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A B S T R A C T

Background and purpose: Computed tomography (CT) radiomics of head and neck cancer (HNC) images is sus-
ceptible to dental implant artifacts. This work devised and validated an automated algorithm to detect CT metal
artifacts and investigate their impact on subsequent radiomics analyses. A new method based on features from
total variation, gradient directional distribution, and Hough transform was developed and evaluated.
Materials and methods: Two HNC datasets were analyzed: a training set of 131 patients for developing the de-
tection algorithm and a testing set of 220 patients. Seven designated features were extracted from ROIs (regions
of interest) and machine learning with random forests was used for building the artifact detection algorithm.
Performance was assessed using the area under the receiver operating characteristics curve (AUC).
Results: The testing results of artifacts detection yielded a cross-validated AUC of 0.91 (95% CI: 0.89–0.94), and
a test AUC of 0.89. External testing validation yielded an accuracy of 0.82. For radiomics model prediction,
training with artifacts yielded an AUC of 0.64 (95% CI: 0.63–0.65), while training on images without artifacts
improved the AUC to 0.75 (95% CI: 0.74–0.76). This was compared to visual inspection of artifacts (AUC = 0.71
[95% CI: 0.69–0.73]).
Conclusion: We developed a new method for automated and efficient detection of streak artifacts. We also
showed that such streak artifacts in HNC CT images can worsen the performance of radiomics modeling.

1. Introduction

With recent advances in medical imaging technologies, contrast-
enhanced computed tomography (CT), magnetic resonance (MR), and
positron emission tomography (PET) imaging are being routinely ac-
quired during the diagnosis, staging and radiotherapy treatment plan-
ning of head and neck cancers (HNC). The most widely used imaging
modality for diagnosis and therapy is CT, which can assess the tissue/
lesion density, shape and texture, and has been a good image-based
data resource for patient’s outcome modeling (e.g., radiomics) [1]. A
large number of imaging features can be extracted from CT images for
such radiomics analysis. These features are widely explored in HNC CT
image analysis (e.g., segmentation, predictive and prognostic bio-
markers, etc). Aerts et al. found that the CT radiomic signature con-
structed from non-small cell lung cancer (NSCLC) patients preserved
significant prognostic performance for head and neck squamous cell
carcinoma (HNSCC). Significant associations were discovered between

the radiomics features and gene-expression patterns [2]. Zhang et al.
found that CT texture features such as primary mass entropy and his-
togram skewness were independent predictors of overall survival in a
dataset of 72 HNSCC patients [3]. However, it is sometimes overlooked
that the existence of metal artifacts in CT HNC images, due to dental
implants, may corrupt the reliability and the precision of such radio-
mics analysis and may cause misleading results. Since metal artifacts in
the original images can lead to changes in underlying texture features,
which form the basis of radiomics analysis [4,5].

Although large amounts of promising studies were carried out for
CT-based HNC radiomic analysis, artifacts influence was not taken into
account or at least wasn’t mentioned in these articles. Until recently,
less attention was paid into this critical issue in CT HNC image analyses.
Bogowicz et al. conducted studies aimed to predict tumor local control
(LC) after radiochemotherapy of HNSCC and human papilloma virus
(HPV) status using CT radiomics. In their study, contours were manu-
ally removed from artifact-affected slices. Scans with more than a half
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of the contoured slices affected by metal artifacts were not included in
the analysis [6]. Elhalawani et al. also applied exclusion of slices with
metal artifacts in their HPV prediction model [7]. For these studies that
excluded the artifact-affected slices or patients, manual filtering was
applied, which is a very time-consuming process. There are also some
approaches proposed for the metal artifacts reduction (MAR) [8–12].
Yet, these methods are likely to introduce new artifacts to images, de-
grade their resolution, and influence the statistical distribution of the
original images, rendering them detrimental to any subsequent
radiomic analysis [13,14]. In order to overcome these challenges, we
proposed a novel method that enabled the classification of artifact-af-
fected slices/ROIs using extracted features automatically and effi-
ciently, which has the potential to simplify the preprocessing and make
the radiomic signatures more reliable. We have applied our algorithm
on an external dataset to investigate the impact of artifacts on radiomics
modeling as well. Our current approach aims to flag images with arti-
facts that would allow building more robust radiomic models with ar-
tifact-free images.

