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Abstract

Trypanosoma cruzi, the etiological agent of Chagas disease, has a digenetic life cycle. In its

passage from the insect vector to the mammalian host, and vice versa, it must be prepared

to cope with abrupt changes in environmental conditions, such as carbon source, pH, tem-

perature and osmolarity, in order to survive. Sensing and signaling pathways that allow the

parasite to adapt, have unique characteristics with respect to their hosts and other free-living

organisms. Many of the canonical proteins involved in these transduction pathways have

not yet been found in the genomes of these parasites because they present divergences

either at the functional, structural and/or protein sequence level. All of this makes these

pathways promising targets for therapeutic drugs. The AMP-activated protein kinase

(AMPK) is a serine/threonine kinase activated by environmental stresses such as osmotic

stress, hypoxia, ischaemia and exercise that results in reduction of ATP and increase of

AMP levels. Thus, AMPK is regarded as a fuel gauge, functioning both as a nutrient and an

energy sensor, to maintain energy homeostasis and, eventually, to protect cells from death

by nutrient starvation. In the present study we report the characterization of AMPK com-

plexes for the first time in T. cruzi and propose the function of TcAMPK as a novel regulator

of nutritional stress in epimastigote forms. We show that there is phosphotransferase activity

specific for SAMS peptide in epimastigotes extracts, which is inhibited by Compound C and

is modulated by carbon source availability. In addition, TcAMPKα2 subunit has an unprece-

dented functional substitution (Ser x Thr) at the activation loop and its overexpression in epi-

mastigotes led to higher autophagic activity during prolonged nutritional stress. Moreover,

the over-expression of the catalytic subunits resulted in antagonistic phenotypes associated

with proliferation. Together, these results point to a role of TcAMPK in autophagy and

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009435 May 24, 2021 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Sternlieb T, Schoijet AC, Genta PD,

Vilchez Larrea SC, Alonso GD (2021) An AMP-

activated protein kinase complex with two

distinctive alpha subunits is involved in nutritional

stress responses in Trypanosoma cruzi. PLoS Negl

Trop Dis 15(5): e0009435. https://doi.org/10.1371/

journal.pntd.0009435

Editor: Igor C. Almeida, University of Texas at El

Paso, UNITED STATES

Received: April 27, 2020

Accepted: May 3, 2021

Published: May 24, 2021

Copyright: © 2021 Sternlieb et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: This study was funded by grants from

Agencia Nacional de Promoción Cientı́fica y
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nutrient sensing, key processes for the survival of trypanosomatids and for its life cycle

progression.

Author summary

Chagas disease is caused by the protozoan parasite Trypanosoma cruzi. This silent illness

is endemic in Latin-American countries and is conventionally transmitted to humans by

insects from the Reduviidae family. In its passage from the insect vector to the mammalian

host, and vice versa, the parasite must overcome abrupt changes in environmental condi-

tions in order to survive.

The AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase acti-

vated by environmental stresses that cause imbalances of the intracellular AMP:ATP

ratios. Thus, AMPK is regarded as a “fuel gauge”, functioning both as a nutrient and an

energy sensor to help maintain energy homeostasis and protect cells from death by nutri-

ent starvation.

In the present study we report the characterization of AMPK complexes for the first

time in T. cruzi and describe the function of AMPK as a novel regulator of nutritional

stress in epimastigote forms. We demonstrate that this complex possesses specific AMPK

kinase activity, is inhibited by Compound C and is modulated by carbon source

availability.

Together, these results point to a role of AMPK in autophagy and nutrient sensing, key

processes for the survival of this parasite and for its life cycle progression.

Introduction

Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening ill-

ness endemic in Latin-American countries. This silent illness is conventionally caused when

insects from the Reduviidae family transmit the protozoan parasite Trypanosoma cruzi to

humans. It is also included by the World Health Organization in the 20 groups of Neglected

Tropical Diseases, collectively affecting about 2 billion people worldwide [1,2].

Very few drugs are annually developed for treatment of NTDs [3] and so, the development

of new technologies, higher government and industrial involvement and more scientists com-

mitted to basic investigation, are key to find new alternatives. In this sense, signal transduction

pathways in trypanosomatids could be considered as an Achilles´ heel, since they are essential

to recognize environmental fluctuations and allow these parasites to respond accurately

through cellular changes. On this matter, advances in knowledge on the differences of these

pathways between the parasite and mammalian cells might allow the identification of rational

targets for the development of safe and more effective drugs for Chagas disease treatment [3].

Trypanosoma cruzi has a complex life cycle involving four main morphogenetic stages.

Briefly, the life cycle of this parasite involves two intermediate hosts (triatomine insects and

mammals, including man) and four well-defined morphological and functional developmental

stages: epimastigotes, metacyclic trypomastigotes, amastigotes and bloodstream trypomasti-

gotes. The epimastigote forms replicate in the midgut of the insect host and develop into non-

replicative metacyclic trypomastigote forms. When the insects feed on blood, they release in

their excreta metacyclic trypomastigotes that penetrate the body of the mammalian host

through the wound and are able to invade cells. Within the host cells, the parasite differentiates
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into the replicative amastigote form. After multiplication, the amastigotes differentiate into

bloodstream trypomastigotes that are released into the circulatory system, infecting new cells.

Signal transduction largely controls the manner in which cells respond to stimuli and is essen-

tial for the progression of trypanosomatids’ life cycles.

In addition, these parasites are also of biological interest since they possess structures and

organelles that are not found in mammalian cells, such as glycosomes, which are involved in

glucose metabolism, and a single ramified tubular mitochondrion with a unique network of

condensed concatenated circular mDNA called the kinetoplast. Therefore, understanding of

the unique pathways in this pathogen may lead to the development of novel therapeutic agents.

In particular, targeting metabolic pathways in the parasite for rational drug design represents a

promising research field.

Fluctuations in environmental conditions cause cellular stress, which in turn force the cells

to remodel their metabolism to cope and survive. This is achieved through several intracellular

messengers, which transduce the extracellular signal to the intracellular environment. Cells

with a sufficient energy supply maintain a balance between the adenosine phosphate species of

10:1 for ATP:ADP and 100:1 for ATP:AMP, thanks to the interconversion between them, exe-

cuted by ATPases, ATP synthases and Adenylate Kinases [4]. From the nature of these enzy-

matic reactions, when the energy status is affected and ATP diminishes, the AMP:ATP ratio

increases as the square of the ADP:ATP ratio. This explains why most energy sensing mecha-

nisms in the cell depend on AMP detection and activation. One of these mechanisms is the

AMP-activated protein kinase (AMPK) complex.

