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Abstract

Resumo

Objective: To determine whether the radiomic features of lung lesions on computed tomography correlate with overall survival in 
lung cancer patients.
Materials and Methods: This was a retrospective study involving 101 consecutive patients with malignant neoplasms confirmed 
by biopsy or surgery. On computed tomography images, the lesions were submitted to semi-automated segmentation and were 
characterized on the basis of 2,465 radiomic variables. The prognostic assessment was based on Kaplan–Meier analysis and 
log-rank tests, according to the median value of the radiomic variables.
Results: Of the 101 patients evaluated, 28 died (16 dying from lung cancer), and 73 were censored, with a mean overall survival 
time of 1,819.4 days (95% confidence interval [95% CI]: 1,481.2–2,157.5). One radiomic feature (the mean of the Fourier trans-
form) presented a difference on Kaplan–Meier curves (p < 0.05). A high-risk group of patients was identified on the basis of high 
values for the mean of the Fourier transform. In that group, the mean survival time was 1,465.4 days (95% CI: 985.2–1,945.6), 
with a hazard ratio of 2.12 (95% CI: 1.01–4.48). We also identified a low-risk group, in which the mean of the Fourier transform 
was low (mean survival time of 2,164.8 days; 95% CI: 1,745.4–2,584.1).
Conclusion: A radiomic signature based on the Fourier transform correlates with overall survival, representing a prognostic bio-
marker for risk stratification in patients with lung cancer.

Keywords: Tomography, X-ray computed; Radiographic image interpretation, computer-assisted; Lung neoplasms; Prognosis.

Objetivo: Associar características radiômicas de lesões pulmonares em imagens de tomografia computadorizada com a sobrevida 
global de pacientes com câncer de pulmão.
Materiais e Métodos: Estudo retrospectivo composto por 101 pacientes consecutivos com neoplasia maligna confirmada por 
biópsia/cirurgia. As lesões foram semiautomaticamente segmentadas e caracterizadas por 2.465 variáveis radiômicas. A avalia-
ção prognóstica foi baseada na análise de Kaplan-Meier e no teste log-rank, de acordo com a mediana dos valores das variáveis.
Resultados: Vinte e oito pacientes faleceram (16 por câncer de pulmão) e 73 foram censurados, com tempo médio de sobrevida 
de 1.819,4 dias (intervalo de confiança 95% [IC 95%]: 1.481,2–2.157,5). Uma característica radiômica (média de Fourier) apre-
sentou diferença nas curvas de Kaplan-Meier (p < 0,05). Um grupo de pacientes de maior risco foi identificado a partir de valores 
altos da variável: sobrevida de 1.465,4 dias (IC 95%: 985,2–1.945,6) e razão de risco de 2,12 (IC 95%: 1,01–4,48). Um grupo de 
menor risco foi identificado a partir de valores baixos da variável (sobrevida de 2.164,8 dias; IC 95%: 1.745,4–2.584,1).
Conclusão: Este estudo apresentou uma assinatura radiômica em imagens de tomografia computadorizada, baseada na trans-
formada de Fourier, correlacionada com a sobrevida global de pacientes com câncer de pulmão, representando assim um bio-
marcador prognóstico.

Unitermos: Tomografia computadorizada; Interpretação de imagem radiográfica assistida por computador; Neoplasia pulmonar; 
Prognóstico.

INTRODUCTION

Lung cancer is the leading cause of cancer-related 
death worldwide, accounting for one in five deaths(1). 
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Defining the prognosis of lung cancer is a major chal-
lenge, because it can vary dramatically depending on the 
tumor stage at diagnosis(2). The choice of treatment for 
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a malignant tumor is made primarily on the basis of the 
international neoplasm staging system, also known as 
the tumor–node–metastasis (TNM) system(3). However, 
studies have shown that other clinical factors, such as 
tumor histological type and the presence of specific ge-
netic mutations, can also affect the prognosis, the clini-
cal decision-making process, and the treatment(4,5).

