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ABSTRACT
◥

Continuous risk of recurrence scores (CRS) based on tumor gene
expression are vital prognostic tools for breast cancer. Studies have
shown that Black women (BW) have higher CRS than White
women (WW). Although systemic injustices contribute substan-
tially to breast cancer disparities, evidence of biological and germ-
line contributions is emerging. In this study, we investigated germ-
line genetic associations with CRS and CRS disparity using
approaches modeled after transcriptome-wide association studies
(TWAS). In the Carolina Breast Cancer Study, using race-specific
predictive models of tumor expression from germline genetics, we
performed race-stratified (N ¼ 1,043 WW, 1,083 BW) linear
regressions of three CRS (ROR-S: PAM50 subtype score; prolifer-
ation score; ROR-P: ROR-S plus proliferation score) on imputed
tumor genetically regulated tumor expression (GReX). Bayesian
multivariate regression and adaptive shrinkage tested GReX-
prioritized genes for associations with tumor PAM50 expression
and subtype to elucidate patterns of germline regulation under-
lying GReX-CRS associations. At FDR-adjusted P < 0.10, 7 and 1

GReX prioritized genes among WW and BW, respectively.
Among WW, CRS were positively associated with MCM10,
FAM64A, CCNB2, and MMP1 GReX and negatively associated
with VAV3, PCSK6, and GNG11 GReX. Among BW, higher
MMP1 GReX predicted lower proliferation score and ROR-P.
GReX-prioritized gene and PAM50 tumor expression associa-
tions highlighted potential mechanisms for GReX-prioritized
gene to CRS associations. Among patients with breast cancer,
differential germline associations with CRS were found by race,
underscoring the need for larger, diverse datasets in molecular
studies of breast cancer. These findings also suggest possible
germline trans-regulation of PAM50 tumor expression, with
potential implications for CRS interpretation in clinical settings.

Significance: This study identifies race-specific genetic associa-
tions with breast cancer risk of recurrence scores and suggests
mediation of these associations by PAM50 subtype and expression,
with implications for clinical interpretation of these scores.

Introduction
Tumor expression–based molecular profiling has improved clinical

classification of breast cancer (1–3). One tool is the PAM50 assay,
which integrates tumor expression of 50 genes (derived from a set of
1,900 subtype-specific genes identified in microarray studies) to
determine PAM50 intrinsic molecular subtypes: luminal A (LumA),
luminal B (LumB), HER2-enriched, basal-like, and normal-
like (1, 4). Intrinsic molecular subtypes are strong prognostic
factors for breast cancer outcomes, including recurrence and mor-
tality. For instance, basal-like breast cancer has substantially higher
recurrence and mortality risk compared with LumA breast
cancer (5–8). In recent years, continuous risk of recurrence scores
(CRS) have gained traction as a potential clinical tool that
encapsulates prognostic differences of breast cancer intrinsic

molecular subtypes into a singular measure that can be used to
guide treatment decisions. CRS include ROR-S, proliferation score,
ROR-P, and ROR-PT (1, 9). ROR-P, for instance, is determined by
combining ROR-S (PAM50 tumor expression-based subtype score)
and proliferation score (tumor expression of 11 PAM50 genes).
ROR-PT further integrates ROR-P with information on tumor size.
Studies show that CRS offer significant prognostic information
beyond clinical variables (e.g., nodal status, tumor grade, age,
hormonal therapy), improve adjuvant treatment decisions, and
offer robust risk stratification for distant (5–10 years after diagno-
sis) recurrence (10–12).

In the Carolina Breast Cancer Study (CBCS), Black women (BW)
with breast cancer have disproportionately higher CRS than White
women (WW; ref. 9), and similar disparities have been noted in
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Oncotype Dx recurrence score (9, 13). Systemic injustices, like dis-
parities in health care access, explain a substantial proportion of breast
cancer outcome disparities (14–17). Recent studies additionally sug-
gest that germline genetic variation is associated with breast cancer
outcomes, and these associations vary across ancestry groups (18–21).
In The Cancer Genome Atlas (TCGA), BW had substantially higher
polygenic risk scores for the more aggressive estrogen receptor (ER)-
negative subtype than WW, suggesting differential genetic contribu-
tions for susceptibility for breast cancer, especially ER-negative breast
cancer (21). In a transcriptome-wide association study (TWAS) of
breast cancermortality, germline-regulated gene expression (GReX) of
four genes was associated with mortality among BW and gene
expression for no genes was associated among WW (18). However,
the role of germline genetic variation in recurrence, CRS, and CRS
disparity remains a critical knowledge gap. Studying genetic asso-
ciations with breast cancer outcomes in BW is necessary to ensure
advancements in breast cancer genetics are not limited to or
generalizable in only White populations, thus aiding in decreasing
health disparities.