The cellular energy homeostasis can be affected by different kinds of stresses, such as nutri-

tional, oxidative and heat shock, amongst others. Enzymes like the AMPK can respond in a

very sensitive manner to the imbalances caused by these stresses and thus shift cellular ana-

bolic activity to a more catabolic one, which replenishes the ATP levels [5].

The AMPK complex exists as a heterotrimer, composed of an alpha catalytic subunit and

two regulatory subunits, beta and gamma. The α subunit contains a kinase domain as well as a

regulatory domain that inhibits the enzyme in the absence of AMP [6]. The β subunit acts as a

scaffold for the other components while also modulating the localization of the complex [7–9],

and the γ subunit is involved in AMP binding [10]. With very few exceptions, every eukaryotic

organism expresses at least one AMPK complex. Notably, the eukaryotes that lack AMPK

orthologues are parasites that are exclusively intracellular or most of their life elapses inside

their host’s cells [11]. The amino acid sequence of the subunits varies between different organ-

isms but conserves a domain architecture that allows the execution of ancient functions. Yet,

small mutations in some codons also led to neofunctionalization of the orthologs and paralogs,

diversifying the role of this complex between organisms and tissues [12–14]. The AMPK yeast

ortholog, SNF1, is known for its role in the derepression of glucose-repressed genes [15]. In

higher eukaryotes, AMPK phosphorylates enzymes of the isoprenoid synthesis and fatty acid

synthesis pathways to inhibit these metabolisms and switch the cell to the use of stored or alter-

native carbon sources, such as fatty acids [16]. AMPK can also phosphorylate transcription fac-

tors, inducing the expression of proteins involved in several stress response pathways.

Through all these functions, this complex has been established as an essential regulatory hub

for the cell.

Parasitic organisms fully depend on the environmental signals in their hosts to progress in

their life cycle. The rapid passage through these environments also exerts several kinds of

stresses, such as wide changes in osmolarity, pH, temperature and nutrient availability, that

parasites must overcome to survive. Molecular stress sensors, including AMPK, can play key

roles in these processes. Recent studies have reported that T. brucei expresses an AMPK com-

plex (TbAMPK) with two possible catalytic α subunits. TbAMPK is involved in the expression
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of membrane proteins in response to nutritional stress and in the transition from the slender

bloodstream form to the quiescent stumpy [17,18]. Also, Saldivia et. al. demonstrated that this

complex is responsible for the growth arrest observed when parasites are treated with AMP

analogs. TbAMPK complex containing the α1 subunit is also capable of responding to AMP:

ATP imbalances produced by mitochondrial depolarization and, once activated, it phosphory-

lates proteins in the glycosomes, the organelles nucleating the first steps of glycolysis in these

organisms [19]. However, some of the conventional roles of the AMPK complexes may not be

conserved in the trypanosomes. Autophagy, a process that allows cells to consume their own

components to provide nutrients and overcome stress, and which involves proteins activated

by AMPK phosphorylation in many organisms [20–22], does not appear to depend on AMPK

activation in T. brucei [23]. All these recent discoveries point to novel roles of AMPK in trypa-

nosomatids, associated with their complex life cycle and ability to differentiate in response to

environmental cues.

In this work, we identify the corresponding genes for the TcAMPK subunits, confirm the

presence of a specific phosphotransferase activity on the SAMS substrate in the epimastigote

stage, which is affected by nutritional stress. Finally, we show that the TcAMPK complex con-

taining the α2 subunit is involved in autophagy when parasites are deprived of a carbon

source, being this the first report where an AMPK complex from trypanosomatids shows to be

involved in autophagy.

Materials and methods

Parasite cultures

T. cruzi epimastigotes of the CL Brener strain were cultured at 28˚C for 7 days in liver infusion

tryptose (LIT) medium (5 g/l liver infusion, 5 g/l bacto-tryptose, 68 mM NaCl, 5.3 mM KCl, 22

mM Na2HPO4, 0.2% (w/v) glucose, and 0.002% (w/v) hemin) supplemented with 10% (v/v)

FCS, 100 U/ml penicillin and 100 mg/l streptomycin. Cell viability was assessed by direct micro-

scopic examination. When assessing growth curves, doubling times were calculated as follows:

Td hð Þ ¼
lnð2Þ

slope ðday 3 to day 7Þ

Where the slope between day 3 and 7 was obtained by a linear regression on the quantification

of parasites in a Neubauer chamber over the number of days.

Generation of TcAMPK-subunits overexpressing cell lines in T. cruzi
epimastigotes
The full-length genes of every TcAMPK subunit were amplified using the following primers:

for TcAMPKα1 TcAMPKα1-Fw-HindIII 5’-GGATCCATGAGTCAGAAGTTTGGCCCCTA-

3’ and TcAMPKα1-Rv-pRIBOHA-XhoI 5’-CTCGAGTTAAGCGTAATCTGGAACATCGTA

TGGGTATTCGTCTGGTCCAAGAGAGGAA-3’. For TcAMPKα2 TcAMPKα2-Fw-HindIII

5’-AAGCTTATGCATTCCAGGCGGGATGTT-3’ and TcAMPKα2-Rv-pRIBOHA-XhoI 5’-

CTCGAGTTAAGCGTAATCTGGAACATCGTATGGGTAACCCATTCGATGAACGAGC

GTC-3’. For TcAMPKβ TcAMPKβ-Fw-HindIII 5’-GGTACCATGGGCCAACAAAATGCC

AGGGA-3´ and TcAMPKβ-Rv-pRIBOHA-XhoI 5´-CTCGAGTTAAGCGTAATCTGGAAC

ATCGTATGGGTACCCGTTCGGAGCTCCCATTCT-3’. For TcAMPKγ TcAMPKγ-Fw-

HindIII 5’-AAGCTTATGCGTCGCACGAGTGCCTTTGC-3’ and TcAMPKγ-Rv-pRIBO-

HA-XhoI 5’-CTCGAGTTAAGCGTAATCTGGAACATCGTATGGGTATTTTTGTGCGTTG

CCGTCATT-3’. The PCR products, now containing an hemagglutinin tag at their C-terminal
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end, were then cloned into pGEM-T Easy plasmid, the sequence identity was confirmed by

DNA sequencing, and subcloned into the pRIBOTEX plasmid [24]. T. cruzi epimastigotes of

CL Brener strain were transfected with the pRIBOTEX constructs as described previously [25].

Stable cell lines were achieved after 60 days of treatment with 500 μg/ml G418 (Gibco BRL,

Carlsbad, CA) and the transgenic condition was confirmed by western blot analyses.

Yeast transformation and functional complementation

Conditional Saccharomyces cerevisiae yeast mutant strains were generously provided by Dr.