2. Materials and methods

A total of 131 oropharyngeal squamous cell carcinoma patients
(3513 slices, among which 360 slices had visually identified metal ar-
tifacts in the regions of interest [ROIs]), treated at the University of
Michigan Department of Radiation Oncology, and a set of 220 head-
and-neck squamous cell carcinoma patients (17956 slices) from a pre-
viously published dataset, treated at four hospitals in Canada were in-
cluded in this study [15]. The two datasets will be referred to as UM
data and the Canadian data, respectively. We determined the ground
truth non-artifact slices by visually inspecting all slices in the UM data
set and only looking at the tumor ROI. This means that if the tumor ROI
on a given slice did not contain metal artifacts, it would be considered
as a negative sample even if other parts of that same ROI contained
artifacts, which will help save valuable data. For the Canadian data, due
to the very large amount of slices, we visually determined if any ROI
contained artifacts, as opposed to slice-by-slice. For this case, after we
obtained predicted slice label, if for a ROI, there was at least one slice
that was labeled to contain artifact, the whole ROI would be labeled as
artifact-present. Example slice of the artifact-affected ROI was shown in
Supplemental materials (SM) Fig. S1.

The UM data was randomly and equally split into training and test
sets. Training set was used to train a random forests artifacts detection
model (all hyper-parameters and parameters), then applied to the hold-
out test set. The Canadian data was split by hospital: 148 patients from
Hôpital général juif (HGJ) and Centre hospitalier universitaire de
Sherbrooke (CHUS) were used as training set for the proposed radio-
mics model for distant metastases in Vallières et al study [15]. Seventy-
two patients from Hôpital Maisonneuve-Rosemont (HMR) and Centre
hospitalier de l’Université de Montréal (CHUM) combined were used as
test set for evaluation. A brief workflow is shown in Fig. 1. More details
about the datasets were given in SM Table S1.

2.1. Features design and extraction

2.1.1. Total variation based-feature
The concept of total variation (TV) was introduced first by Rudin

et al. [16] for noise removal in image processing using first-order
norms, since noisy images tended to have a high TV value compared
with noise-free images. Similarly, metal artifacts led to an increased TV
value relative to that of the regions of interest (ROIs) without artifacts,
so the TV score could be taken as a measure of the artifacts. Below is the
formula for calculating the TV (feature 1):

= +
= =
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where I x y( , ) is the intensity for pixel x y( , ), N N,x y are number of pixels
along the two directions, NROI is the number of pixels in the ROI. TV
sums the absolute values of two-dimensional gradients for each pixel
point of an image I x y( , ), here we are referring to in-plane directions.
Additionally, TV values were normalized by dividing by the number of
pixels in ROIs to exclude the influence of image size.

2.1.2. Gradient direction distribution (GDD) based features
Compared with TV exacting gradient magnitude information, GDD

features extracted gradient direction information. Some image pre-
processing procedures were necessary prior to the extraction. The aim
of pre-processing was to improve the image data quality by suppressing
unwanted distortions and enhance the metal artifacts for preparation of
the feature extraction. As shown in Fig. 2(a), the raw ROI images were
noisy and the artifacts were hard to detect directly.

We cropped and resized the original ROIs so that they had com-
parable size to provide a good estimate of the distribution. First, we
resized ROIs to 25 × 25 pixels (median size of ROI slices in UM da-
taset), then cropped outer pixels to remove any edge effects, such that
all images had the same size of 16 × 16.

With size-modified ROIs, the gradient direction of each pixel point
in the ROIs was approximated using the Sobel operator [17]. The di-
rection ranged from −180° to 180° counterclockwise from the posi-
tive x-axis. In Fig. 2(b) and (e), the gradient direction map of the ROIs
was plotted. In these plots, the streak artifacts were more pronounced
than in the original images. Histograms provided useful information
about image statistics, from which we could extract discriminant fea-
tures to help with artifacts detection. For ROIs with artifacts there
should be a dominant direction of the gradient orientation distribution,
while the ROIs without artifacts would tend to have more uniform
distribution. We extracted the maximum gradient direction percentage
(feature 2) from the histogram of angles for the gradient H ( ) with 36
bins (bin width of 10°):

=Max gradient direction H
H

max( ( ))
( )

i

i i (2)

where i is the bin index. Due to varying tumor shapes, even though the
bounding ROI box was modified, there were still some non-tumor parts
of the original images included in the analyzed region. In order to re-
move shape effects, another complementary feature was calculated
(feature 3):

=
×

ratio of pixels in tumor ROI N
16 16

ROI
(3)

