmill walking at 0.5, 1.5m/s, 

ascending/descending ramps with inclines of 5.2°, 11°, ascending/descending stairs with 

step height of 4, 7inch [33], and the stand-to-sit task in [35]. The original knee torque data 

in [35] was not adequate during the late stand-to-sit cycle because of support from the chair 

during data collection. To provide adequate support with our controller, we modified the 
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able-bodied knee torque profile from [35] by holding the peak knee torque from 60% to 

100% of the cycle.

Fig. 3 shows the simulated exoskeleton control torques and demonstrates the agreement 

between a single energy-shaping control strategy (exoskeleton torque τexo) and normalized 

able-bodied human torques τhum over the training activities. The validation activities are 

considered next in comparison with a state-of-art finite state machine (FSM) controller [5].

B. COMPARISON TO IDEAL FINITE STATE MACHINE

The presented method was evaluated by comparison with an ideal FSM for testing tasks. 

We defined the FSM in a similar way as in [36], where the ideal FSM was assumed 

to provide the normalized able-bodied human torque with pre-defined tasks using intent 

recognition between different modes, including walking and stairs climbing. The pre-defined 

“training” tasks included level treadmill walking at 1.5 m/s, ramp ascent/descent at 5.2°, and 

stairs ascent/descent with 4inch step height in [33] to cover a similar number of tasks to a 

state-of-art FSM [5]. The ideal FSM returns the pre-defined torque profile Yj, j ∈ {1, …, 5}, 

that most closely matches the normalized able-bodied profile Yi for the current task i. The 

problem is defined in [36, 7] as finding j in the pre-defined tasks via

arg min
j

Y i, ankle − Y j, ankle 2 + Yi, knee − Y j, knee 2. 

Although this FSM is difficult to implement in practice (specifically real-time classification 

of the nearest task [5]), it provides a useful standard of comparison representing the 

minimum possible error with the FSM approach [36].

We used two metrics for comparison of the energy-shaping and FSM methods. The first 

metric used was a Cosine Similarity (SIM), which is a judgment of orientation that measures 

the pattern of the normalized able-bodied torques. The second metric used was the Variance 

Accounted For (VAF) which measures the variability of the data that can be explained by a 

fitted regression model. The definitions are

SIM(A, B) = 100 ⋅ A ⋅ B
A 2 B 2

,

VAF(A, B) = 100 1 − variance(A − B)
variance(A) .

We measured the metrics on knee and ankle torques separately and averaged them together 

for a single quantity.

We performed leave-one-subject-out (ten subjects in total) cross-validation to check the 

predictive performance of the proposed methods in the presence of subject-specific 

variations in joint torque. The validation tasks included all the training tasks in Section IV-A 

and additional tasks of level treadmill walking at 0.65 m/s, ascending/descending a 9.2° 
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ramp, and ascending/descending stairs with 6inch step height [33]. To compare the different 

methods, we performed group statistics (n = 10) on the SIM and VAF scores calculated from 

each subject’s joint torques and the predicted torques from the corresponding model trained 

without that subject’s data. Since SIM and VAF were not normally distributed (according 

to the Shapiro Wilk test for normality), we applied a non-parametric test for checking the 

statistical significance of the effect of control method (PHI, WOP, FSM) on SIM and VAF. 

For each task, we performed pairwise comparisons between methods using the Wilcoxon 

signed-rank test with the null hypothesis that the median difference in score between the 

different modes was zero.

As shown in Fig. 4, both the PHI and WOP methods performed well with different tasks 

under both metrics, with minor advantages for the PHI method. Averaged over all tasks and 

subjects, PHI has mean SIM = 89.5 ± 9.2% and VAF = 73.4 ± 14.7%. WOP has mean SIM 

= 88.7 ± 10.3% and VAF = 68.1 ± 12.8%. FSM has mean SIM = 88.8 ± 10.7% and VAF 

= 69.0 ± 21.6%. The method in [29] (not shown in Fig. 4) has mean SIM = 81.0 ± 9.2% 

and VAF = 53.8 ± 14.9%, which are much lower than all other methods. Overall PHI has 

higher mean SIM and VAF compared to FSM, with this trend being statistically significant 

at the significance level 0.05 in 2 out of 15 tasks for SIM score and 4 out of 15 tasks for 