Martin C. Schmidt, from the University of Pittsburgh [26,27]. The same pGEM-T Easy con-

structs with each TcAMPK subunit were used to subclone into the p416 yeast expression plas-

mid. Yeasts were transformed following the “Quick and Dirty” protocol [28]. Briefly, a fresh

yeast inoculum was mixed with 100 μl of freshly prepared transformation mix (200 μl of 2 M

sterilized LiAc, 800 μl of sterilized 50% PEG-3350, 7.7 μl of 14 M 2-Mercaptoethanol), 3 μl of

denaturalized salmon sperm DNA (10 mg/ml) and 1 μg of plasmid DNA or distilled water as

control. The mix was incubated at 37˚C for 30 min while mixing. After centrifugation at 3000

rpm for 5 min, the pellet was recovered and resuspended in 100 μl of sterile water. The trans-

formed yeasts were plated on selective media (lacking uracil) and were grown for 16 to 72 h at

30˚C. Individual colonies were tested for heterologous protein expression. A positive clone

was grown overnight at 30˚C in YPAD media (yeast extract 10 g/l, peptone 20 g/l, glucose 20

g/l, adenine sulfate 0.04 g/l) up to an OD600 of 2. Serial dilutions of the culture were plated on

selective media without uracil (0.17% (w/v) yeast nitrogen base (without amino acids and

ammonium sulphate) and 0.5% (w/v) ammonium sulphate, supplemented with the corre-

sponding amino acid mixture) and containing either glucose (2% w/v) or raffinose (2% w/v) as

the carbon source. Plates were incubated at 30˚C between 3 to 5 days after which growth was

photographed.

Protein kinase assay

In vitro kinase reactions were developed in a final volume of 50 μl containing 0.02 mM [γ-32P]

ATP (1 μCi per tube, Perkin Elmer, Massachusetts, USA), 50 mM Tris-HCl, pH 7.0, 0.1 mM

NaCl, 0.1 mM EDTA, 0.5 mM dithiothreitol, 5 mM MgCl2 and 100 μM SAMS peptide

(HMRSAMSGLHLVKRR, ab120182, Abcam) as AMPK substrate. The reaction was initiated

by adding 50 μg of epimastigote protein extract and was incubated with shaking at 30˚C for 10

min. As enzyme blank control, tubes where protein extract was replaced by lysis buffer were

added. The reaction was stopped by immediate immersion in an ice bath and spotting on P81

Whatman filter paper. Unreacted ATP was removed washing the filter papers 3 times with 1%

phosphoric acid for 7 min. After the final wash, the filters were quickly dried with ethanol,

placed in polistor tubes with 2 ml of Ultima gold XR liquid scintillation cocktail (Perkin

Elmer, Massachusetts, USA) and counted in a scintillation counter. AMPK activity was calcu-

lated as phosphorus incorporation subtracting the average counts per minute (cpm) of the

enzyme blank controls from the average cpm of protein extract samples. For Dorsomorphin

(CC) (#P5499, Sigma Aldrich, St. Louis, Missouri, United States or ab120843, Abcam, Cam-

bridge, United Kingdom) treatment protein extracts were incubated in an ice bath with the

1 μM final concentration of the inhibitor for 10 min previous to the addition of the mix con-

taining the SAMS.

Cell extracts and western blotting

To obtain T. cruzi extracts, 108 epimastigotes were harvested by centrifugation at 1500 g for 10

min and washed two times with phosphate-buffered saline (PBS). Cell pellets were then
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resuspended in lysis buffer (50 mM Tris-HCl buffer, pH 7.5; 14 mM 2-Mercaptoethanol,

PMSF and E64 as proteases inhibitors and NaF and Na2VO3 as phosphatase inhibitors) and

lysed by six cycles of freezing in liquid N2 and thawing at 4˚C.

For western blotting analysis, proteins were solved in 10% (w/v) SDS-polyacrylamide gel

electrophoresis as described by Laemmli (1970) and electrotransferred to Hybond-C mem-

branes (Amersham Pharmacia Biotech, Piscataway, USA). The membranes were blocked with

5% (w/v) non-fat milk or 5% (w/v) BSA suspension in 0.05% TBS-Tween for at least 3 h.

Blocked membranes were then incubated overnight with a 1:1000 dilution of Phospho-

AMPKα (Thr172) (40H9) Rabbit mAb (#2535, Cell Signaling, Massachusetts, USA). Detection

was carried out by incubating with a 1:5000 dilution of a goat anti-rabbit antibody conjugated

to peroxidase (Sigma Aldrich). For tagged proteins detection, membranes were incubated for

at least 1 h with a 1:1000 dilution of a high affinity anti-HA antibody from rat IgG1

(#11867423001, Roche Applied Science, Penzberg, Germany). Detection was carried out by

incubating with a 1:4000 dilution of a rabbit anti-rat antibody conjugated to peroxidase

(A5795, Sigma-Aldrich). A 1:20000 dilution of anti-α tubulin (B5-1-2) Mouse mAb (T5168,

Sigma-Aldrich) was used to detect α tubulin as a loading control. The membranes were then

developed with the ECL Plus Western blotting detection system (PerkinElmer Life Sciences,

Massachusetts, USA).

As negative controls to check the expression of HA-tagged alpha subunits, either wild type

parasites, parasites transfected with the empty vector or parasites transfected with another

unrelated protein of different molecular weight were used.

For AICAR (ab120358, Abcam, Cambridge, United Kingdom) treatment, epimastigotes

were incubated for 30 min with a final concentration of 1 mM AICAR in LIT media. For CC

and AICAR simultaneous treatment, epimastigotes were incubated with both compounds

(10 μM of CC) for 1 h.

When specified, aliquots of the same protein extract were separated and treated with 200 U

of Lambda Phage Phosphatase (#P0753S, New England Biolabs, Ipswich, Massachusetts,

United States), as specified by the manufacturer, for different time periods. The reaction was

stopped by boiling in Laemmli buffer.

Proteomic analysis

After 10% SDS-PAGE of epimastigotes protein extracts, the section of the gel between 70 kDa

and 100 kDa was manually cut and preserved in an eppendorf tube at -80˚C until delivery for

mass spectrometry analysis. Mass spectrometry analysis was carried out at Centro de Estudios

Quı́micos y Biológicos por Espectrometrı́a de Masa (CEQUIBIEM), Argentina, in a Q Exactive

HESI-Orbitrap coupled to a nano HPLC Easy-nLC 1000 (Thermo Scientific). Resulting reads

were matched to the T. cruzi proteome available at the UNIPROT proteome database.