Computed tomography (CT) is the imaging method 
most widely used for diagnosing and staging lung can-
cer(6). In routine clinical practice, lung cancer is assessed 
on the basis of tumor size, signs of invasion into adjacent 
structures, lymph node involvement, and lesions sugges-
tive of distant metastases. However, as other studies have 
shown(2,7), in addition to the TNM staging, other tumor 
imaging features can also affect prognosis and the thera-
peutic decision-making process. Those imaging features 
usually relate to the shape and attenuation pattern of the 
lesions (such as heterogeneous enhancement, enhance-
ment intensity, spiculated contours, and two-dimensional 
diameter on the axial plane) and are evaluated in a subjec-
tive, qualitative, or semi-quantitative manner(8,9). 

Radiomics, on the other hand, has been described 
as a promising, quantitative, reproducible tool for the 
characterization of medical images(10,11). Simply put, 
radiomics performs a massive extraction of quantitative 
imaging variables and then a computer analysis of those 
variables, combining them with clinical and biochemical 
data related not only to diagnosis, but also to clinical out-
come, histological data, and genetic mutations, increas-
ing the power of biomarkers and decision support sys-
tems(12–14). Radiomics is also able to quantify the spatial 
complexity of tumors and to identify tumor heterogeneity, 
which is the presence of multiple histological and genetic 
subregions within a tumor, a feature that can be related 
to disease progression and treatment resistance(15,16). In 
view of recent advances in targeted therapies and immu-
notherapies, it is now imperative to carry out comprehen-
sive and individualized assessments of neoplasms, and 
radiomics can do this in a noninvasive, rapid, low-cost 
manner in routine clinical practice(17,18).

The objective of the present study was to determine 
whether the radiomic analysis of lung cancer lesions on 
CT images correlates with prognosis and overall survival 
in patients with lung cancer.

MATERIALS AND METHODS
Patients 

This was a retrospective study. The study was ap-
proved by the research ethics committee of our institu-
tion. Because of the retrospective nature of the study, the 
requirement for written informed consent was waived. 
The initial sample included 126 consecutive patients 
with lesions consistent with lung cancer, mainly pulmo-
nary nodules, confirmed by histology or surgery, who were 
referred for further investigation and diagnosis after a 

multidisciplinary discussion. Patients were diagnosed and 
treated between 2010 and 2017 at one of the hospitals 
operated by our institution. Of those 126 cases, 25 were 
excluded from the analysis: 19 because the standard CT 
protocol for administration of intravenous iodinated con-
trast medium was not followed (which affected the image 
characterization process) or because the images showed 
significant artifacts; four because there were other opaci-
ties adjacent to the tumor (which affected the segmenta-
tion process); and two because not all of the clinical data 
were available. The 101 cases included had diagnostic-
quality contrast-enhanced CT images and all the neces-
sary clinical data available for the analysis. The clinical 
and pathological data were obtained from the electronic 
medical records of the patients (Table 1).

CT image acquisition

Before any diagnostic or therapeutic intervention, the 
patients underwent CT in a 16-slice scanner (Brilliance 
Big Bore; Philips Healthcare, Eindhoven, Netherlands) or 
in a 128-slice scanner (Aquilion Prime; Toshiba Medical 
Systems, Tokyo, Japan). In all examinations, the image ac-
quisition and reconstruction protocols were similar, varying 
depending on the clinical routine of the institution. The 
chest examinations were performed during a deep inspira-
tory breath hold, in a single volumetric acquisition in the 
caudocranial direction, with automatic exposure control, 
after intravenous administration of 80–100 mL of iodinat-
ed contrast medium (flow rate, 3.0 mL/s) adjusted accord-
ing to patient weight in a rapid bolus injection, followed by 
injection of 30 mL of saline solution (flow rate, 3.0 mL/s). 
The images were reconstructed using a 512 × 512 matrix, 
a slice thickness of 0.5–1.25 mm, a standard filter (for the 
radiomic analysis), and a hard filter (used for visualization 
and manual measurement of the lesions in lung window 
settings). Other typical acquisition parameters were a tube 

N = 101

66.4 ± 9.4 (41–85)
45/56
84/17
33/68

58/27/16
39/47/6/9

53/20/20/8
79/22

31/3/27/20/20
6/95

32.3 ± 14.6 (10–98)

Table 1—Main clinical, pathological, and imaging features of the malignant 
lung lesions in our sample.