2.1.3. Grey-scale Hough transform based features
Conventional Hough transform is a well-known method for line

detection [18–20]. However, conventional Hough transform (CHT) re-
quires input images to be edge-enhanced binary images, which are
obtained by edge detection algorithms followed by thresholding or
thinning. This will lead to loss of information and it requires selecting a
threshold (harder for rich contrast, blurry, and band structure images).
In our case, the artifacts were not obvious, and they were dispersed
band structures. We used an extended Hough transform algorithm that
dealt specifically with grey-scale images and avoided the thresholding
process encountered in the conventional Hough transform [21]. Keck
et al. proposed the use of direct output from the edge operator [22].
Thus, there was no threshold used to suppress the edges. Instead, the
intensities in the edge image was considered to be the weighting
coefficient for the Hough transform – grey-scale Hough transform
(GSHT). However, the traditional edge operators performed poorly in
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the ROIs in our application, since the lines in our case were dispersed
with relatively gradually changing intensities. Instead of applying the
edge operators, we input the gradient direction map for GSHT. Subse-
quently, we applied a local maxima filter to the obtained Hough map.
The modified GSHT algorithm was summarized in SM Table S2.

We used the GSHT as feature extractor instead of directly line de-
tection because of dispersive characteristic of the artifacts. As shown in
Fig. 2(f), if there were too many lines detected, it indicated high noi-
siness of the image and also absence of artifacts. Hence, the number of
lines detected was a distinctive feature (feature 4). Since most of the
artifact lines extended through the whole tumor, the ratio of the line
length detected over the length of the tumor along that same direction
should be close to one for artifact lines (feature 5).

=maximum ratio of detected lines L
L

max detectedlines

tumor along the same direction (4)

For tumors with artifacts, the length of detected lines should be
relatively large. Thus, the number of lines with ratios larger than a

priori threshold was another distinct feature:

= >feature of lines if L
L

6 # , 0.6detected lines

tumor along the same direction (5)

The threshold for large lines we used here was empirically found to
be 0.6 using our training data. For ROIs with artifacts, the lines detected
were expected to have similar orientations, while those false lines had
directions without any regular pattern. We counted the number of lines
that had similar orientations with the maximum ratio line in one ROI.
Here, we defined similar orientation as angle difference smaller than
(20 °Â ) using prior knowledge.

= <feature of lines if D D7 # , L
L

,line arg max
detected lines

tumor along the samedirection

(6)

where D represents the direction of a line.
After designed these seven features, we did principal component

Fig. 1. Brief workflow for artifacts detection and impact on radiomic model performance.

Fig. 2. (a) Original ROI with artifacts; (b) corresponding Gradient direction map of the ROI; (c) detected lines by modified Hough transform; (d)–(f) are similar with
(a), (b), (c), while without artifacts.
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analysis (PCA) for these features to explain the variance in the data.

2.2. Random forests artifacts detection classifier construction

In summary, we have devised 7 features for the automatic detection
of artifacts which were summarized in Table 1.

Tree-based methods are commonly used in machine learning to
build predictive models by partitioning the feature space into a set of
rectangles. We randomly split UM data into training and testing sets
(with equal samples). Random forests were implemented on the
training set to construct the detection model. A Bayesian optimizer was
used to optimize the 5-fold cross-validated loss objective function to
tune the hyper-parameters (minimum leaf size and number of trees

used) to control the tree depth. Then, we fixed the hyper-parameters to
re-train the model. The trained model was applied to the testing set,
with 10 times 5-fold cross-validation to provide the confidence interval
for the training results. Feature importance was computed as well. Slice
level artifacts detection model was trained and tested on the training
and testing sets of UM data, while ROI level detection was trained on
the UM data and tested both on the testing sets of UM data and ex-
ternally on the Canadian data. Furthermore, based on the variance
explained using principal component analysis (PCA), we tried different
models using all the 7 features and less features to examine whether we
could simplify the features we used and still obtain a generalizable
model.

Table 1
Extracted features.

Extraction
Method

Total variation GDD Modified grey-scale Hough transform

Feature
index

1 2 3 4 5 6 7

Name Total variation Maximum
gradient
direction

Ratio of
pixels
inside ROIs

Number of
lines
detected

Maximum ratio of
detected lines

Number of lines larger
than a certain threshold

Number of lines with similar orientation
with the longest line detected

Fig. 3. (a) Optimization of hyper-parameters for random forests: number of trees (41) and minimum leaf size (17); (b) ROC curve for test data, with AUC of 0.89; (c)
Out-of-bag feature importance; (c) Radiomic model test results for distant metastases using: all train samples (148 patients, yellow); samples filtered by our artifacts
detection algorithm (107 patients, blue) and samples filtered visually (100 patients, green). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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2.3. Evaluation of impact of artifacts in tumor ROIs on radiomic prediction
performance