Indirect immunofluorescence

For immunofluorescence, cells were fixed with 4% paraformaldehyde in PBS for 20 min. Next,

the cells were washed twice in Dulbecco’s PBS, pH 7.2, adhered to poly-L-lysine-coated cover-

slips, and permeabilized for 10 min with 0.3% Triton X-100. Cells were incubated for 30 min

with 25 mM ammonium chloride and washed again with PBS, after which they were blocked

for 20 min in 3% bovine serum albumin in PBS, pH 8.0, and incubated for 1 h with rat anti-

HA high affinity monoclonal antibodies (Roche Applied Science, Penzberg, Germany) at

1:500. Cells were then washed in 0.05% TBS-Tween buffer, incubated with the secondary

antibody, anti-rat Alexa 546 conjugate at 1:500, and mounted with Vectashield (Vector
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Laboratories, California, USA) containing 5 mg/ml DAPI. Cells were observed in an Olympus

BX41 fluorescence microscope and images were captured.

Autophagy monitoring by Monodansylcadaverine incorporation

Epimastigotes in exponential phase (2x107 parasites per ml) were washed with PBS twice and

resuspended in fresh LIT medium as control or PBS for starvation. Cultures were incubated at

28˚C for 17 h. Staining of autophagosomes with Monodansylcadaverine (MDC, #D4008,

Sigma-Aldrich, St. Louis, Missouri, United States) was applied as in Munafó and Colombo

(2001) [29]. Briefly, after 16 h starvation of epimastigotes, MDC was added at 0.05 mM final

concentration and incubation proceeded for 1 h at 28˚C. Epimastigotes were then washed two

times with PBS and lysed in a buffer containing 10 mM Tris HCl pH 8.0 and 1% v/v Triton-

X100. Lysates were distributed in triplicates in a 96 well plate and Ethidium bromide was

added to the lysates at 0.2 μM per well. Fluorescence emission was measured at 380 nm excita-

tion and 525 nm emission for MDC and 530 nm excitation and 590 nm emission for Ethidium

bromide. Readings were quantified by fluorescence photometry in a Synergy HTX Multi-

mode plate reader and normalization of the measures was calculated as MDC525nm/BrEt590nm

and expressed in arbitrary units.

Results

In silico identification of TcAMPK subunits and evolutionary analysis

Previously, Clemmens et. al. identified the beta and gamma AMPK subunits in T. brucei, and

Salvidia et. al. identified both isoforms of the alpha subunits in the same organism [17,18]. We

used those protein sequences as baits for a BLAST search at the Tritrypdb database (https://

tritrypdb.org/tritrypdb/) to find the corresponding orthologs in T. cruzi. The protein

sequences retrieved from the CL Brener Esmeraldo like strain for the beta and gamma subunits

(IDs TcCLB.504427.50 for the TcAMPKβ and TcCLB.503841.20 for the TcAMPKγ) have

47.78% and 51.92% sequence identity with T. brucei, respectively. The alpha subunit ortholo-

gous genes in T. cruzi (TcCLB.506679.80 for TcAMPKα1 and TcCLB.510329.210 for

TcAMPKα2) have around 58% sequence identity with their respective T. brucei orthologs (Fig

1A). Interestingly, the paralogs only share around 30% identity between them.

The regulatory subunits candidates show predicted molecular weights (according to their

amino acid composition) of 34.38 kDa for the beta subunit and 54.83 kDa for the gamma sub-

unit. In addition, these regulatory subunits contain the protein domains required to function

in an AMPK complex (Fig 1B). Key amino acids for the subunits interactions remain con-

served, and the protein domains are readily recognized by the NCBI Conserved Domain

Search. The TcAMPKα subunits present predicted molecular weight of 81 kDa for

TcAMPKα1 and 71 kDa for TcAMPKα2. However, the only conserved region predicted is the

kinase catalytic domain in the N-terminal. Several works identified regulatory domains in the

C-terminal region of the alpha subunit’s sequence, such as an autoinhibitory domain and

interaction domains [30–32]. These C-terminal domains could not be recognized by any infor-

matic tool on the TcAMPKα orthologues, although PROSITE could identify a sequence called

“Kinase Associated domain”, of unspecified function. Another relevant trait of the alpha sub-

unit in this kinase complex is the activation loop, which contains a conserved Threonine resi-

due commonly known as Thr172, for its location in the Rattus sp. AMPKα protein sequence.

This Thr must be phosphorylated to reach maximum levels of kinase activity. As an outstand-

ing feature, TcAMPKα2 presents a Serine residue replacing the Threonine present at the acti-

vation loop, further emphasizing the differences between TcAMPKα1 and TcAMPKα2

PLOS NEGLECTED TROPICAL DISEASES AMPK modulates nutritional stress response in T. cruzi

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009435 May 24, 2021 7 / 22

https://tritrypdb.org/tritrypdb/
https://tritrypdb.org/tritrypdb/
https://doi.org/10.1371/journal.pntd.0009435


subunits (Fig 1C). This phosphorylatable residue is highly conserved and TcAMPKα2 is the

only coding sequence, to our knowledge, that presents this divergence.

Interestingly, in both T. cruzi and T. brucei, AMPKα subunits share a low sequence identity

between its paralogous genes, which is surpassed by the identity between orthologous

sequences. This could mean that the gene duplication event occurred before the speciation of

these two trypanosomatids, illustrated in the phylogenetic tree in Fig 1D. Future studies on the

evolution of these genes could uncover neofunctionalization of these AMPK complexes in

trypanosomatids.

Functional complementation in yeast

To evaluate the functional capability of each of the putative TcAMPK subunits, we performed

complementation assays in S. cerevisiae conditional mutant strains, which are alternatively

deficient for alpha subunit (MSY1217), the three beta subunits (MSY557) or gamma subunit

(MSY846). These mutants are unable to grow in media containing any carbon source other

than glucose. The putative TcAMPK subunits were subcloned into p416 yeast expression vec-

tor as fusion proteins to a C-terminal HA-tag and used to transform the corresponding yeast

strain. All TcAMPK subunits, TcAMPKα1-HA, TcAMPKα2-HA, TcAMPKβ-HA and

TcAMPKγ-HA, were able to restore the capability of their specific conditional mutant to use

raffinose as a carbon source (Fig 2). On the other hand, the same strains transformed with the

Fig 1. AMPK is partially conserved in T. cruzi. (A) Table of IDs for TcAMPK subunits and the percentage of identity with respect to their orthologous in

T. brucei. (B) Protein domains of every TcAMPK subunit. Domains with a dark border line are conserved in T. cruzi, while domains with dashed lines

borders are only partially conserved. AID and α linker domain could not be identified in T. cruzi catalytic subunits. Domain abbreviations: autoinhibitory

domain (AID), carbohydrate-binding module (CBM), association with the SNF1 complex (ASC), cystathionine beta-synthase (CBS). (C) Section of the

multiple alignment of the alpha subunits of several eukaryotic organisms (Homo sapiens, Saccharomyces cerevisiae, Dictyostelium discoideum, Trypanosoma
brucei and Trypanosoma cruzi). The activation loop conserved region is painted in grey, and the Threonine (or Serine) residue phosphorylated during

