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ABSTRACT

Arachidonic acid 15-lipoxygenase (ALOX15) is an enzyme that can oxidize polyunsaturated fatty 
acids. ALOX15 is strongly expressed in airway epithelial cells, where it catalyzes the conversion 
of arachidonic acid to 15-hydroxyeicosatetraenoic acid (15-HETE) involved in various airway 
inflammatory diseases. Interleukin (IL)-4 and IL-13 induce ALOX15 expression by activating 
Jak2 and Tyk2 kinases as well as signal transducers and activators of transcription (STATs) 
1/3/5/6. ALOX15 up-regulation and subsequent association with phosphatidylethanolamine-
binding protein 1 (PEBP1) activate the mitogen-activated extracellular signal-regulated kinase 
(MEK)-extracellular signal-regulated kinase (ERK) pathway, thus inducing eosinophil-mediated 
airway inflammation. In addition, ALOX15 plays a significant role in promoting the migration 
of immune cells, such as immature dendritic cells, activated T cells, and mast cells, and airway 
remodeling, including goblet cell differentiation. Genome-wide association studies have 
revealed multiple ALOX15 variants and their significant correlation with the risk of developing 
airway diseases. The epigenetic modifications of the ALOX15 gene, such as DNA methylation 
and histone modifications, have been shown to closely relate with airway inflammation. This 
review summarizes the role of ALOX15 in different phenotypes of asthma, chronic obstructive 
pulmonary disease, chronic rhinosinusitis, aspirin-exacerbated respiratory disease, and nasal 
polyps, suggesting new treatment strategies for these airway inflammatory diseases with 
complex etiology and poor treatment response.
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INTRODUCTION

There is a high incidence of worldwide airway inflammatory diseases seriously affecting 
the quality of life of patients. Recent epidemiological surveys of the Chinese population 
have shown that the prevalence rates of asthma, chronic rhinosinusitis (CRS), and chronic 
obstructive pulmonary disease (COPD) are 4.2%, 2.1%, and 8.87%, respectively.1-3 These 
airway diseases often co-exist in patients and share common molecular mechanisms, which 
should be focused on in order to develop effective treatment approaches. In this review, we 
systematically analyzed the role of arachidonic acid 15-lipoxygenase (ALOX15), including its 
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genetic variations and epigenetic modifications, in eosinophilic inflammation, immune cell 
migration, and airway remodeling, which are the key processes underlying the development 
of different phenotypes of asthma, COPD, CRS, and aspirin-exacerbated respiratory disease 
(AERD). The clinical significance of ALOX15 as a potential drug target was also evaluated.

ALOX15 OVERVIEW

Enzymatic activity
Polyunsaturated fatty acids (PUFAs) and their metabolites play a vital role in the growth 
and development of normal cells. Lipoxygenases (LOXs) are heme-free dioxygenases that 
can catalyze the peroxidation of PUFAs to corresponding hydroperoxy derivatives.4 The 
human genome contains 6 functional LOX genes (ALOX15, ALOX15B, ALOX12, ALOX12B, 
ALOX5, and ALOXE3), each encoding a different LOX enzyme.5 ALOX15 (also called 15-LOX) 
uses physiological substrates such as arachidonic acid (AA), docosahexaenoic acid (DHA), 
eicosapentaenoic acid (EPA), α-linolenic acid (ALA), γ-linolenic acid (GLA), and linoleic acid 
(LA), which exist either in a free form or are incorporated into phospholipids, glycerides, or 
cholesterol esters.6 AA, an ω-6 PUFA representing a major component of the cell membrane 
phospholipids and the metabolic precursor of eicosanoids,7 is converted by ALOX15 into 
15-[S]-hydroperoxyeicosatetraenoic acid (15-[S]-HPETE) and 15-hydroxyeicosatetraenoic acid 
(15-HETE), further metabolized into various bioactive molecules.6 The reactions of ALOX15 
with DHA, EPA, and other substrates also produce metabolites with diverse physiological 
activities involved in the development of various diseases.8-10