As racially diverse genetic datasets typically have small samples of
BW, gene-level association tests can increase study power. These
approaches include TWAS, which integrates relationships between
SNPs and gene expression with genome-wide association studies
(GWAS) to prioritize gene-trait associations (22, 23). TWAS aids in
interpreting genetic associations by mapping significant GWAS asso-
ciations to tissue-specific expression of individual genes. In cancer
applications, TWAS has identified susceptibility genes at loci previ-
ously undetected through GWAS, highlighting its improved power
and interpretability (24–26). Previous studies show that stratification
of the entire TWAS (model training, imputation, and association
testing) is preferable in diverse populations, as models may perform
poorly across ancestry groups and methods for TWAS in admixed
populations are unavailable (18, 27).

Here, using data from the CBCS, which includes a large sample of
Black patients with breast cancer with tumor gene expression data, we
study race-specific germline genetic associations for CRS using a gene-
based association testing approach that borrows from TWAS meth-
odology. CRS included in this study are ROR-S, proliferation score,
and ROR-P. Using race-specific predictive models for tumor expres-
sion fromgermline genetics, we identify sets ofGReX-prioritized genes
(i.e., genes whose GReX is associated with CRS) across BW and WW.
We additionally investigate ROR-P specific GReX-prioritized genes
for associations with PAM50 subtype and subtype-specific tumor gene
expression to elucidate germline contributions to PAM50 subtype, and
how these mediate GReX-prioritized gene and CRS associations.
Unlike previous studies that correlated tumor gene expression (as
opposed to germline-regulated tumor gene expression) with subtype
or subtype-specific tumor gene expression, TWAS enables directional
interpretation of observed associations (22, 23).

Materials and Methods
Data collection
Study population

The CBCS is a population-based study of North Carolina (NC)
patients with breast cancer, enrolled in three phases; study details have
been described previously (28, 29). Patients ages 20 to 74 were
identified using rapid case ascertainment with the NC Central Cancer
Registry with randomized recruitment to oversample self-identified
Black and young women (ages 20–49; refs. 9, 29). Demographic and
clinical data (age, menopausal status, body mass index, hormone

receptor status, tumor stage, study phase, recurrence) were obtained
through questionnaires and medical records. The study was approved
by the Office of Human Research Ethics at the University of North
Carolina at Chapel Hill (Chapel Hill, NC), and written informed
consent was obtained from each participant.

CBCS genotype data
Genotypes were assayed on the OncoArray Consortium’s custom

SNP array (Illumina Infinium OncoArray; ref. 30) and imputed using
the 1000 Genomes Project (Phase III) as a reference panel for two-step
phasing and imputation using SHAPEIT2 and IMPUTEv2 (31–34).
The DCEG Cancer Genomics Research Laboratory conducted geno-
type calling, quality control, and imputation (30). We excluded
variants with less than 1% minor allele frequency and deviations from
Hardy–Weinberg equilibrium at P <10�8 (35, 36). We intersected
genotyping panels for BW and WW samples, resulting in 5,989,134
autosomal variants and 334,391 variants on the X chromosome (37).
We only consider the autosomal variants in this study.

CBCS gene expression data
Paraffin-embedded tumor blocks were assayed for gene expression

of 406 breast cancer–related and 11 housekeeping genes using Nano-
String nCounter at the Translational Genomics Laboratory at UNC-
Chapel Hill (4, 9). These 406 breast cancer–related genes include genes
part of the PAM50, P53, E2, IGF, and EGFR signatures, among others
(Supplementary Table S1). As described previously, we eliminated
sampleswith insufficientdataqualityusingNanoStringQCPro (18, 38),
scaled distributional difference between lanes with upper quartile
normalization (39), and removed two dimensions of unwanted tech-
nical and biological variation, estimated from housekeeping genes
using RUVSeq (39, 40). The current analysis included 1,199 samples
with both genotype and gene expression data (628 BW, 571 WW).

Statistical analysis
Overview of GReX and TWAS

We adopted TWAS methodology to construct GReX (exposure of
interest in this study). GReX for a given gene represents the portion of
tumor expression explained by cis-genetic regulation; GReX was
constructed for the aforementioned set of breast cancer–related genes
(Supplementary Table S1). Briefly, TWAS integrates expression data
with GWAS to prioritize gene-level germline-trait associations
through a two-step analysis (Fig. 1A and B). First, using germline
and transcriptomic data, we trained predictive models of tumor gene
expression using all SNPs within 0.5 Megabase of the gene (18, 23).
Second, we used these models to impute the GReX of a gene by
multiplying the SNP-gene weights from the predictive model with the
dosages of each SNP. Associations between GReX (for a given gene)
and trait (CRS, for instance) in regression analyses identify gene-trait
relationships that are a consequence of germline variation. If suffi-
ciently heritable genes are assayed in the correct tissue, TWAS-based
GReX analyses increase power to detect germline-trait associations
and aids interpretability of results, as associations are mapped from
germline genetics to individual genes (23, 41).