AMPK activation is in bold font and underlined. (D) Phylogenetic tree of the full-length multiple sequence alignment in C. The evolutionary history was

inferred using the Neighbor-Joining method [33]. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances

used to infer the phylogenetic tree. The evolutionary distances were computed using the JTT matrix-based method [34] and are in the units of the number

of amino acid substitutions per site. This analysis involved 8 amino acid sequences. All positions containing gaps and missing data were eliminated

(complete deletion option). There were a total of 521 positions in the final dataset. Evolutionary analyses were conducted in MEGA X [35].

https://doi.org/10.1371/journal.pntd.0009435.g001
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empty vector only grew when glucose was added to the culture media, but not when it was

replaced by raffinose. These results not only indicate that T. cruzi AMPK subunits are func-

tional in yeast but also allow us to propose that T. cruzi AMPK conserves the main subunit

functions present in S. cerevisiae. Western blots of protein extracts from transformed yeasts,

revealed with anti-HA antibody, were performed to confirm the expression of each constructs

(Fig 2, right panels).

Evaluation of protein kinase activity in T. cruzi epimastigotes

Once we determined that TcAMPK subunits can act as functional components of an AMPK

complex, capable of restoring the use of raffinose as a carbon source in conditional mutant

Fig 2. TcAMPK subunits can complement S. cerevisiae conditional mutants deficient in SNF1 subunits. Transformed yeast were plated in serial

dilutions on minimal medium containing an Uracil drop-out and either glucose or raffinose as the only carbon source. Transformation of the conditional

mutant yeasts with TcAMPK subunits restored the wild type phenotype, enabling the consumption of raffinose as a carbon source. The yeast containing the

empty p416 plasmid could not grow on medium containing raffinose. Western blots at the right margin show at the upper panels the expression of the

heterologous construct and bottom panels correspond to Ponceau staining as loading controls.

https://doi.org/10.1371/journal.pntd.0009435.g002
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yeasts, we decided to study the in vivo modulation of TcAMPK catalytic activity and the SAMS

specific phosphorylation pattern under different nutritional conditions. To begin with, we

established the assay conditions to selectively measure AMPK-related kinase (ARK) activity in

epimastigote protein extracts by phosphotransference of 32P from [γ-32P]ATP to the AMPK-

preferential substrate peptide, SAMS [36,37]. Fig 3A shows that, under the set assay conditions,

without the addition of SAMS in the reaction mix, only a basal kinase activity was observed.

On the other hand, when SAMS was added as substrate, kinase activity increased significantly.

As a further evaluation of the presence of a phosphotrasferase activity compatible with AMPK

activity, we tested the effect of Dorsomorphin (also known as Compound C or CC, a reversible

and ATP-competitive inhibitor of AMPK) [38] on the SAMS phosphorylation capability of

epimastigotes extract. Fig 3B shows a potent inhibitory effect of CC on the kinase activity,

decreasing to basal levels similar to the activity observed in the absence of SAMS.

Another tool that allows the visualization of the activation status of AMPK catalytic sub-

units is a commercial antibody developed against the phosphorylated state of the Thr172 in

the activation loop. We tested this antibody on epimastigote protein extracts and obtained

three reaction bands between 70 and 100 kDa of molecular weight (Fig 3C), where the two

lower molecular weight bands represent the putative alpha 2 subunit and the upper band rep-

resents the putative alpha 1 subunit (see below “Effect of TcAMPKα isoforms overexpression

on epimastigotes proliferation”). In addition, a reaction band of approximately 55 kDa is

observed, which could be a degradation product of one of the alpha subunits containing the

phosphorylated residue. To further confirm their phosphorylated status, we treated the protein

extracts with Lambda Phage serine/threonine Phosphatase (LPP) for increasing time periods

(30, 60 and 90 min). Throughout these incubation times, it was possible to observe that the

bands´ intensity decreased, where the upper band of the putative TcAMPKα2 subunit

becomes undetectable after the first 30 min of treatment with LPP. We also studied the AMPK

phosphorylation state in response to specific treatments with AMPK activity modulators. We

treated epimastigotes with AICAR, an adenosine analog which is known to act as a specific

AMPK activator after it is converted inside the mammalian cells to ZMP, an AMP analog [39],

and observed an increase in the intensity of the putative TcAMPKα1 subunit (upper band, CL

+ AICAR) and a decrease in the intensity of the putative TcAMPKα2 lower band, in compari-

son with the control lane (CL -). Incubation with both AICAR and CC didn’t change the pat-

tern observed in CL + AICAR. These results can be explained by the mechanisms of action of

the two compounds. AICAR is an analog of AMP and, as such, it can activate AMPK by bind-

ing with the gamma subunit, inducing a conformational change that protects the Thr172 from

dephosphorylation, while CC is a competitive inhibitor binding to the ATP site in the catalytic

subunit. Hence, CC inhibits the kinase activity but doesn’t necessarily affect the phosphoryla-

tion status.

Gel regions between the 70kDa—100kDa molecular weight of denaturing SDS-PAGE of

protein extracts were excised and prepared for mass spectrometry analysis. Through this anal-

ysis, we have been able to detect the endogenous expression of TcAMPKα2 and its phosphory-

lation in the Serine replacing the more canonical Threonine in the activation loop (S1 Fig).

This result confirms the possibility of a catalytic subunit activation with a natural Ser for Thr

substitution in an AMPK catalytic subunit.