VAF score. The FSM method significantly outperformed the energy-shaping methods for 

ramp ascent because joint torques do not change much between different ramp inclines, i.e., 

the data of {9.2, 11}° matched closely to the FSM training tasks. Although the medians 

were different in stair ascent and descent cases, the difference did not reach the significance 

level 0.05. For testing tasks that do not closely resemble any pre-defined tasks, the FSM 

performance drops substantially, e.g., {−9.2, −11}° ramp descent and level walking at {0.5, 

0.65} m/s. In fact, the FSM’s worst performance with median VAF = 38% during level 

walking at 0.5 m/s is much worse than PHI’s worst performance with median VAF = 58% 

in stair ascent 7inch. In practice, the FSM method would not be able to use future trajectory 

information to achieve ideal task classification, resulting in substantially worse errors when 

choosing the wrong controller.

The energy-shaping controller can be improved by retraining with all tasks (including testing 

data), but the FSM is always limited to one condition per activity. For consistency, the 

experimental implementation in Section V uses the average subject’s optimization results 

presented in Fig. 3 (without re-training).

V. EXPERIMENTAL VALIDATION WITH HUMAN SUBJECTS

In this section, we implement the controller on a backdrivable knee-ankle exoskeleton and 

use it to partially assist multiple healthy human subjects performing multiple ADLs. The 

control torques and resulting muscle activation demonstrate the versatility of the proposed 

control approach in providing biomimetic assistance across multiple activities.

A. HARDWARE IMPLEMENTATION

The controller was implemented on the Comex knee-ankle exoskeleton shown in Fig. 1 (see 

[10], [24] for details). Comex weighs 4.5 kg, and has backdrivable actuators due to their low 

24:1 gear ratio. Both knee and ankle modules produce 30 Nm continuous torque (60 Nm 
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peak) using 200 W frameless BLDC motors. The high-level control loop runs at 500 Hz on a 

National Instruments MyRIO. Joint angle feedback is provided by high-resolution magnetic 

incremental encoders, and a 6-axis inertial measurement unit provides the global thigh 

orientation. Comex is powered by a 24 V Li-Ion battery housed inside a backpack. Safety 

features such as hard stops and current limiters are present at both joints. See Supplementary 

Figure S1 which illustrates the attachments and adjustments of Comex.

The vGRF is measured by a custom force sensor attached to the bottom of Comex’s 
footplate. Force is measured by multiple force-sensitive resistors (FSRs), which are 

sandwiched between two rigid plates held apart by circular pucks. The design was inspired 

by force plates. The sensor is calibrated before each use to achieve a final readout 

normalized to body weight in the same manner as the vGRFs from the normative dataset 

used for the controller simulation. The final values of vGRFs are saturated within [0,1] on 

the MyRIO to avoid excessive assistance torques.

Although the Comex actuators are backdrivable [10], the ankle backdrive torque is still 

significant compared to normative ankle dorsiflexion torques during the swing phase 

of gait (around 5 Nm). The active modes in [29] did not reduce muscle activation 

of tibialis anterior, where the assistive dorsiflexion torques in the swing phase (>60% 

stride) were lower than the estimated backdrive torque (3 Nm, see [10, Fig. 16]). This 

suggests the subject experienced more resistance than assistance. To reduce the backdrive 

torque acting on the ankle joint without the use of torque sensors, we adopt the inertia 

compensation methodology described in [37]. The torques induced by inertia are determined 

by τinertia = Θ̈ ⋅ Ireflected, where Θ̈ represents the angular acceleration. The reflected inertia 

is approximated by the product of rotor inertia and gear ratio squared [11]. For Comex, the 

reflected inertia Ireflected = 691.5 kg-cm2. We apply inertia compensation to the ankle when 