Physiological functions
Normally, ALOX15 is expressed in the cells of the hematopoietic, endocrine, immune, and 
respiratory systems, where it has different physiological functions and plays an important 
role in maintaining body homeostasis.11-14 In the respiratory system, ALOX15 has a higher 
level of expression in airway epithelial cells, where it releases chemokines acting on immune 
cells such as eosinophils, and regulates mucus secretion. In human airway epithelial cells, 
ALOX15 participates in the production of eoxins (EXs) that increase the permeability of 
endothelial cells in vitro: 15-[S]-HPETE produced by ALOX15 from AA is converted into EXA4, 
which is used by glutathione transferase P1-1 to generate EXC4 being further converted into 
EXD4 and EXE4.15 During mucociliary differentiation of normal human tracheobronchial 
epithelial cells, ALOX15 is not expressed at the early stage, but is strongly up-regulated at 
the late stage in fully differentiated cells, where it metabolizes AA and LA into 15-HETE 
and 13-hydroxyoctadecadienoic acid (13-HODE), respectively.16 Higher levels of ALOX15 in 
the epithelium correlate with the activation of extracellular signal-regulated kinase (ERK). 
ALOX15-generated 15-HETE is conjugated to phosphatidylethanolamine (PE) and then 
form 15-HETE-PE; both ALOX15 and 15-HETE-PE act as signaling molecules interacting 
with phosphatidylethanolamine-binding protein 1 (PEBP1) to activate ERK, thus resulting 
in the induction of interleukin (IL)-4 receptor α (IL-4Rα) downstream pathways.17 Under 
homeostatic conditions, PEBP1, also known as Raf-1 kinase inhibitor, binds to Raf-1 and 
prevents its phosphorylation, thus inhibiting Raf-1-mediated mitogen-activated protein kinase 
(MAPK) signaling.18 Furthermore, ALOX15 expression is induced by IL-4 and IL-13 through 
activation of Jak2 and Tyk2 kinases as well as signal transducers and activators of transcription 
(STATs)-1/3/5/6.19 Thus, after induction with IL-4/IL-13, both ALOX15 and its product 15-HETE-
PE cause competitive dissociation of Raf-1 from PEBP1 to activate ERK, which enhances the 
expression of IL-4Rα signaling-dependent genes.17 Cumulatively, these data indicate that in 
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human airway epithelial cells, ALOX15 interacts with PEBP1 to sustain MAPK/ERK activation 
and enhance pro-inflammatory signaling pathways related to airway diseases.

ALOX15 type B (ALOX15B), first found by Brash et al.20 in the human skin, has about 40% 
homology with ALOX15 and shows similar enzymatic activity towards AA; it differs from 
ALOX15 in the catalytic profile as well as in tissue distribution. Thus, the expression of ALOX15 
in human macrophages is inducible, whereas that of ALOX15B is constitutive, suggesting that 
ALOX15B is involved in the maintenance of lipid homeostasis in macrophages; however, its role 
in the respiratory system is not as significant as that of ALOX15.21,22

ROLE OF ALOX15 IN AIRWAY INFLAMMATORY DISEASES

ALOX15 and its metabolites are important factors in the pathophysiology of diseases of 
both the lower respiratory tract (asthma and COPD) and the upper respiratory tract (CRS 
and AERD) because of their role in the regulation of eosinophil-mediated inflammation, 
migration of immune cells (immature dendritic cells, activated T cells, and mast cells), and 
airway remodeling including goblet cell differentiation. Here, we summarize the pathological 
effects of ALOX15 and its metabolites in various airway diseases (Table) as well as the 
molecular mechanisms underlying airway inflammation (Fig. 1).