Catalytic activation of TcAMPK under nutritional stress

In many eukaryotic organisms, from yeast (SNF1 kinase, a homologue of AMPK) to plants

(SnRK1, a homologue of AMPK) to humans, AMPK is a metabolic regulator that is activated

when energy metabolites (lower ATP levels and increased intracellular AMP concentration)
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Fig 3. Kinase activity assays and detection of AMPKα subunit phosphorylation confirm T. cruzi epimastigotes express a functional AMPK. (A)

Epimastigote whole protein extracts were tested for AMPK substrate, SAMS, phosphorylation by incorporation of 32P. Results show a significant

increase in activity when SAMS is added to the mix (n = 5). (B) Addition of Compound C, an AMPK inhibitor, to the activity mix decreases activity

to basal levels (n = 4). (C) Phosphorylation of the activation loop of AMPKα subunits was tested with Phospho-AMPKα (Thr172) antibody. Two

bands of the expected weights for both TcAMPKα subunits were revealed. Lambda Phage Phosphatase treatment eliminated or reduced these

markings. AICAR treatment, a specific AMPK activator, of epimastigotes cultures modified the intensities of the two bands. This effect was not

altered by CC simultaneous treatment. All lanes contain equal mass of protein extract. Arrowheads indicate the position of the 55, 70 and 100 kDa

marker bands. Bottom panel shows the Ponceau staining as loading control. Representative assay from at least two experiments. CL: CL Brener

epimastigote protein extract; LPP: Lambda Phage Phosphatase; MK: molecular weight marker; CC: Compound C; t: time. Error bars represent

Standard Error of the Mean. Statistical test corresponds to paired t-test. � p value< 0.05.

https://doi.org/10.1371/journal.pntd.0009435.g003
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and nutrients (carbon source) are limited [40]. Following this rationale, we hypothesized that

TcAMPK could be a key enzyme sensing the different metabolic states that epimastigotes

undergo during its passage through the insect gut. To further evaluate this hypothesis, T. cruzi
epimastigotes were exposed to nutritional stress by incubation in Phosphate Buffered Saline

(PBS) during seventeen hours at 28˚C. This condition has previously been used to study other

processes related to nutritional stress in these parasites, such as autophagy [41,42]. The ARK

catalytic activity after this treatment showed a mean 2-fold increase over the activity in the

control condition. On the other hand, incubation in the same buffer supplemented with glu-

cose 2% (w/v) prevented the enzyme activity increase. Protein kinase activity values were nor-

malized to those obtained from parasites grown in LIT medium (Fig 4A). These results are in

turn strengthened through western blot assays using the anti-Phospho AMPKα antibody

under the same starving conditions in PBS or in the same buffer with glucose. In Fig 4B, a dif-

ferential phosphorylation pattern can be observed under starving conditions (PBS) when com-

pared with LIT or PBSg. A consistent double band pattern is observed in LIT and PBSg, while

in the absence of carbon sources (PBS) a single band is observed. Overall, these observations

indicate that TcAMPK alpha subunits can change their phosphorylation state by the absence

of a carbon source and suggest a possible role initiating metabolic responses to face prolonged

nutritional stress in T. cruzi epimastigotes.

Effect of TcAMPKα isoforms overexpression on epimastigotes

proliferation

To further reveal metabolic pathways that involve TcAMPK, both TcAMPKα1-HA and

TcAMPKα2-HA constructs were subcloned into the pRIBOTEX expression vector and CL

Brener T. cruzi epimastigotes were then independently transfected with these plasmids or with

Fig 4. Nutritional stress increases AMPK activity in epimastigotes, and addition of glucose keeps AMPK activity at basal levels. (A) Protein kinase

activity was tested in the presence of SAMS and epimastigote whole protein extracts. Epimastigotes were incubated for 17 hs alternatively in LIT medium as

control, PBS or PBS containing 2% (w/v) glucose. Measurements were normalized to LIT cultures and a paired t-test was performed to compare AMPK

activity differences (n = 5) �p value< 0.05. (B) Western blot of epimastigote protein extracts under these same treatments revealed with the anti-Phospho

AMPKα antibody. Bottom panel shows the same membrane revealed with anti-α tubulin antibody as loading control (~55 kDa).

https://doi.org/10.1371/journal.pntd.0009435.g004
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the empty vector. After the selection of stable transgenic lines, the expression and intracellular

localization of these two proteins were investigated by western blot and indirect immunofluo-

rescence using an anti-HA antibody (Fig 5A and 5B). Western blots showed both overex-

pressed proteins of molecular weights between 70 kDa and 100 kDa, with TcAMPKα1-HA

slightly heavier than TcAMPKα2-HA (Fig 5B). Interestingly, TcAMPKα1-HA appeared as a

single band, while TcAMPKα2-HA appeared as two bands of very similar weight. This is in

agreement with what we could observe on wild type epimastigotes extracts using an anti- phos-

phorylated Thr172 antibody (Fig 3C). This double band could suggest a post-translational

modification affecting the protein migration. Further assays will be necessary to reveal the

nature of this modification.

Cellular localization was similar for both proteins: distributed in the cytosol in a granulated

pattern, which could point to a partial association with small organelles such as glycosomes or

acidocalcisomes (Fig 5A). Parasites transfected with the empty vector or non-tagged construct

didn’t show any fluorescent signal when revealed with anti-HA antibody.

We assessed the growth curves of the overexpressing cultures in regular conditions. Epi-

mastigotes were counted in a Neubauer chamber for up to 10 days after initial dilution. Quan-

tifications made between day 3 and 7 were considered as the exponential phase to evaluate the

doubling time. Results show that overexpression of each isoform of the catalytic subunit

caused opposite effects on proliferation (Fig 5C). Overexpression of TcAMPKα1-HA presents

deleterious effects on epimastigotes, increasing doubling time in a statistically significant man-

ner. These cultures didn’t reach maximum density and eventually arrested proliferation and

died. Overexpression of TcAMPKα2-HA, instead, led to a slight decrease in doubling time

during the exponential phase of the growth curve. These epimastigotes didn’t show any other

effect on phenotype and reached normally the maximum density.

These results show that the overexpression of the TcAMPKα subunits produces antagonis-

tic effects on the proliferation of epimastigotes.

Correlation between TcAMPK expression and autophagic response in

epimastigote cells

Since AMPK is involved in autophagy in several eukaryotic organisms in response to different

kind of stresses, and considering the essential role of autophagy in the progression of T. cruzi
life cycle, we sought to investigate if TcAMPK is capable of modulating autophagosome forma-

tion. To this end, we used Monodansylcadaverine (MDC), an acidotropic fluorescent dye that

binds specifically to autophagosome membranes. After starving epimastigotes for 17 h in PBS,

we measured MDC incorporation. We evaluated this parameter in wild type epimastigotes

and the TcAMPKα2-HA overexpressing line.

Our results show that the overexpression of TcAMPKα2 led to a higher autophagic capacity

(Fig 6). The overexpressing epimastigotes can reach higher levels of MDC incorporation.

Although marked inter-assay variations were observed, higher levels of MDC incorporation

could always be registered in overexpressing parasites compared to WT ones. The intrinsic

variations of the assay could be explained by the cyclic nature of autophagy itself, which will be

further discussed in the Discussion section.

Discussion

Trypanosoma cruzi needs to precisely control energy homeostasis, nutrient availability, prolif-

eration and differentiation in order to respond to changes in the environment and simulta-

neously preserve the viability of the host and the permanence of the disease. Some protein

complexes act as hubs in the regulation of cell responses to environmental queues, the AMPK
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Fig 5. Over-expression of TcAMPKα isoforms in epimastigotes leads to antagonistic effects in proliferation. (A)

Immunofluorescence images showing the cytoplasmic expression of the constructs. In the Merge quadrants some cells

were contoured to illustrate the morphology of the parasites. Scale bar = 50 μm. (B) (B) Western blot of protein

extracts of epimastigotes showing the correct expression of the TcAMPKα1 and TcAMPKα2 subunits tagged to HA.