θ̈a ≥ 0 to assist dorsiflexion and avoid torque oscillation around θ̈a = 0. We also saturate the 

inertia compensation within [0,2.5] Nm. Therefore, the resulting inertia compensation term 

is given by

τinertia,ankle = sat ≥ 0
≤ 2.5 θ̈a ⋅ Ireflected , if θ̈a ≥ 0

0, otherwise

Since the control law provides small dorsiflexion torques in Fig. 3, we also amplify the 

optimal control input uopt, ankle when the assistive dorsiflexion torques are lower than the 

estimated backdrive torque (3 Nm). A scaling value of 1.3 was chosen based on the comfort 

level of our pilot subject. For dorsiflexion torques higher than the estimated backdrive 

torque, the optimal control input uopt, ankle remains unchanged. Incorporating these features, 

the control input for the ankle joint is given by

τankle =
1.3 ⋅ uopt, ankle + τinertia, ankle, if uopt, ankle ∈ [0, 3]
uopt, ankle + τinertia, ankle, otherwise 

where uopt, ankle represents (10) in Nm/kg multiplied by the subject’s body mass and 

LOA%. The knee control input does not include the inertia compensation features. Before 
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conducting the human subject study, we adjusted the weighting factors in the optimization 

process (11) for user comfort during several practice trials (see Supplementary Material).

B. HUMAN SUBJECT METHODS

The following study was approved by the Institutional Review Board at the University of 

Michigan (HUM00164931). We enrolled five able-bodied human subjects (s1, male, mass: 

78 kg, height: 1.78 m; s2, male, mass:75 kg, height: 1.75 m; s3, female, mass: 50 kg, 

height: 1.62 m; s4, male, mass: 83 kg, height: 1.79 m; s5, female, mass: 60 kg, height: 

1.75 m) to demonstrate the controller’s ability to assist multiple tasks. Two subjects (s4, 

s5) were excluded due to failure of a foot FSR causing unusual control torques, which was 

noticed after the experiment. The remaining subjects had substantial (s1), moderate (s2), 

or minimal (s3) experience with Comex. We assessed muscle activation via EMG (Delsys 

Inc.) of vastus medialis oblique (VMO), rectus femoris (RF), biceps femoris (BF), tibialis 

anterior (TA), gastrocnemius (GM), and soleus (SOL), which function as a knee extensor, 

knee extensor/hip flexor, knee flexor, dorsiflexor, plantarflexor/knee flexor, and plantarflexor 

respectively. See Supplementary Figure S2 for EMG electrode placement.

The experiment comprised level treadmill walking at self-selected speed (1 m/s for s1–2, 

0.8 m/s for s3), incline/decline treadmill walking on a ±5.2° slope at 0.6 m/s and a ±12.4° 

slope at 0.6 m/s, repetitive sit-stand cycles with a metronome set to 45 beats-per-minute 

(BPM), and stairs ascent/descent over 7 inch steps with a 60 BPM metronome. The tasks 

were repeated for three exoskeleton modes: bare (no exoskeleton), active exoskeleton with ϕ 
(PHI), and active exoskeleton without ϕ (WOP). The LOA% for the active modes was set to 

60% for s1 and 50% for other subjects, based on their comfort level during practice trials. 

We collected at least 30 gait cycles for each treadmill task, 18 gait cycles for each stair task, 

and 18 sit-stand cycles. Subjects were instructed not to use the treadmill handrails except to 

prevent a fall (which never occurred). A supplementary video of the experiments is available 

for download.

The walking trials were cropped into gait cycles by detecting heelstrike with a heel-mounted 

accelerometer. Sit-stand-sit trials were cropped into individual repetitions using a thigh-

mounted accelerometer built into the EMG sensor. Each muscle’s EMG was demeaned, 

bandpass filtered (20 – 200 Hz), smoothed with a moving 100 ms window RMS, and 

then normalized with respect to the maximum peak of the ensemble averages (across 

repetitions) of the three exoskeleton modes [38]. This was done for each task and muscle 

separately, resulting in the signals being converted to a percentage of the maximum 

voluntary contraction level (%MVC) for a consistent and fair comparison across subjects. 