Feature

Age (years), mean ± SD (range)
Gender (female/male), n
Smoking history (yes/no), n
History of another primary cancer (yes/no), n
Histopathology (ADC/SCC/other), n
T stage (1/2/3/4), n
N stage (0/1/2/3), n
M stage (0/1), n
Location (RUL/ML/RLL/LUL/LLL), n
Position (central/peripheral), n
Diameter (millimeters), mean ± SD (range)

ADC, adenocarcinoma; SCC, squamous cell carcinoma; other, 7 small cell 
carcinomas, 5 carcinoids, 1 poorly differentiated carcinoma, 1 unspecified 
carcinoma, 1 large call carcinoma, 1 adenosquamous carcinoma; RUL, right 
upper lobe; ML, middle lobe; RLL, right lower lobe; LUL, left upper lobe; LLL, 
left lower lobe.
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voltage of 120 kVp, a tube current of 39–464 mAs, and a 
rotation time < 1 s.

Segmentation of the lesions

In order to perform the radiomic analysis, the lesions 
had to be segmented on the CT scans. The segmentation 
anatomically separates the structures or tissues seen in 
imaging examinations. In our study, all lesions were sub-
mitted to semi-automated segmentation with the Grow-
Cut tool (3D Slicer, Boston, MA, USA), a interactive seg-
mentation method(19). The GrowCut method has been 
validated for lung cancer assessment on CT images(20,21). 
For the semi-automated segmentation, two regions—in-
side and outside the tumor, respectively (Figures 1a and 
1b)—were marked on three slices (axial, sagittal, and coro-
nal) with lung window settings, at a level of −500 HU and 
a width of 1,400 HU. The tumor tissue was then detected 
in three dimensions with the GrowCut algorithm (Figure 
1c), after which the external portion of the tumor was re-
moved (Figure 1d) and the tumor borders were delimited 
(Figure 1e). Finally, the tumor imaging data were exported 
as a structured Digital Imaging and Communications in 
Medicine for Radiation Therapy file(22) to be used in the 
radiomic feature extraction process.

Radiomic features

The radiomic feature extraction process consists of a 
massive calculation of numerical variables that represent 

the visual content of an image (Figure 2). In this study, 
the tumors were characterized on the basis of 2,465 quan-
titative variables, with specific software(23–25): IBEX (Uni-
versity of Texas MD Anderson Cancer Center, Houston, 
TX, USA); LIRe-JFeatureLib (Institute for Information 
Technology, Klagenfurt University, Klagenfurt, Austria); 
and ImageJ (National Institutes of Health, Bethesda, MD, 
USA). The radiomic features were classified into four 
main groups: first order, second order, higher order, and 
shape(11,26). First-order features (gray level and histogram) 
individually describe the distribution of the tumor pixel 
values. Second-order features (co-occurrence matrix, run 
length matrix, and Tamura texture) describe spatial rela-
tionships between the tumor voxels. Higher-order features 
(neighboring gray tone difference matrix, Laplacian-of-
Gaussian filters, Gabor filters, Fourier transform, Haar 
wavelet, and fractal dimension estimate) describe repeti-
tive texture patterns imposed by filters or transforms. And 
finally, shape features describe the borders and geometric 
properties of the tumor.

Survival analysis

The prognosis was analyzed on the basis of the correla-
tion between CT radiomic features and overall survival. We 
used the Kaplan–Meier method to calculate the survival 
times and the probability of all-cause death. Patients who 
were still alive or had been lost to follow-up were censored 
for the calculations of the overall survival probabilities. 

Figure 1. Semi-automated segmentation of a pulmonary adenocarcinoma performed with the GrowCut method. a: Lesion seen on an axial CT image with lung 
window settings. b: Internal and external tumor regions. c: GrowCut results. d: Removal of the external region. e: Delimitation of the lesion borders.