GReX analysis of CRS in CBCS
We adopted techniques from FUSION to train predictive models of

tumor expression from cis-germline genotypes (18, 23). Motivated by
strong associations between germline genetics and tumor expression in
CBCS (18), for genes with non-zero cis-heritability at nominal
P <0:10, we trained predictive models for covariate-residualized
tumor expression with all cis-SNPs within 0.5 Megabase using linear
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mixed modeling or elastic net regression (Supplementary Materials
andMethods; refs. 42, 43). Here, we used the 628 BW samples and 571
WW samples with both genotype and expression data to train these
race-specific expressionmodels.We selectedmodels with 5-fold cross-
validation adjusted R2 > 0:01 between predicted and observed
expression values, resulting in 59 and 45 models for WW and BW,
respectively. Further details on thesemodels, including heritability and
cross-validation performance are available at Supplementary Table S2.
These models also showed sufficiently strong predictive performance
in external validation using TCGA data (18).

Using only germline genetics as input, we imputed GReX in 1,043
WW and 1,083 BW, respectively, in CBCS. For samples not present in
the training dataset, wemultiplied the SNPweights from the predictive
models with the SNP dosages to construct GReX. For samples in both
the training and imputation datasets, GReX was imputed via cross-
validation to minimize data leakage. We tested GReX for associations
with ROR-S, proliferation score, and ROR-P using multiple linear
regression adjusted for age, ER status, tumor stage, and study phase (1).
We corrected for test-statistic bias and inflation using a Bayesian bias
and inflation adjustment method bacon, as TWAS are prone to bias
and inflation of test statistics (44). We then adjusted for multiple
testing using the Benjamini–Hochberg procedure (44, 45). As a
comparison for the germline effect of GReX-prioritized genes, we
additionally assessed the effect of total (germline-regulated and post-
transcriptional) tumor expression of those GReX-prioritized genes on

CRS using similar linearmodels.Wewere underpowered to study time
to recurrence, as recurrence data were collected only in CBCS phase III
(635WW, 742 BWwith GReX and recurrence data; 183WW, 283 BW
with tumor expression and recurrence data). For significant GReX-
prioritized genes for CRS (FDR-adjusted P < 0.10), we conducted
follow-up permutation tests: we shuffle the SNP-gene weights in the
predictive model 5,000 times to generate a null distribution and
compare the original GReX-CRS associations to this null distribution.
This permutation test assessed whether the GReX association provides
more tissue-specific expression context, beyond any strong SNP-CRS
associations at the genetic locus (23).

PAM50 assay and ROR-S, proliferation score, and
ROR-P calculation

As described previously (1), using partition-around-medoid clus-
tering, we calculated the correlation with each subtype’s centroid for
study individuals based on PAM50 expressions (10 PAM50 genes per
subtype). The largest subtype-centroid correlation defined the indi-
vidual’s molecular subtype. ROR-S was determined via a linear
combination of the PAM50 subtype-centroid correlations (SCC); the
coefficients to the PAM50 SCCs in the linear combination are positive
for LumB, HER2-enriched, and basal-like and negative for LumA (1).
Proliferation score was computed using log-scale expression of 11
PAM50 genes, while ROR-P was computed by combining ROR-S and
proliferation score.

Figure 1.

Schematic of study analytic approach. A, In CBCS, constructed race-stratified predictive models of tumor gene expression from cis-SNPs. B, In CBCS, imputed GReX
at individual level using genotypes and tested for associations between GReX and CRS in race-stratified linear models; only GReX of geneswith significant cis-h2 and
high cross-validation performance (R2 >0.01 between observed and predicted expression) considered for race-stratified association analyses.C, Follow-up analyses
on GReX-prioritized genes (i.e., genes whose GReXwere significantly associated with CRS at FDR < 0.10). In race-stratifiedmodels, PAM50 SCCs and PAM50 tumor
expressions were regressed against GReX-prioritized genes under a Bayesian multivariate regression and multivariate adaptive shrinkage approach.

Multi-Ancestry GReX Study of Continuous Risk of Recurrence
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Assignment of PAM50 gene to subtype was based on PAM50 gene
centroid values for each subtype; a PAM50 gene is assigned to the
subtype with the largest positive centroid value. Subtype assignment
through this “greedy algorithm” are specific to this study and represent
a simplified reality (e.g., ESR1 classified as part of LumA subtype only
even though ESR1 expression correlates with both LumA and to a
slightly lesser degree LumB subtype). Moreover, subtype assignment
for this portion of analyses was conducted only for visual comparison
of patterns of associations between GReX-prioritized genes and
PAM50 tumor gene expressions (i.e., subtype assignment in this
portion of analyses had no bearing on continuous ROR score calcula-
tions or subtype-centroid correlations).