After normalizing the EMG to %MVC, the integral with respect to time was calculated to 

represent muscular effort as %MVC.s, similar to [24].

We performed intra-subject statistics on the EMG effort data. Since these data were not 

normally distributed according to the Shapiro Wilk test for normality, we applied non-

parametric tests for checking the statistical significance of the effect of controller mode on 

EMG effort for each subject, similar to [39]. We first used the Friedman’s test to check 

the null hypothesis that muscle effort data corresponding to the three modes came from the 

same population. When the null hypothesis was rejected (α = 0.05), we performed post-hoc 
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pairwise comparisons between modes using the Wilcoxon signed-rank test with the null 

hypothesis that no median difference existed between EMG effort from different modes.

C. HUMAN SUBJECT RESULTS

Fig. 5 shows that, even in the experiment with subject kinematics being influenced by 

the exoskeleton’s mass and joint torque, the averaged command torques (PHI and WOP 

methods) match with the normalized able-bodied human torques from [33], [35] in most 

tasks with SIM = 81.6 ± 6.5%,VAF = 60.4 ± 16.3% for PHI and SIM = 80.1 ± 9.0%,VAF 

= 50.8 ± 19.2% for WOP, where torque trajectories are normalized to the L2 norm and 

standard deviations are given over tasks. The mismatch was likely due to multiple factors. 

Firstly, there may be a mismatch between reference kinematics from literature and the 

feedback joint angles and IMU information due to compliance in straps, padding, and soft 

tissue. Individual variations in kinematics, as well as variations in the individual responses to 

the assistive torques could also explain the mismatch. In addition, the vGRFs were measured 

by the custom force sensor in the Comex footplate and saturated between [0,1], which gives 

slightly different values compared to a force plate.

The ensemble-averaged VMO, RF, BF, TA, GM, and SOL EMGs for bare and active modes 

are shown in Fig. 6 for s1, who was the best responding subject to exoskeleton assistance. 

In general the task-specific dominant muscles (for the stance phase) had reduced effort and 

peak EMG for the active modes in most tasks—VMO, GM, and SOL for treadmill and 

stairs tasks, and VMO for sit-stand. Fig. 7 quantifies this trend for EMG effort and provides 

intra-subject statistics for the various muscles and tasks. Moreover, the assistance torque 

profiles matched the muscle activation profiles, explaining the reduction in muscle activation 

compared to bare mode. See Supplementary Figures S3–S7 for individual subject EMG 

ensemble averages, across-subject ensemble averages, across-subject effort and peak EMG 

plots, and photos of the different task experiments, respectively.

Incline walking and stairs ascent are primarily associated with positive power or concentric 

muscle contractions. In these tasks, the quadriceps are predominantly activated to lift the 

center of mass (COM) of the body. Both PHI and WOP provided knee extension torques 

in this phase and resulted in EMG reduction of the VMO for s1 and s2. Both controllers 

provided plantar-flexion torques in this phase for stairs ascent and incline walking, resulting 

in noticeable GM and SOL EMG reductions compared to the bare mode for s1 and s2 with 

stairs ascent. For s3, there was only a noticeable reduction in this phase for SOL with incline 

walking.

Stairs descent and decline walking are primarily associated with negative power and involve 

eccentric quadriceps and plantar-flexor contractions. Commonly, a double peak quadriceps 

activation profile is apparent in stance; firstly to absorb the impact of heel strike, and 

secondly to lower the COM. Both controllers provided knee extension torques during these 

phases, which resulted in substantial EMG reductions compared to the bare mode of the 

VMO for s1 with all stairs descent and decline walking tasks, and s2 and s3 with most stairs 

descent and decline walking tasks. Both controllers provided substantial plantar-flexion 

assistance torques during mid to late stance to assist with the negative work of lowering the 

COM. This resulted in substantial reductions in SOL activity compared to the bare mode 
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for s1 with all stairs descent and decline walking tasks, and s2 with most stairs descent and 

decline walking tasks. Note that the SOL is more active during flexed knee positions (such 

as decline walking or stairs descent) than GM, which is more active during extended knee 

positions.