Figure 2. Examples of tumors on axial CT images with lung window settings and their respective radiomic feature values. a: Lung adenocarcinoma in a 68-year-
old male patient who evolved to death (overall survival, 55 days). b: Lung adenocarcinoma in a 77-year-old female patient who was still alive at this writing 
(overall survival, 2801 days).

(a)
Kurtosis (histogram): 7.4871466281395
Energy (co-occurrence matrix): 0.00564141197340657
Granularity (Tamura): 3.42483660130719
Variance (Fourier transform): 781.076050482935
Low-high band energy at level 2 (wavelet): 17840
Convexity (shape): 0.809193833732717
Fractal dimension estimate: 2.30852226495404

(b)
Kurtosis (histogram): 3.9621792362652
Energy (co-occurrence matrix): 0.00668102072118725
Granularity (Tamura): 3.48785714285714
Variance (Fourier transform): 928.893730778773
Low-high band energy at level 2 (wavelet): 13143
Convexity (shape): 0.839421954495918
Fractal dimension estimate: 2.38653392082874
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Patients were grouped according to the median radiomic 
feature value(14). The log-rank test was used in order to 
determine the statistical difference between the Kaplan–
Meier curves in each group so as to identify the features 
with the greatest prognostic potential (R survival package; 
R Foundation for Statistical Computing, Vienna, Austria). 
Values of p < 0.05 were considered statistically significant.

RESULTS

Twenty-eight patients died during the study, 16 of 
them dying from lung cancer. Seventy-three patients were 
censored. The mean overall survival was 1,819.4 days 
(95% CI: 1,481.2–2,157.5). Of the 28 patients who died, 
22 (79%) were men, with a mean age of 68.7 ± 8.8 years, 
and 6 (21%) were women, with a mean age of 66.8 ± 7.7 
years. The following clinical stage (TNM) distribution was 
found in our sample: T1, T2, T3, and T4 in 10 (36%), 14 
(50%), 2 (7%), and 2 (7%) of the patients, respectively; 
N0, N1, N2, and N3 in 11 (39%), 4 (14%), 10 (36%), and 
3 (11%), respectively; and M0 and M1 in 16 (57%) and 12 
(43%), respectively. The following histological types were 
found: adenocarcinoma, in 14 cases (50%); squamous cell 
carcinoma, in 8 (28%); small cell carcinoma, in 3 (10%); 
unspecified non-small cell lung cancer (NSCLC), in 1 
(4%); poorly differentiated neuroendocrine NSCLC, in 1 
(4%); and adenosquamous NSCLC, in 1 (4%).

The mean of the Fourier transform was the only ra-
diomic feature that showed a statistically significant dif-
ference in the Kaplan–Meier curve analysis (Table 2). Pa-
tients with a high mean of the Fourier transform (greater 
than the median of 109.10) were identified as being at 
high risk, with a hazard ratio of 2.12 (95% CI: 1.01–4.48). 
That high-risk group was composed of 29 men (57%), with 
a mean age of 68.1 ± 9.4 years, and 22 women (43%), 
with a mean age of 67.1 ± 7.5 years (Figure 3). The fol-
lowing clinical stage distribution was seen in this group: 
T1, T2, T3, and T4 in 16 (31%), 25 (49%), 5 (10%), and 
5 (10%) of the patients, respectively; N0, N1, N2, and N3 
in 22 (43%), 10 (20%), 15 (29%), and 4 (8%), respectively; 
and M0 and M1 in 38 (75%) and 13 (25%), respectively. 
The histological types found in this group were adenocar-

cinoma, in 30 cases (59%); squamous cell carcinoma, in 
10 (19%); small cell carcinoma, in 5 (10%); carcinoid tu-
mor, in 2 (4%); large cell carcinoma, in 1 (2%); unspecified 
NSCLC, in 1 (2%); poorly differentiated neuroendocrine 
NSCLC, in 1 (2%); and adenosquamous NSCLC, in 1 
(2%). Patients with a low mean of the Fourier transform 
(less than or equal to the median of 109.10) were identi-
fied as being at low risk, with a hazard ratio of 0.47 (95% 
CI: 0.22–0.99).