Bayesian multivariate regressions and multivariate
adaptive shrinkage

As noted previously (1), CRS are functions of PAM50 SCCs and
gene expression profiles. Thus, we followed up on CRS-associated
GReX-prioritized genes by studying their associations with PAM50
SCCs and gene expression. We assessed GReX-prioritized genes (for
ROR-P) in relation to SCCs and PAM50 tumor gene expression
(Fig. 1C). Importantly, consistent with the original formulation of
ROR-S, we did not consider normal-like subtype and normal-like
subtype specific genes; subtype-specific genes were determined
using a greedy assignment algorithm, described in the previous
section. This classification scheme offers analytic simplicity but is
an oversimplification for some PAM50 genes. We found that none
of our GReX-prioritized genes were within 1 Megabase of
PAM50 genes and that most GReX-prioritized genes were not on
the same chromosome as PAM50 genes (Supplementary Table S3).

Existing gene-based mapping techniques for trans-expression
quantitative trait loci (eQTL; SNP and gene are separated by more
than 1 Megabase) mapping include trans-PrediXcan and GBAT
(46, 47). We employed Bayesian multivariate linear regression
(BtQTL) to account for correlation in multivariate outcomes (SCCs
and PAM50 gene expression) in association testing. BtQTL
improves power to detect significant trans-associations, especially
when considering multiple genes with highly correlated (>0.5)
expression (Supplementary Figs. S1 and S2). Finally, we conducted
adaptive shrinkage on BtQTL estimates using mashr, an empirical
Bayes method to estimate patterns of similarity and improve
accuracy in association tests across multiple outcomes (48). mashr
outputs revised posterior means, SDs, and corresponding measures
of significance (local false sign rates, or LFSR).

Associations of genetic ancestry and race with tumor expression
and GReX of GReX-prioritized genes

Prior studies using CBCS have reported concordance between
self-reported race and genetic ancestry (first principal component
of combined genotype matrix; ref. 18). In an effort to further
contextualize CRS associations across race and to disentangle
race from genetic ancestry in our study population (specifically,
whether race, which captures both genetic ancestry and socioeco-
nomic context, is a proxy for genetic ancestry in our study
population), we investigated: (i) association between genetic ances-
try and tumor expression of GReX-prioritized genes; (ii) associa-
tion between genetic ancestry and GReX of GReX-prioritized genes;
(iii) association between race and tumor expression of GReX-
prioritized genes; (iv) association between race and GReX of
GReX-prioritized genes. Genetic ancestry was computed by aggre-
gating across local ancestry, as determined through the RFMix
pipeline (49).

Availability of data and materials
Expression data fromCBCS are available onNCBI Gene Expression

Omnibus with accession numberGSE148426. CBCS genotype datasets
analyzed in this study are not publicly available asmanyCBCS patients
are still being followed and accordingly CBCS data are considered
sensitive; the data are available from M.A. Troester upon reasonable
request. Supplementary Data include summary statistics for eQTL
results, tumor expression models, and relevant R code for training
expression models in CBCS and are freely available at https://github.
com/bhattacharya-a-bt/CBCS_TWAS_Paper/. Scripts utilized in this
analysis are provided at https://github.com/APUNC/CBCS-Risk-of-
Recurrence-Paper.

Results
Race-specific associations between GReX and CRS

We performed race-specific GReX analysis for CRS to investigate
the role of germline genetic variation in CRS and CRS racial disparity.
We identified eight genes (MCM10, FAM64A, CCNB2,MMP1, VAV3,
PCSK6, NDC80, MLPH), eight genes (MCM10, FAM64A, CCNB2,
MMP1, VAV3, NDC80, MLPH, EXO1), and 10 genes (MCM10,
FAM64A, CCNB2, MMP1, VAV3, PCSK6, GNG11, NDC80, MLPH,
EXO1) whose GReX was associated with ROR-S, proliferation, and
ROR-P, respectively, in WW, and 1 gene (MMP1) whose GReX was
associated with proliferation and ROR-P in BW at FDR-adjusted P <
0.10 (Fig. 2A andB). No associationswere detected betweenGReX and
ROR-S among BW. We refer to genes with statistically significant
GReX analysis associations (FDR-adjusted P < 0.10) as GReX-
prioritized genes. Among these identified genes, only genes that are
not part of the PAM50 panel (i.e., excluding NDC80, MLPH, EXO1)
were considered in downstream permutation and GReX-prioritized
gene follow-up analyses (Fig. 1C), as we wished to focus investigation
on relationship between non-PAM50 GReX-prioritized genes and
PAM50 (tumor) genes. Supplementary Figure S3 shows results from
a sensitivity analysis comparing the effect sizes for the GReX-CRS
associations within samples used in training, not used in training, and
the overall associations using all training and non-training samples. In
general, we see concordance in the direction of association across these
three splits of data, though some of the associations detected within
only training or non-training samples intersect the null.