ALOX15 promotes eosinophilic inflammation
Although ALOX15 is not expressed in unstimulated human peripheral macrophages, it is 
significantly up-regulated by type 2 inflammatory factors. In patients with asthma, airway 
macrophages are the main source of 15-HETE, whose level correlates with tissue eosinophil 
numbers, sub-basement membrane thickness, and expression of tissue inhibitor of 
metalloproteinase-1 in bronchoalveolar lavage fluid (BALF).23,24 Another ALOX15 product in 
macrophages, 12-[S]-HETE, has been shown to cause bronchial epithelial damage in asthma.25

In addition to macrophages, ALOX15 is strongly expressed in airway epithelial cells 
under physiological and pathological conditions. Ordovas-Montanes et al.26 carried out 
comprehensive expression profiling in CRS using single-cell RNA sequencing and revealed 
the difference in ALOX15 expression between non-polyp and polyp tissues. In non-polyp 
tissues, ALOX15 was found to be mainly expressed in ciliated cells, whereas in polyps, its 
expression was high in ciliated, apical, basal, and glandular cells.

Several studies have proved that ALOX15 participates in eosinophil-mediated inflammation, 
which plays a key role in the occurrence and progression of asthma and COPD. A high 
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Table. The involvement of ALOX15 and its metabolites in the pathogenesis of airway inflammatory diseases
Disease ALOX15 expression Main metabolites Pathogenesis Reference
Asthma Upregulated in bronchial epithelium 

and macrophages
15-HETE Tissue eosinophilic inflammation 23,24

15-HETE, 5,15-diHETE, 13-HODE Airway hyperresponsiveness 31
12-[S]-HETE Bronchial epithelial damage 25
15-HETE-PE Goblet cell metaplasia and mucus hypersecretion 44,45

CRS Upregulated in nasal epithelium 15-HETE Tissue eosinophilic inflammation 35
ND Epithelial-mesenchymal transition 49

COPD Upregulated in whole blood ND Tissue eosinophilic inflammation 27
AERD Upregulated in nasal epithelium 15-HETE Abnormal metabolism of AA 37-39
AA, arachidonic acid; AERD, aspirin-exacerbated respiratory disease; ALOX15, arachidonic acid 15-lipoxygenase; COPD, chronic obstructive pulmonary disease; CRS, 
chronic rhinosinusitis; 5,15-diHETE, 5S,15S-dihydroxyeicosatetraenoic acid; ERK, extracellular signal-regulated kinase; 15-HETE, 15-hydroxyeicosatetraenoic acid; PE, 
phosphatidylethanolamine; 13-HODE, 13-hydroxyoctadecadienoic acid; 12-[S]-HETE, 12-[S]-hydroxyeicosatetraenoic acid; ND, not determined.



proportion of patients with COPD (20%–40%) have eosinophilic inflammation and 
demonstrate the up-regulation of ALOX15 expression.27,28 Similarly, most patients with 
asthma have a pattern of allergic inflammation in the airways characterized by eosinophilia.29 
In the BALF of patients with asthma, the level of 15-HETE, which is the main metabolite of 
the ALOX15 pathway, is significantly higher than in that of normal individuals, and highest 
in patients having severe asthma with airway eosinophilia.24 Transcriptome analysis of blood 
samples from 298 patients with moderate to severe asthma revealed that ALOX15 was one 
of the 50 genes showing the strongest correlation with the absolute eosinophil count in 
peripheral blood, and that its expression could predict eosinophilic airway inflammation, 
blood eosinophil numbers, and anti-IL-13 therapeutic effect.30 In patients with asthma 
treated with benralizumab, a humanized non-glycosyl monoclonal antibody targeting the 
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Fig. 1. Specific molecular metabolic pathways of ALOX15 and its reaction products in airway inflammation. ALOX15 induces the expression of chemokines such 
as MIP-1α, MIP-1β, RANTES, and IP-10, thus promoting the migration of immature dendritic cells, activated T cells, and mast cells. ALOX15 expressed in human 
airway epithelial cells catalyzes the conversion of AA into 15-HETE, which is then conjugated with PE to form 15-HETE-PE or further metabolized into biologically 
active molecules such as eoxins and 5,15-diHETE. 15-HETE-PE induces the expression of CCL26, MUC5AC, and periostin to promote the migration of eosinophils, 
the differentiation of goblet cells, the adhesion and migration of eosinophils, and subepithelial fibrosis, whereas eoxins increase the permeability of endothelial 
cells, and 5,15-diHETE promotes eosinophil infiltration. 
ALOX15, arachidonic acid 15-lipoxygenase; MIP, macrophage inflammatory protein; RANTES, Regulated upon Activation, Normal T Cell Expressed and Presumably 
Secreted; IP-10, interferon-γ-inducible protein 10; AA, arachidonic acid; 15-HETE, 15-hydroxyeicosatetraenoic acid; PE, phosphatidylethanolamine; 5,15-diHETE, 
5S,15S-dihydroxyeicosatetraenoic acid; CCL26, chemokine ligand 26; MUC5AC, mucin 5AC.