For all the 148 train and 72 test ROIs, we implemented the feature
extraction method described above. A random forests classifier (that
classifies the presence of metal artifacts in each slice) using all the
samples of UM data (131 patients, 3513 slices) was constructed, and
applied to the Canadian data (220 patients, 344 ROIs, 17,956 slices) to
obtain the predicted labels for whether or not one slice has artifacts and
then determine if the ROI contains artifacts. The ground truth for these
data are visually determined. Radiomic models for distant metastases
were built on three sets of data: (1). all 148 train samples; (2). samples
without artifacts based on the algorithm; (3) samples without artifacts
based on visual detection. The three models were further tested on test
set (72 patients containing no metal artifacts). For the model con-
struction detail please refer to the paper [15]. The prediction results
were presented by plotting the receiver operating characteristic (ROC)
curve and calculating the corresponding area under the curve (AUC).
The clinical patient characteristics were evaluated for patients without
artifacts and all the patients in Canadian data to make sure the sub-
group (without artifacts) clinical characteristics were not biased. For
categorical variables, Pearson’s Chi-squared test was carried out, and
for continuous variables, pairwise t-test was used to check if there was
significant bias or deviance for the subgroup compared to the whole set.

3. Results

Fig. 3(a) showed the training of objective function in terms of
number of trees and minimum leaf size. The optimal values for these
two parameters were 42 trees and 9 minimum number of leaf node
observations. Fig. 3(b) showed that the training AUC achieved 0.91
(95% CI: 0.89–0.94), testing 0.89. The out-of-bag feature importance,
measured by bootstrapping technique in random forests algorithm, was
also calculated and presented in Fig. 3(c) [23]. The ranking showed that
first four important features were total variation, max GDD, number of
lines detected by Hough transform and ratio of valid pixels in the
images and contributed to 99% of the unexplained variation using PCA.
Since the first 4 features could explain most of the variance, we ex-
amined the models using less features. The slice level AUC on UM data
saturated after 4 features (∼0.90), details are summarized in SM
Table 3. The confusion matrix for ROI level performance on UM and
Canadian data using different features (4–7) was shown in Table 3. The
results for 5–7 features were the same for UM (combined in the table),
with an accuracy of 0.70/0.77, specificity of 0.66/0.83, sensitivity of

0.74/0.71, F1 score 0.73/0.77 for 4 feature and 5–7 feature models,
respectively, as shown in Table 3. Since a 4-feature model didn’t per-
form well for ROI level classification, we tested only 5 and 7 feature
models on Canadian data. The confusion matrix and corresponding
metric results were shown in Tables 2 and 3 as well, with an accuracy of
0.79/0.82, specificity of 0.80/0.88, sensitivity of 0.77/0.70, F1 score
0.69/0.71 for 5 feature and 7 feature models, respectively. After
checking the clinical characteristics, we found that none of the char-
acteristics showed significant deviance from the original dataset.

The results for the radiomic models were shown in Fig. 3(d).
Radiomic model constructed using samples without artifacts, either
filtered by our algorithm or visually, yielded a substantially better
performance than using the original training set, which included 32%
(48/148) artifacts patients. The AUC were 0.64 (95% CI: 0.63–0.65),
0.71 (95% CI: 0.69–0.73), and 0.75 (95% CI: 0.74–0.76) for the
radiomic models trained on all train samples, samples excluding arti-
facts affected ones by our algorithm and by visual detection, respec-
tively.

4. Discussion

In this study, a set of features extracted from total variation, gra-
dient direction distribution and grey-scale Hough transform algorithm
was designed. UM testing AUC of 0.89 showed that the proposed ap-
proach was able to accurately classify slices with metal artifacts. The
robustness of these features was further validated by relatively good
performance on external Canadian data. Confusion matrix for external
validation was used since the slice-by-slice labels in Canadian data were
not obtained due to the large sample size (17,596 slices). A ROI would
be labeled positive, if one or more slices contained artifacts.

Though first 4 features explained most of the variance and slice
level AUC saturated after 4 features, adding feature 5 increased the ROI
level performance (accuracy, specificity, and F1 score) for UM data, due
to less false positive, and similar true positive cases. This was reason-
able since the last few features were mainly designed to regularize or
reduce the false positive classification. Similar trend was captured in
the Canadian data as well, the specificity increased from 0.80 to 0.88
with more features. While, the decrease of sensitivity (0.77–0.70) for 7
features-model was due to less true positives. In all, 5 features-model
was comparable for slice-by-slice detection to the 7 features-model. For
the ROI level detection, 5 features-model resulted in less artifacts da-
taset, while 7 features-model tended to reserve more samples but with
more artifacts cases as well. The slice level model generalizability was
not harmed by adding more features, probably because random forests
algorithm is able to select the most robust features for the task.