Among WW, increased GReX of MCM10, FAM64A, CCNB2, and
MMP1 were associated with higher CRS while increased GReX of
VAV3, PCSK6, andGNG11 were associated with lower CRS (Fig. 2A).

Among BW, increased GReX of MMP1 was associated with lower
CRS (proliferation, ROR-P, but not ROR-S; Fig. 2A). Supplementary
Figure S4 shows the nominal differences in eQTL architecture across
BW and WW for these genes. In particular, for MMP1, we found
differences in the standardized effects across WW and BW: a sizable
proportion of shared eQTLs had discordant effects across WW and
BW (Supplementary Fig. S5). The linkage disequilibrium structure for
eQTLs differed across WW and BW, with eQTL effect size peaks
[�log10 P: 4.73 (WW); 3.17 (BW)] at differing genomic locations
(Supplementary Fig. S5).

Briefly, to contextualize the functions of these GReX-prioritized
genes,MCM10 is involved in DNA replication, FAM64A and CCNB2
are implicated in progression and regulation of the cell cycle, and
MMP1, like the broaderMMP family, is involved in the breakdown of
the extracellular matrix (50–54). GNG11 and VAV3 are involved in
signal transduction: GNG11 as a component of a transmembrane G-
protein and VAV3 as a guanine nucleotide exchange factor for
GTPases (55, 56).
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Associations between tumor expression of GReX-prioritized genes
and CRS were concordant, in terms of direction of association to
germline-only effects among WW; findings were discordant among
BW where higher tumor expression of MMP1 was associated with
higher CRS (Table 1; Supplementary Table S4). We found differences
in the pattern of associations between genetic ancestry and race with
tumor expression and GReX of GReX-prioritized genes (Supplemen-
tary Fig. S6). For instance, while higher African ancestry was associated
with higher tumor expression ofMCM10, higher African ancestry was
instead associated with lower GReX of MCM10.

Permutation testing provides context to GReX-prioritized gene
and CRS associations

To assess the statistical significance for the observed variance inCRS
explained by significant GReX-prioritized genes, we conducted two
permutation analyses. First, we assessed the per-gene significance of
the GReX-CRS associations, conditional on the SNP-trait effects at the
locus, by generating a null distribution for the GReX-CRS association
via shuffling the SNP-gene weights from the predictive models

5,000 times. We generated a permutation P value for the GReX-
CRS association by comparing with this null distribution. Here, we
found that all GReX-CRS associations showed significance in permu-
tation testing at FDR-adjusted P < 0.05 (Table 1). These per-GReX-
prioritized gene permutation tests show that GReX (of GReX-
prioritized genes) adds more context beyond the genetic architecture
at the locus and provide evidence that germline genetics to GReX-
prioritized gene expression relationship mediates, to some level, the
complex genetic effects on CRS.

Next, we quantified the percent variance explained of CRS by the
GReX-prioritized genes, in aggregate, by calculating the model adjust-
ed R2 for a regression of covariate-residualized CRS on GReX all
GReX-prioritized genes. To context these model adjusted R2, we
conducted two permutation tests. First, we permuted the sample labels
for covariate-residualized CRS 10,000 times and computed the model
adjusted R2 at each iteration to generate a null distribution for adjusted
R2 betweenGReX-prioritized genes andCRS.AcrossWWandBW, the
observed R2 of GReX-prioritized genes against CRS (7%–10% among
WW and 1% among BW) were statistically significant against the

Figure 2.

Permutation tests and associations
between GReX-prioritized genes
and CRS for WW and BW. A, Effect
estimates correspond to change in
ROR-S, proliferation score, and ROR-
P per one SD increase in GReX-
prioritized gene expression (i.e., one
SD increase in GReXof gene). Triangle,
WW; circle, BW. B, Boxplots corre-
spond to null distributions (left,
shuffled GReX-sample labels; right,
random set of genes) of covariates-
residualized R2 for regressions of
CRS on GReX-prioritized genes.
Null distributions are provided for
10,000 permutations of the GReX-
sample labels and 10,000 random sets
of genes. Dashed horizontal lines cor-
respond to observed covariates-
residualized R2.
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respective null distributions (P values and distributions in Fig. 2B).
To further contextualize the proportion of variance in CRS explained
by GReX-prioritized genes, we computed race-specific heritability
estimates using GCTA (57). Given the limited sample size for which
CRS data were available, we computed the heritability based on typed
SNPs. Moreover, heritability estimates for CRS were stratified by race.
Among WW, heritability ranged from 0.13 (SE: 0.23) for ROR-S to
0.21 (SE: 0.23) for proliferation score. Among BW, heritability was
much lower and ranged from 0.01 (SE: 0.12) for proliferation score to
0.02 (SE: 0.14) for ROR-P. However, we note that heritability estimates
from GCTA were imprecise due to limited sample size. Permutation
tests for analyses of tumor expression of GReX-prioritized genes and
CRS are available in Supplementary Fig. S7.