Figure 4 illustrates the tumor heterogeneity quanti-
fication in two lesions of the risk groups stratified on the 
basis of the mean of the Fourier transform. In comparison 
with the lower-risk lesions, the higher-risk lesions showed 
greater heterogeneity, characterized by a larger number of 
peaks in the chart showing the three-dimensional distribu-
tion of the gray levels and by the presence of more infil-
trating regions in the local energy map. 

DISCUSSION

Radiomics has proven to be a promising tool in the de-
velopment of quantitative biomarkers for medical imaging, 
increasing diagnostic accuracy, improving prognostic as-
sessment, and supporting personalized medicine(11,17). In 

Table 2—Radiomic features of higher prognostic potential for lung cancer obtained from contrast-enhanced CT images in our sample (N = 101).

Radiomic feature (range)

Mean of the Fourier transform (94.92 to 122.91)

Co-occurrence matrix prominence (35,997.37 to 3,885,382.04)

Co-occurrence matrix correlation (–0.049 to 0.635)

Co-occurrence matrix cluster shade (–37,575.62 to 4,516.65)

Highest value of the Fourier transform (189 to 238)

Values

High
Low
Low
High
Low
High
High
Low
High
Low

P-value

0.048

0.051

0.057

0.058

0.061

Number 
of deaths

18
10
17
11
17
11
17
11
18
10

Overall survival (days) 
Mean (95% CI)

1,465.4  (985,2–1,945.6)
2,164.8  (1,745.4–2,584.1)
1,190.3  (877,9–1,502.7)

2,155.8  (1,756.1–2,555.5)
1,594.8  (1,106.7–2,082.9)
2,051.5  (1,608.9–2,494.1)

1,157.2  (840,3–1,474.1)
2,101.9  (1,669.8–2,534.0)
1,483.4  (1,014.4–1,952.4)
2,226.3  (1,847.1–2,605.4)

Hazard ratio (95% CI)

2.12  (1.01–4.48)
—

2.12  (0.99–4.52)
—

2.07  (0.98–4.40)
—

2.08  (0.98–4.43)
—

2.04  (0.97–4.31)
—

Figure 3. Kaplan–Meier curves of the radiomic feature mean of the Fourier 
transform. Each dash on the curves represents a censored patient.
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the present study, we investigated the association between 
quantitative radiomic features on CT images and overall 
survival in patients with malignant lung neoplasms. In our 
sample, a radiomic feature related to tumor heterogene-
ity (the mean of the Fourier transform) correlated with 
overall survival.

Studies have shown that the features used for clinical 
staging in the TNM system are not the only CT features of 
primary lung tumors that correlate with prognosis. For ex-
ample, the presence of cavities and the total tumor volume 
(including non-solid components) are factors that corre-
late with prognosis in patients with squamous cell NSCLC 
and adenocarcinoma, respectively(2). There are studies 
that have quantitatively assessed NSCLC using radiomics. 
Van Timmeren et al.(27) presented three CT features with 
prognostic value for NSCLC: the mode (most common 
value) of the image histogram after the use of a Laplacian-
of-Gaussian filter, the mean intensity of a volume centered 
on the voxel with the highest gray level, and the inverse 
variance of the co-occurrence matrix calculated after a 
wavelet transform. Carvalho et al.(28) discovered the short-
run gray-level emphasis of the gray-level run length matrix 
on positron emission tomography images combined with 
CT, a feature that correlates with prognosis in patients 
with lung neoplasms. Aerts et al.(14) identified a radiomic 
signature associated with survival in patients with NSCLC 
composed of four features: (I) first-order energy, (II) shape 
compactness, (III) non-uniformity of the gray-level run 
length matrix, and (IV)  non-uniformity of the gray-level 
run length matrix after a wavelet transform.