IL-5 receptor, ALOX15 expression was significantly decreased, and this effect was stronger 
in patients with high eosinophil counts than with low eosinophil counts.27 In a mouse model 
of asthma induced by house dust mites, the levels of various ALOX15 products, such as 15-
HETE, 5S,15S-dihydroxyeicosatetraenoic acid (5,15-diHETE), and 13-HODE were significantly 
increased, resulting in airway hyperresponsiveness and pulmonary eosinophilia.31 Overall, 
these findings indicate that ALOX15 and its metabolites stimulate eosinophilia in airway 
diseases, thus playing a key role in subsequent airway inflammation.

In addition to lower respiratory tract diseases, ALOX15 has a similar pro-inflammatory function 
in upper respiratory tract diseases including CRS and AERD. CRS is a complex heterogeneous 
condition usually characterized by type 2 inflammation driven by IL-5 and IL-13, which activate 
inflammatory cells such as mast cells and eosinophils.32,33 It has been shown that ALOX15 
expression is significantly increased in all patients with CRS compared to healthy controls.34 
A recent study has indicated that the expression of ALOX15 is significantly up-regulated 
in nasal polyp (NP) epithelial cells and middle turbinate epithelial cells of patients with 
chronic rhinosinusitis with nasal polyps (CRSwNP) and co-localized with that of eosinophil 
chemokine ligand 26 (CCL26) which mediates the recruitment and activation of eosinophils at 
inflammation sites.35 In addition, increasing evidence suggests that ALOX15-produced 15-HETE 
plays an important role in aspirin intolerance. Furthermore, ALOX15 expression and 15-HETE 
production have been shown to be increased in patients with CRS and aspirin intolerance.36-39

Altogether these data indicate that ALOX15 participates in the airway diseases of the upper 
and lower respiratory tracts by regulating eosinophilic inflammation. In airway epithelial 
cells of patients with asthma or CRSwNP, IL-4 and/or IL-13 not only induce ALOX15 
expression and 15-HETE-PE production, but also up-regulate CCL26 through activation of 
the MAPK/ERK pathway.17,40 In turn, CCL26 activates C-C chemokine receptor 3 (CCR3), thus 
stimulating the infiltration of eosinophils from the circulation into tissues, which is closely 
related to the pathogenesis of airway inflammatory diseases.41