Second, we wanted to assess whether the GReX of these sets of
GReX-prioritized genes (7 inWWand 1 in BW) explainedmore of the
variance in CRS than the GReX of a randomly selected set of genes of
the same size. Previous studies have shown that the tumor expres-
sion of a set randomly selected genes is likely to be predictive of
breast cancer outcomes; we wished to investigate this phenomenon
on the GReX level (58, 59). Over 10,000 repetitions, we randomly
selected 7 and 1 genes in WW and BW subjects, respectively, ran a
multivariable regression, and calculated the model adjusted R2 to
generate another null distribution. Here again, we found that the
true model R2 outperformed the null distribution, all showing
permutation P < 0.05 in these settings (Fig. 2B). These permutation
tests show that our GReX-prioritized genes, taken together, appre-
ciably explain differences in CRS.

Associations between GReX-prioritized genes and PAM50
subtype correlations and gene expression

As CRS are constructed from PAM50 subtype-specific correlations
and gene expression profiles, we further studied associations between
GReX of GReX-prioritized genes and PAM50 SCCs and gene expres-
sion to understand how PAM50 subtype and gene expression mediate
GReX-prioritized gene and CRS associations. Among WW, a one SD
increase in FAM64A and CCNB2 GReX resulted in significantly
increased basal-like SCC while an identical increase in VAV3, PCSK6,

and GNG11 GReX resulted in significantly increased LumA SCC.
The magnitude of increase in correlation for respective subtypes
per GReX-prioritized gene was approximately 0.05, and most
estimates had credible intervals that did not intersect the null.
Among WW, associations between HER2-like SCC and GReX-
prioritized genes followed similar patterns to associations for the
basal-like subtype, although associations for HER2 were more
precise (Fig. 3A). We found predominantly null associations
between GReX-prioritized genes and LumB SCC among WW
(Fig. 3A). Unlike in WW, for BW, an increase in MMP1 GReX
was not associated with LumA, HER2, or basal-like SCCs. Instead,
among BW, MMP1 GReX was significantly negatively associated
with LumB SCC. Estimates from univariate regressions are provided
in Supplementary Tables S5–S8.

For both WW and BW, the pattern of associations between
GReX-prioritized genes and PAM50 tumor expression were pre-
dominantly congruent with observed associations between GReX-
prioritized genes and PAM50 SCCs as well as GReX-prioritized
genes and CRS (Fig. 3; Supplementary Tables S9–S12). In WW, a
one SD increase in CCNB2 GReX was associated with significantly
increased ORC6L, PTTG1, and KIF2C (basal-like genes) expression
and UBE2T and MYBL2 (LumB genes) expression. In contrast, a
one SD increase in PCSK6 GReX significantly increased BAG1,
FOXA1, MAPT, and NAT1 (LumA genes) expression (Fig. 3B).
While increased MMP1 GReX was associated with significantly
increased expression of ORC6 L (basal-like gene), MYBL2, and
BIRC5 (LumB genes) among WW, this was not the case among
BW. Instead, increased MMP1 GReX among BW was significantly
associated with increased expression of SLC39A6 (LumA gene)
and decreased expression of ACTR3B, PTTG1, and EXO1 (basal-
like genes; Fig. 3B). Associations between GReX-prioritized
genes and PAM50 genes provide a granular, gene interaction level
view into the mediation of the GReX-prioritized gene and CRS
association, suggesting that trans-regulation of subtype-specific
PAM50 genes by GReX-prioritized genes in breast tumors could
be a possible contributor to subtypes and, subsequently, CRS and
recurrence.

Table 1. Race-specific associations between GReX of GReX-prioritized genes and CRS. Effect estimates correspond to change in CRS
per one SD increase inGReX, adjusted for age, ER status, stage, andCBCS study phase. Ninety-five percent confidence intervals of effect
sizes are provided. All GReX-prioritized gene and CRS pairs shown here showed overall association FDR-adjusted P < 0.10 and FDR-
adjusted permutation P < 0.05 (across 5,000 permutations of the SNP-gene weights). We also provide signatures that include these
genes as reference (Supplementary Table S1).