Lanes 1 of both gels show the corresponding subunit detected by the anti-HA antibody and lanes 2 correspond to a
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being one of them. Here we report, for the first time, the presence of two different AMPK com-

plexes in T. cruzi and describe novel functions for TcAMPK as a key factor in the regulation of

autophagy and proliferation, leading to a link between nutrient sensing, cell cycle and stage

differentiation.

Our results show that T. cruzi genome contains coding genes for at least two different

AMPK complexes. Epimastigotes express a kinase activity specific for an AMPK substrate,

which is endogenously regulated, as shown by Thr172 phosphorylation and protein kinase

activity under different treatments.

Yeast complementation exposed that every T. cruzi subunit has the necessary protein

domains to function as part of an AMPK complex. Previous studies have shown that alpha

subunits that cannot interact with the AMPK regulatory subunits, could retain a basal protein

kinase activity [6]. Therefore, for these T. cruzi subunits, we could only establish a Snf1 func-

tion in yeast that restores their ability to use alternative carbon sources, although we cannot

confirm glucose repression or interaction with the regulatory subunits. It is yet to be con-

firmed that all T. cruzi AMPK subunits interact with each other forming a heterotrimeric

complex. Regarding this last concern, Saldivia et. al. had already demonstrated by co-immuno-

precipitations, that both TbAMPK complexes, containing α1 or α2 subunits, are expressed in

the bloodstream stage [18].

It is well known that AMPK in other eukaryotic organisms is regulated both allosterically

and by post-translational modifications [43]. The best defined mechanisms of AMPK

negative control. (C) Upper panels show doubling times of epimastigote cultures during the exponential phase of the

growth curve (between day 3 and day 7) (n = 3). Control corresponds to epimastigotes transfected with the empty

pRIBOTEX vector. Error bars represent the Standard Error of the Mean and comparison was analyzed by a t-test. �� p

value< 0.01. Lower panels show growth curves of epimastigotes cultures (n = 3). Control corresponds to CL Brener

wild type epimastigotes. Error bars represent the Standard Error of the Mean. Epimastigotes transfected with empty

pRIBOTEX vector and CL Brener wild type cells show no difference in growth patterns.

https://doi.org/10.1371/journal.pntd.0009435.g005

Fig 6. TcAMPKα2 overexpressing epimastigotes have an increased autophagic capacity. MDC incorporation was

measured for wild type and overexpressing epimastigotes after 17 h incubation in either LIT medium (control) or PBS

(starved). MDC values were normalized to Ethidium Bromide (BrEt) incorporation. MDC/BrEt ratio is expressed in

arbitrary units. A t-test analysis of the starvation condition between the two strains shows a significant difference

(n = 15). There were no significant differences in the control conditions. Error bars represent the Standard Error of the

Mean.

https://doi.org/10.1371/journal.pntd.0009435.g006
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activation are the phosphorylation at Thr172 of the α-subunit and by AMP and/or adenosine

diphosphate (ADP) binding to γ-subunit [44]. Here, we demonstrated that TcAMPK could be

regulated by phosphorylation at the activation loop. Western blots using the Phospho-AMPKα
(Thr172) antibody show three bands in epimastigotes extracts, with sizes compatible with

those of their theoretical molecular weights, which are also similar to the weight of the T. bru-
cei catalytic subunits. Integrating this result with those obtained when alpha subunits were

independently overexpressed in epimastigotes, we concluded that the upper band (with less

electrophoretic mobility) corresponds to TcAMPKα1 subunit and the lower two bands corre-

spond to TcAMPKα2 subunit. Another outstanding feature of the TcAMPKα2 subunit is the

presence of a phosphorylatable Serine, instead of a Threonine, in the activation loop. To our

knowledge, this is the only organism presenting this characteristic, and we hypothesize that it

could differentially influence the upstream regulation of the complexes containing this sub-

unit. The phosphorylation pattern of TcAMPKα subunits can be modified by nutritional stress

and treatment with AMPK activators. These results point to the existence of at least one het-

erotrimeric complex in T. cruzi, which is able to sense AMP analogs and be activated by phos-

phorylation at the activation loop (in both alpha subunits) in consequence. According to our

results shown in Fig 4B, the band identified as the putative TcAMPKα1 shows the major phos-

phorylation pattern changes when parasites are subjected to starvation and it is possible that

this catalytic subunit is responsible for sensing nutritional conditions.

The kinase activity assays allowed us to conclude that epimastigotes express an AMPK-

related kinase activity, which is affected by the availability of glucose in the medium. Some

studies report that other kinases present different levels of specificity for SAMS and Com-

pound C [45,46]. We realize that ARKs could phosphorylate SAMS or be inhibited by Com-

pound C in a similar way as AMPK. However, we are confident that the effect we observe on

ARK enzymatic activity is due to an AMPK activity difference, as is suggested by the modifica-

tion in the phosphorylation pattern, when revealed by Anti-phosphoAMPK antibody. A more

thorough understanding of the regulation of AMPK in T. cruzi could be achieved by immuno-

precipitation of the complex and evaluation of allosteric regulation in vitro.

To assess the relative influence of AMPK activation on parasite metabolism, we used epi-

mastigotes of T. cruzi overexpressing each of the catalytic subunits and found that this resulted

in phenotypes associated with proliferation and nutritional stress response. Interestingly, these

over-expressions had antagonistic effects on proliferation progression. TcAMPKα1 over-

expression hindered proliferation, resulting in longer doubling times and in the inability to

reach maximum parasite density, leading to eventual loss of the cultures. Overexpressing the

enzyme could be detrimental for the progression of the cell cycle due to induced metabolic

stress, leading to a slower proliferation. Other possibility suggests the overexpression could be

affecting cell cycle progression directly, leading to an arrest effect in proliferation. This effect

could be linked to an induction of the differentiation process (metacyclogenesis) that occurs in

the final compartment of the intestinal tract (the posterior region of the small intestine and the

rectum) [47]. Saldivia et. al. already showed that the TbAMPK complex containing the α1 sub-

unit is involved in the process of differentiation from the slender to the stumpy bloodstream

form [18]. Over the years, several factors have been implicated to influence metacyclogenesis,

such as osmolarity [48], the initial pH of the media [49], the carbon source availability [50]

and more recently, autophagy [41,51,52]. However, the molecular bases of the morphogenetic

alterations necessary and sufficient to elicit parasite differentiation remain to be fully eluci-

dated. It would be interesting, through other techniques such as the use of inducible vectors, to

assess how the constitutive overexpression of TcAMPKα1 causes the parasites to divide more

slowly resulting in non-viable cell cultures. TcAMPKα1 also showed interesting phylogenetic
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characteristics, raising the possibility of a neofunctionalization through evolution of these

parasites.