Sit-to-stand and stand-to-sit primarily require knee extension torques [40]. These occur in 

the form of concentric contractions during sit-to-stand and eccentric contractions during 

stand-to-sit. Both controllers provided substantial knee extension torques, resulting in a 

noticeable reduction in VMO (knee extensor) activations for s1 and s2. Results of GM and 

SOL had high inter-subject variability due to the low muscle activation in the sit-stand cycle 

compared to the dominant muscles (VMO and RF).

Lastly, we observed some reductions in the quadriceps and the plantar-flexors during the 

stance phase of level walking. The quadriceps have a high activation in bare mode primarily 

to dampen the impact of heel strike. The plantar-flexors provide the pushoff power during 

late stance to drive the COM forwards. Both our controllers provided appropriate knee 

extension and plantar-flexion assistance torques that resulted in noticeable reductions in 

VMO (s1) and SOL (s2) activity in the stance phase. Since the knee goes through a 

minimal range of motion during stance in level walking, our prior controller that utilized 

only potential energy shaping [24] was not adequate to provide assistance during this phase. 

With the PHI and WOP controllers developed in the present study, adequate knee extension 

assistance torques are provided to assist with impact absorption in early stance.

The TA activations for both PHI and WOP were higher than bare for all walking tasks. 

This is similar to the results in [41], where the TA during the swing phase had increased 

activity with decreasing gravity. One explanation is that we are not providing adequate 

torques to support the weight of the sensorized exoskeleton foot plate. It is also possible 

that the provided plantar-flexion torques are excessive, necessitating the TA activation to 

compensate. Future work will model the passive dynamics of the muscle-tendon unit for 

all joints. This is especially important for the ankle, i.e., the Achilles tendon is known to 

provide significant storage and release of energy, much like a spring.

The purpose of BF during swing is to lift the foot by flexing the knee, aiding in 

leg clearance. Although we provided marginal knee flexion torques, we observed high 

activations for BF with the active modes compared to bare, which was also found in [41] 

during stance phase. A potential explanation can be the interaction with its second function 

as a hip extensor and needing to carry the added weight of the exoskeleton during swing, 

which can also affect RF.

Figs. 6 and 7 demonstrate the potential to assist musculature across multiple tasks. Note 

that each EMG signal is normalized as %MVC with respect to the maximum peak of 

the ensemble averages, which does not reflect the differences between dominant and non-

dominant muscles for each task. For instance, during decline walking (−12.4°), VMO is 

dominant and has a large reduction in EMG with active modes, whereas the non-dominant 

BF has the opposite effect. We believe that improvement in dominant muscles carries more 
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weight than worsening of non-dominant muscles when assessing the overall performance of 

the proposed methods.

The subject-wise muscular efforts in Fig. 7 demonstrate that s1 and s2 responded better to 

orthosis assistance than s3 for some muscles and tasks (see also Fig. 6 and Supplementary 

Material). This could be due to the fact that s3 was relatively short and lightweight 

compared to the large exoskeleton used in this study, or due to the inexperience of s3. 

We provided the subjects with approximately 2 minutes of acclimation time for each task, 

whereas a prior study gave 30 minutes of acclimation time before showing EMG reductions 

under the assistance [42]. It is thus possible that our outcomes would improve by providing 

more acclimation time. Additional human subjects would be needed to draw more general 

conclusions about the controller’s effectiveness, which is left to future work.

VI. CONCLUSION

This paper applied a novel energetic control strategy based IDA-PBC that can assist 

all primary ADLs with a backdrivable knee-ankle exoskeleton. Whereas prior work on 

passivity-based energy-shaping control behaved as nonlinear virtual springs, this paper 

incorporated global orientation and vGRF feedback to broaden the capabilities of the 

controller while preserving input-output passivity and stability of the closed-loop system. 

We increased the candidate basis functions in the optimization process, which achieved an 

optimal controller that fits normalized able-bodied human joint torques more closely for 

more tasks. We considered “L1 regularization,” which fits the data with as few parameters 

as possible to avoid overfitting problems. We also demonstrated the potential of the 

implemented controller to reduce muscular effort in a human subjects study involving 

level-ground, ramp, and stairs walking as well as sit-stand transitions.