WW (N ¼ 1,043) BW (N ¼ 1,083)
Gene Signature ROR-S Proliferation ROR-P ROR-S Proliferation ROR-P

MCM10 IGF 3.03
(1.73, 4.33)

0.06
(0.03, 0.08)

3.11
(1.72, 4.50)

— — —

FAM64A IGF 2.57
(1.28, 3.86)

0.05
(0.02, 0.07)

2.64
(1.26, 4.02)

— — —

CCNB2 Estradiol 2.69
(1.40, 3.98)

0.05
(0.02, 0.08)

2.71
(1.33, 4.09)

— — —

MMP1 Estradiol 2.73
(1.45, 4.01)

0.05
(0.02, 0.07)

2.58
(1.21, 3.96)

�1.84
(�3.12, �0.56)

�0.04
(�0.07, �0.02)

�2.21
(�3.56, �0.87)

VAV3 Other �2.22
(�3.51, �0.93)

�0.04
(�0.07, �0.02)

�2.40
(�3.79, �1.03)

— — —

PCSK6 IGF �2.16
(�3.45, �0.88)

�0.03
(�0.06, 0.00)

�1.88
(�3.25, �0.50)

— — —

GNG11 Claudin-low �1.27
(�2.56, 0.02)

�0.02
(�0.05, 0.00)

�1.42
(�2.80, �0.05)

— — —
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Discussion
Through a GReX analysis, we identified 7 and 1 genes among WW

and BW, respectively, for which genetically regulated breast tumor
expression was associated with CRS and underlying PAM50 gene
expression and subtype. AmongWW, these 7 GReX-prioritized genes
explained between 7% and 10% of the variation in CRS, a large and
statistically significant proportion of variance. Among BW, the sin-
gular GReX-prioritized gene explained a statistically significant
approximately 1% of the variation in proliferation score and ROR-
P. The magnitudes of these estimates were concordant with race-
specific heritability estimates for CRS (13%–21% for WW; 1%–2% or
BW) in this study population and suggest higher germline genetic
contribution to CRS among WW compared with BW and as sub-
stantial contribution of GReX-prioritized genes to race-specific CRS
heritability. There are two key novel aspects to this study. First, existing
literature on associations between tumor gene expression and recur-
rence (for which CRS are a proxy) cannot distinguish between genetic

and non-genetic components of effect (60), whereas, here, we estimate
the contribution of the genetic component. Second, GReX analysis
allows directional interpretation of observed associations that are not
possible when correlating tumor gene expression and recurrence. For
instance, prior studies report CCNB2 is upregulated in triple-negative
breast cancers (TNBC) but were unable to determine whether
increased CCNB2 expression contributes to development or mainte-
nance of TNBC or is part of the molecular response to cancer
progression (61, 62). In contrast, GReX is a function of only genetic
variation. As such, we can confidently rule out that differences in
CCNB2 GReX are not direct consequences of subtype (and by exten-
sion recurrence); however, our observed associations of CCNB2GReX
and subtype suggest a potential directional relationship for further
study. Thus, GReX analysis allows a directional, potentially causal
interpretation, subject to effective control for population stratification,
minimal horizontal pleiotropy, and assumptions of independent
assortment of alleles (22, 23).

Figure 3.

Associations between GReX-prioritized
genes and PAM50 SCCs and gene
expression. A, Among BW (top) and
WW (bottom), associations between
GReX-prioritized genes and PAM50
SCCs using Bayesian multivariate
regression and multivariate adaptive
shrinkage. Effect estimates show
change in SCCs (range, �1 to 1) for one
SD increase in GReX-prioritized
gene GReX. Circle, triangle, and square
denote corresponding LFSR intervals
for effect sizes. B, Heatmap of
change in log2-normalized PAM50
tumor expression for one SD increase
inGReX-prioritizedgeneGReX. � , �� , ���

denote FDR intervals for effect sizes.
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Our GReX-prioritized gene and subtype associations among
WW are consistent with literature on the association between
tumor (i.e., genetic and non-genetic) expression of our GReX-
prioritized genes and subtype. Prior investigations in cohorts
of primarily European ancestry have reported that MCM10,
FAM64A, and CCNB2 expression is higher in ER-negative com-
pared with ER-positive tumors (61–63). In studies that compared
triple-negative and non–triple-negative subtypes, higher MCM10,
FAM64A, and CCNB2 expression was detected in triple-negative
breast cancer (61, 62). Histologically, HER2-enriched and basal-like
subtypes are typically ER negative, and triple negatives are similar to
basal-like subtypes (9, 64). Moreover, our findings among WW that
GReX of PCSK6 and VAV3 associated with LumA subtype and
LumA-specific gene expression are also consistent with previous
results of PCSK6 and VAV3 upregulation in ER-positive sub-
types (65, 66). Importantly, our associations suggest directional
mechanisms: from germline variation, to GReX of GReX-prioritized
gene, and ultimately, to subtype.

Presently, little is known about germline genetic regulation of
PAM50 tumor expression. In CBCS, we found that tumor expres-
sion of most PAM50 genes is not cis-heritable (18). Instead,
observed GReX-prioritized gene and PAM50 gene expression asso-
ciations may implicate trans-gene regulation of the PAM50 signa-
ture. For instance, we found that VAV3 GReX is significantly
positively associated with tumor expression of BAG1, FOXA1,
MAPT, and NAT1 and nominally with increased tumor ESR1
expression, all of which correspond well with LumA signature.
Such trans-genic regulation signals, especially in the case of ESR1,
pose significant clinical and therapeutic implication if confirmed
under experimental conditions. For example, VAV3 has been
shown to activate RAC1, which upregulates ESR1 (67, 68), but such
mechanistic evidence is sparse for other putative GReX-prioritized
gene to PAM50 associations. More generally, two of the GReX-
prioritized genes among WW have been found to activate
transcription factors; FAM64A enhances oncogenic NFkB signaling
while both FAM64A and PCSK6 activate oncogenic STAT3
signaling (69–71).