On the other hand, TcAMPKα2 over-expression led to shorter doubling times during the

exponential growth phase. In other species, AMPK complexes have antagonistic functions

even with fewer amino acid sequence differences. This was also observed in H. sapiens, where

AMPKα1 subunit has been classified as oncogene, because of its higher expression in some

types of cancer cells, while AMPKα2 seems to function as a tumor suppressor instead [53].

The authors state that these differences in function cannot be fully explained by differences in

substrate specificity but are rather determined by residues modified by regulatory upstream

proteins, affecting AMPK activity and localization. In T. cruzi, sequence differences are more

extensive between alpha subunits, and it would be important to evaluate if this affects substrate

specificity and how, in addition to its regulation. Furthermore, epimastigotes over-expressing

TcAMPKα2 were able to reach higher autophagic activity during prolonged nutritional stress,

in comparison with control lines. Autophagy is an essential process in the progression of the

life cycle of trypanosomatids [41,54,55] and AMPK is known to be involved in these processes

in an ancestral and conserved manner [21,22,56–59]. We hypothesize that TcAMPKα2 would

induce the autophagy process to cope with the nutritional stress caused by the absence of glu-

cose as an energy source. This is supported by an increase in ARK activity in epimastigotes in

the absence of glucose. The fact that TcAMPKα2 overexpression leads to an acceleration in

cell duplication during the exponential phase can be interpreted as a role of the TcAMPKα2

subunit in the rapid consumption of glucose and maintenance of proliferation while there is

availability of this carbon source, similarly to what would happen right after the insect vector

takes a blood meal. After the insect hasn’t fed in several weeks, amino acids are the most abun-

dant carbon source in the midgut and parasite density increases significantly, which leads to

an arrest in proliferation. These results point to the presence of two AMPK complexes with

distinct functions, although their exact roles in the parasite life cycle are yet to be determined.

Additionally to the role of AMPK complexes in the rapid response to stress through the

phosphorylation of downstream effectors, they also modulate gene expression by phosphory-

lating transcription factors [60]. In kinetoplastids, gene transcription is poorly modulated,

there are no promoter sequences and transcription is carried out as polycistronic units pro-

cessed by trans-splicing [61]. mRNA translation is then regulated by modifying their stability,

localization and translationality. For that reason, RNA Binding Proteins (RBPs) and RNA reg-

ulons have shown to have essential roles in different cellular processes in these organisms,

such as differentiation and infectivity [62,63], and responses to nutrient and oxygen availabil-

ity [64,65]. One of our hypotheses regarding new roles for the AMPK complexes in trypanoso-

matids involves its interaction with the RBPs and influencing regulon activation. Our

preliminary bioinformatic searches have shown some RBPs in T. cruzi and T. brucei that pres-

ent the conserved sequences for AMPK phosphorylation, which makes them potential AMPK

substrates. Furthermore, Saldivia et. al. identified the T. brucei RBP27 as an interactor of one

of the TbAMPK complexes when co-immunoprecipitated. AMPK could function as the ances-

tral link between environmental conditions sensing and rapid and long-term cellular response

through these RBPs and other novel substrates.

To the extent of our knowledge this work brings the first evidence on a role for the AMPK

complex in trypanosomatids during nutritional stress response. Our results suggest that the

novel AMPK complex present in trypanosomatids was generated by AMPKα gene duplication

in a common ancestor, preceding speciation, even though more experimental data must be

generated to confirm this observation.

The finding in T. cruzi of a novel AMPK complex, which evolved incorporating unique

characteristics, points out this pathway as a possible chemotherapy target for Chagas’ disease.

PLOS NEGLECTED TROPICAL DISEASES AMPK modulates nutritional stress response in T. cruzi

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009435 May 24, 2021 17 / 22

https://doi.org/10.1371/journal.pntd.0009435


Combining the background knowledge on AMPK complexes and the available compound

libraries to affect its enzymatic activity, TcAMPK complexes are also promising targets for

therapeutic drug repositioning.

Supporting information

S1 Fig. Mass spectrometry analysis of epimastigotes protein extract to detect TcAMPKα
subunits endogenous expression and its phosphorylation. (A) The central column of the

table depicts the sequence of the peptide constructed from the protein fragments detected.

This peptide corresponds to the activation loop of the TcAMPKα2, with a Serine in the posi-

tion of the more conventional Thr172. Red and Blue numbers on the table are molecular

weights of the peptides detected in the mass spectrometer, while black numbers are obtained

by digital simulation of the protein digestion by the same proteases. (B) Spectra of the peptide

sequence reconstructed in A. In the green circle is the peptide providing proof of the Serine

phosphorylation.
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chez Larrea, Guillermo D. Alonso.

Funding acquisition: Guillermo D. Alonso.

Investigation: Tamara Sternlieb, Alejandra C. Schoijet, Patricio D. Genta, Salomé C. Vilchez
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24. Martı́nez-Calvillo S, López I, Hernández R. pRIBOTEX expression vector: A pTEX derivative for a rapid

selection of Trypanosoma cruzi transfectants. Gene. 1997. pp. 71–76. https://doi.org/10.1016/s0378-

1119(97)00348-x PMID: 9358041

25. Vazquez MP, Levin MJ. Functional analysis of the intergenic regions of TcP2beta gene loci allowed the

construction of an improved Trypanosoma cruzi expression vector. Gene. 1999; 239: 217–225. https://

doi.org/10.1016/s0378-1119(99)00386-8 PMID: 10548722

26. Schmidt MC. beta-subunits of Snf1 kinase are required for kinase function and substrate definition.

EMBO J. 2000; 19: 4936–4943. https://doi.org/10.1093/emboj/19.18.4936 PMID: 10990457

27. Celenza JL, Carlson M. Mutational analysis of the Saccharomyces cerevisiae SNF1 protein kinase and

evidence for functional interaction with the SNF4 protein. Mol Cell Biol. 1989; 9: 5034–5044. https://doi.

org/10.1128/mcb.9.11.5034 PMID: 2557546

28. Amberg DC, Burke DJ, Strathern JN. “Quick and Dirty” Plasmid Transformation of Yeast Colonies. Cold

Spring Harb Protoc. 2006; 2006: pdb.prot4146. https://doi.org/10.1101/pdb.prot4146 PMID: 22485547
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