Future work could consider inconsistencies between the optimization dataset and real-time 

GRF data from exoskeleton sensors. Moreover, lighter backdrivable exoskeletons are being 

developed [11], [12] that could avoid co-contractions and/or compensations associated with 

exoskeleton mass, enabling more consistent reductions in muscle activation. Future work 

could also incorporate the passive and active dynamics of the relevant muscle-tendon units 

to further improve biomimicry of the assistance torque.
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Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Left: Comex knee-ankle exoskeleton worn by a healthy user (reproduced from [24]). Right: 

Kinematic model of the human body (reproduced from [28]). COP denotes Center of 

Pressure. Solid links denote the stance leg, and dashed links denote the swing leg. Red arcs 

indicate torques.
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FIGURE 2. 
Heel contact (left), flat foot (center), and toe contact (right) during the single-support period 

of human locomotion. Angle γ is the ground slope. This figure is updated from [10].
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FIGURE 3. 
Estimated exoskeleton control torques and weight-normalized able-bodied human torques 

based on human treadmill walking (L) at 0.5m/s (solid lines) and 1.5m/s (dash lines), ramp 

ascent/descent (I/D) at 5.2° (solid lines) and 11° (dash lines), stairs ascent/descent (SA/SD) 

on 4inch (solid lines) and 7inch (dash lines) steps, and stand-to-sit (STS). Positive values 

represent ankle dorsiflexion and knee extension.
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FIGURE 4. 
Comparison of techniques with metrics averaged over the knee and ankle. L, D/I, and 

SD/SA denote level walk, decline/incline walk, and stair descent/ascent, respectively. 1 

denotes the tasks in the training process of WOP and PHI methods, while 2 denotes the pre-

defined “training” tasks in FSM. Stand-to-sit task is not included in the leave-one-subject-

out cross-validation due to the lack of data with multiple subjects in [35]. Number in pink 

denotes the median. * represents statistical difference (p < 0.05). ** represents p <= 0.01. 

*** represents p <= 0.001.
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FIGURE 5. 
Comparisons of across-subject averaged normalized command torques (PHI and WOP 

methods) and normalized able-bodied human torques for experiment tasks {stair ascent/

descent (7inch), decline (−5.2°, −12.4°) and incline (5.2°, 12.4°), level ground (1 m/s), 

stand-to-sit}. The blue solid (PHI method) and green solid (WOP method) lines represent 

the mean commanded exoskeleton torque (normalized by L2 norm) across all repetitions 

for the active modes. The red solid line represents the normative human joint torques 

(normalized by L2 norm) in [33], [35]. Positive torques represent ankle dorsiflexion and 

knee extension.
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FIGURE 6. 
Subject 1 EMG comparisons between bare and active modes (PHI and WOP methods) for 

each muscle (VMO, RF, BF, TA, GM and SOL) and task {Stairs Ascent/Descent (7 in step 

height), Decline (−5.2°, −12.4°) at 0.6 m/s, level ground (1 m/s), Incline (5.2°, 12.4°) at 

0.6 m/s, and Sit-Stand cycle (45 BPM)}. The red solid (bare), blue solid (PHI method), and 

green solid (WOP method) lines represent the time-normalized ensemble averages across all 

repetitions.
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FIGURE 7. 
Individual subject comparisons of mean effort across repetitions. Effort is compared between 

bare, active with PHI method, and active with WOP method for each muscle pair (VMO, RF, 

BF, TA, GM and SOL) and task {Stairs Ascent/Descent (7 in step height), Decline (−5.2°, 

−12.4°) at 0.6 m/s, level ground (1 m/s for s1 and s2, 0.8 m/s for s3), Incline (5.2°, 12.4°) 

at 0.6 m/s, and Sit-Stand cycle (45 BPM)}. * represents statistical difference (p < 0.05). ** 

represents p <= 0.01. *** represents p <= 0.001.
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