Interestingly, we found MMP1 GReX has divergent associations
with CRS across race. There are a few potential explanations. While
heritability and proportion of variance in MMP1 expression were
similar acrossWWandBWpredictivemodels, we found that the range
of MMP1 GReX was manifold among WW than BW. Potential
differences in influence of germline genetics on tumor expression
and CRS by race could be an artifact of divergent somatic or epigenetic
factors that CBCS has not assayed (72–75). Second, while studies
generally report that MMP1 tumor expression is higher in triple-
negative and basal-like breast cancer, one study reported that
MMP1 expression in tumor cells does not significantly differ by
subtype (76–78). Instead, Bostr€om and colleagues reported that
MMP1 expression differs in stromal cells of patients with different
subtypes (78). There is evidence to suggest that tumor composition,
including stromal and immune components, may influence breast
cancer progression in a subtype-specific manner. Future studies
should consider expression predictive models that integrate
greater detail on tumor cell–type composition to disentangle poten-
tial race-specific tumor composition effects on race-specific GReX
associations (79, 80).

In this study, race (derived from self-report) captures genetic
ancestry and additionally, socioeconomic context. Prior investigations
using CBCS data have reported concordance between self-reported

race and the first principal component of the combined (i.e., WW and
BW) genotype matrix. In our analysis of local ancestry–derived global
ancestry estimates and self-reported race, we found a similar, high level
of concordance. In the absence of available methods that allow
stratification or adjustments based on genetic ancestry across the
GReX analytic framework, the use of race as a stratifying variable is
intended to serve as a proxy for stratification by genetic ancestry. We
acknowledge the limitation that race may not be a viable proxy across
other populations outside CBCS, and that it is challenging to parse
effects seen across race into effects of genetic ancestry and effects of
socioeconomic context.

We foundmarked differences in the pattern of associations between
genetic ancestry and race with tumor expression and GReX of GReX-
prioritized genes, highlighting potential differences in contributions of
germline and non-germline components to tumor expression across
European and African ancestry groups. One particular example is
MCM10. In the literature, higher MCM10 tumor expression is corre-
lated with basal-like subtype, which is more prevalent among BW. The
spectrum of our observations suggests that higher MCM10 tumor
expression is associated with basal-like subtype across both BW and
WW, but that the germline-regulated component of this expression
may be stronger amongWW. Similar patterns were seen for FAM64A
and CCNB2. Analyses by race instead of genetic ancestry yielded
associations similar in magnitude and direction. Racial differences in
non-germline components of tumor expression, including tumor
methylation and somatic alternations, may partly explain race-
specific differences in GReX-prioritized genes (18, 72–75, 81, 82).
Other factors that warrant further investigation include potential
greater contribution of trans-regulation in tumor gene expression in
BW (methods for capturing trans-regulation in gene expression
predictive models are not as well developed as those for cis-regulation;
refs. 18, 83). These factors should be investigated further as transcrip-
tomic and epigenomic datasets for racially diverse cohorts of patients
with breast cancer become available.

There are a few limitations to this study. First, as CBCS used a
Nanostring nCounter probeset for mRNA expression quantification
of genes relevant for breast cancer, we could not analyze the whole
human transcriptome. While this probeset may exclude several cis-
heritable genes, CBCS contains one of the largest breast tumor
transcriptomic datasets for Black women, allowing us to build well-
powered race-specific predictive models, a pivotal step in ancestry-
specific GReX analysis. Second, CBCS lacked data on somatic
amplifications and deletions, inclusion of which could enhance the
performance of predictive models of tumor expression (84). Third,
as recurrence data were collected in a small subset with few
recurrence events, we were unable to make a direct comparison
between CRS and recurrence results, which may affect clinical
generalizability. However, to our knowledge, CBCS is the largest
resource of PAM50-based CRS data.

Our analysis provides evidence of race-specific putative germline
associations to CRS, mediated through associations between genet-
ically regulated tumor expression of GReX-prioritized genes and
PAM50 expressions and subtype. This work underscores the need
for larger and more diverse cohorts for genetic epidemiology studies
of breast cancer. Future studies should consider subtype-specific
genetics (i.e., stratification by subtype in predictive model training
and association analyses) to elucidate heritable gene expression
effects on breast cancer outcomes both across and within subtype,
which may yield further hypotheses for more fine-tuned clinical
intervention.
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