AUC around 0.90 suggested the probability of correctly ranking a
positive – negative pair was 0.90. In general, it is pretty good perfor-
mance for a classification task. To the best of our knowledge, we did not
find literature implementing this kind of metal artifacts detection, thus
it was hard to compare how good the accuracy of 0.82 was. However,
the UM data ROI level accuracy was 0.77, with the slice level AUC 0.90.
Thus, we could infer that the slice level AUC for external data was
probably comparable. In addition, the artifact-free subset filtered by
our algorithm showed improvement of performance, which also proved
the goodness of this level of classification accuracy for radiomics
modeling. Based on the context that researchers usually remove the
slices affected when building models not the ROIs, our technique should
be applicable and meaningful. Another thing to notice was the lower
UM ROI accuracy, which could be due to the different artifacts pro-
portion, with UM having 55% and Canada having 31% artifact-affected
ROIs. Hence, it made sense that the specificity as well as the accuracy
would be lower, with comparable sensitivity for UM data.

Leijenaar, et al. tested a radiomics signature derived from non-small
cell lung cancer (NSCLC) patients on an external dataset of orophar-
yngeal squamous cell carcinoma (OPSCC) patients (n = 542) [24].
They visually identified ROIs with artifacts, and resulted in a subset of

Table 2
Confusion matrices for UM and Canadian data of ROI artifacts.

UM (4 features/5–7 features) Positive Negative

Predicted positive 26/25 10/5
Predicted negative 9/10 19/24

Canada (5 features/7 features) Positive Negative

Predicted positive 81/73 47/29
Predicted negative 24/32 192/210

Table 3
Performance for UM and Canadian data of ROI artifacts.

Feature # Accuracy Specificity Sensitivity F1 score

UM 4 features 0.70 0.66 0.74 0.73
5–7 features 0.77 0.83 0.71 0.77

Canada 5 features 0.79 0.80 0.77 0.69
7 features 0.82 0.88 0.70 0.71
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275 patients with artifacts. Their radiomics signature was validated on
all the data, subset of patients with and without artifacts within the
delineated tumor regions. They found that the features preserved dis-
criminative value on both with and without artifacts subsets, however,
they still suggested that there was an influence of CT artifacts on the
model fit, which indicated a need for remodeling excluding samples
with artifacts. This was consistent with our finding. Their research fo-
cused on validating the radiomics signature on head and neck tumor
ROIs with and without artifacts to see the robustness of the features. We
investigated the influence of presence of artifacts for the model con-
struction and corresponding test performance on artifact-free data.

Another study related to ours is the one by Ger et al. [5]. They in-
vestigated metal artifacts caused by dental fillings and beam-hardening
artifacts caused by bone. They found at least 73% of feature values were
affected by the streak artifacts. And almost all features were robust with
removal of up to 50% of the original GTV. In summary, they showed
that metal artifacts affect radiomic feature values, suggesting that re-
gions containing such artifacts should not be included in radiomics data
set. Their research provided further support for the necessity of re-
moving artifact-affected images before radiomics modeling.

We were also interested in understanding the nature of the mis-
classified cases. Some examples of both false negatives and false posi-
tives were shown in SM Fig. S2. The main challenge we met with in this
detection task was the subtleness of the metal artifacts or small signal-
to-noise ratio (SNR) of the ROIs. A lot of the misses were the cases with
artifacts that were subtle and hard to detect. The false positive cases
were some slices with line-like structures inside while not being a true
artifact.

Finally, one thing to point out is that if the radiomic features are
from 3D ROIs, we might have to remove the artifact-affected patients.
Given the fact that around 30–50% of patients have metal artifacts, the
radiomic models developed in this way might be suitable for not af-
fected patients only. However, if we extract features from 2D slices,
then we can remove the affected slices without excluding the patient.
While, we do acknowledge that the artifact classification can be more
beneficial to develop radiomics models which are more robust against
the streak artifacts, which is out of our scope for this study.

In conclusion, we have developed a new method for CT artifacts
detection in tumor regions for head and neck patients; achieved UM test
dataset prediction AUC of 0.89 using random forests algorithm and
investigated the impact of presence of artifacts for head and neck CT
images using internal and external datasets. We recommend using the
proposed automatic algorithm to filter samples before CT head and
neck radiomics analysis.
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