In the present study, we identified a radiomic signa-
ture, related to tumor heterogeneity, on CT images of lung 
lesions to have prognostic value for patients with lung can-
cer. To our knowledge, this finding has not been reported 
previously, except in a preliminary study presented in ab-
stract form at a scientific conference. Radiomics-based 
prognostic assessment on chest CT images is an objective, 
noninvasive, low-cost method with great potential for use 
in routine clinical practice, depending only on appropriate 
scientific validation and definition of models for its inclu-
sion as a tool in actual clinical settings(29). Conceptually, 
the Fourier transform is used in order to obtain imaging 
features in the frequency domain. The mean frequency 
of the spectrum after the fast Fourier transform is associ-
ated with variations in smoother or rougher texture pat-
terns, therefore being related to tumor heterogeneity(29). 
Higher-risk lesions (overall mortality) had higher means of 
the Fourier transform and rougher, less uniform textures, 
whereas lower-risk lesions had lower means of the Fourier 
transform and smoother, more uniform textures.

Our study has some limitations. First, the sample size 
was relatively small. We chose to study only contrast-en-
hanced CT scans of diagnostic quality that were acquired 
by following an appropriate clinical protocol, rejecting 
unenhanced images and those with significant artifacts. 
Although all examinations included in our study followed 
the same clinical protocol for contrast medium adminis-
tration, no corrections were made for possible differences 
in volume and flow rate depending on patient body type or 
cardiac status, factors that can affect enhancement pat-

Figure 4. Quantification of tumor heterogeneity in the lesions, stratified by the mean of the Fourier transform. a: Axial CT image, with lung window settings, 
showing the segmented tumor. b: Three-dimensional distribution of the gray levels. c: Map reflecting the local energy of the tumor with a 5 × 5 pixel window.

Higher risk case 
with mean of the 

Fourier transform of 
118.510664198133

Lower risk case 
with mean of the 

Fourier transform of 
102.280666185461
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terns. In addition, we included examinations performed 
on CT scanners with and without iterative reconstruction, 
which can also influence image resolution and the fea-
tures analyzed. The number of deaths to be used in the 
overall survival analysis was also limited; only 16 deaths 
were directly related to lung cancer, which decreased the 
statistical power of our survival analysis. That is prob-
ably due to the fact that we focused on smaller (mainly 
T1 and T2) lesions, having a multidisciplinary discussion 
about the best course of action, whereas more aggressive 
tumors, which are associated with worse prognoses and 
shorter survival times, were excluded. Furthermore, the 
various courses of action dependent on the different types 
of lung neoplasms and the medications available can also 
affect the survival analysis and the prognosis. Studies like 
the present one serve as a proof of concept, showing the 
applicability of the radiomic model as a prognostic tool. 
However, for the effective inclusion of radiomics in the 
clinical setting, further studies should be conducted and 
models for its use within the diagnostic imaging workflow 
should be established. For example, it is important and 
advisable to conduct stability and reproducibility analyses 
of radiomic variables in larger volumes of data, in order 
to gather more evidence about the robustness of the fea-
tures and to validate the radiomic approach. Although ra-
diomics is meant to be more comprehensive and include 
aspects related to prognostic assessment and to therapeu-
tic decision-making, it has conceptual and methodologi-
cal bases in common with computer-aided diagnosis. The 
U.S. Food and Drug Administration has recently defined 
a set of rules aimed at facilitating the approval process of 
computer-aided detection systems(30). These rules stipu-
late, among other requirements, that the documentation 
of the products include a detailed description of the pa-
tient population for which the system is indicated and 
a detailed description of the compatible equipment and 
compatible image acquisition protocols, as well as possible 
warnings and discussions about the product limitations, 
including situations in which the device can fail or may 
not achieve the expected performance level (e.g., because 
of poor image quality or use with certain subpopulations), 
as applicable. These rules aim to prevent, or at least mini-
mize, performance variations in the process of image pat-
tern recognition, enabling a more widespread use of the 
computer solution, assuming that the boundary condi-
tions have been guaranteed. It is expected that something 
similar will be defined for the computational algorithms 
used in radiomics.

In conclusion, the present study investigated whether 
different radiomic methods could be considered effective 
quantitative biomarkers in images of malignant lung neo-
plasms. We identified a radiomic CT signature based on 
the Fourier transform that is potentially useful for prog-
nostic assessment, risk stratification, and quantification of 
tumor heterogeneity in patients with lung cancer.
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