ALOX15 promotes the migration of immune cells
The increased infiltration of immature dendritic cells, activated T cells, and mast cells into 
airway tissues is an important feature of airway inflammatory diseases such as asthma and 
COPD. In an A549 cell model, Liu et al.42 found that the ectopic expression of ALOX15 resulted 
in the production of 15-HETE, 8S,15S-diHETE, and 15-keto-6Z,8Z,11Z,13E-eicosatetraenoic 
acid (15-KETE), as well as the secretion of chemokines macrophage inflammatory protein 
(MIP)-1α (CCL3), MIP-1β (CCL4), RANTES (CCL5), and IP-10 (CXCL10), which promoted the 
migration of immature dendritic cells, activated T cells, and mast cells in the chemotaxis 
experiment. Antibody neutralization experiments have shown that the enhanced immune 
cell recruitment mainly depends on the up-regulation of RANTES and MIP-1 release induced 
by ALOX15. The siRNA-mediated knockdown of ALOX15 leads to reduced levels of 15-HETE 
and the down-regulation of MIP-1α, RANTES, and IP-10. These results indicate that ALOX15 
overexpression in human airway epithelial cells can cause transcriptional activation of 
chemokines-encoding genes, which results in the enhanced migration of immune cells to 
inflammatory sites. Although the underlying mechanism is still unclear, it could play an 
important role in the occurrence and progression of airway inflammatory diseases.

ALOX15 promotes airway remodeling
Airway remodeling is an important process in the pathogenesis of airway diseases.43 Studies 
in models of human asthma have shown that ALOX15 and its main product, 15-HETE-PE, 
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are essential for pulmonary tissue remodeling, especially for the differentiation of goblet 
cells. Thus, it has been shown that in airway epithelial cells, IL-13 not only induces ALOX15 
expression and production of 15-HETE-PE which increases the synthesis of mucin 5AC 
(MUC5AC), but also up-regulates the expression of periostin,44,45 a protein that promotes 
the migration and adhesion of eosinophils, and promotes subepithelial fibrosis.45,46 At 
the same time, IL-13-induced ALOX15 expression correlates with the up-regulation of 
FOXA3 and downregulation of FOXA2.47 FOXA3, a transcription factor binding to proximal 
promoters of genes associated with goblet cell metaplasia, was reported to induce goblet cell 
metaplasia and enhance MUC5AC expression, whereas FOXA2, another transcription factor 
functioning in airway epithelial cells, reduced goblet cell metaplasia and stimulated ciliated 
cell differentiation.47,48 The knockout of ALOX15 by siRNA significantly down-regulated the 
expression of FOXA3, MUC5AC, and periostin induced by IL-13, whereas exogenous 15-HETE-
PE could up-regulate these factors even in the absence of IL-13 stimulation.47 These data further 
prove that 15-HETE-PE generated by ALOX15 participates in airway tissue remodeling in asthma 
by stimulating goblet cell differentiation and periostin expression. Although the mechanisms 
by which ALOX15 controls the expression of FOXA transcription factors need further 
investigation, it is possible that ERK/MAPK activation and/or the interaction of membrane 
phospholipids with IL-4Rα or its downstream signaling pathways may be involved.

In addition, it has been shown that in CRSwNP infiltrated by eosinophils, the basement 
membrane thickness was larger, and that the matrix metalloproteinase 1 expression positively 
correlates with ALOX15 transcription.49

Thus, ALOX15 plays an important pathophysiological role in airway tissue remodeling 
associated with airway inflammation, suggesting that it is a critical factor in the natural 
course of airway diseases.

GENETIC VARIATIONS AND EPIGENETIC MODIFICATIONS 
IN ALOX15
The presence of multiple variants of the ALOX15 gene and its epigenetic modifications, 
including DNA methylation and histone modification, are related to a variety of airway 
diseases (Fig. 2).

Genetic variations
Numerous studies indicate that there are several mutations at various positions of the ALOX15 
gene, which have different effects on airway diseases, increasing or decreasing the risk of 
disease development. Therefore, the assessment of the allele frequency of these ALOX15 
variants in the population and their pathophysiological role is essential for the development 
of effective treatment strategies.

Wittwer et al.50 detected the c.-292C>T mutation in the ALOX15 promoter region, which 
doubled ALOX15 transcription in macrophages, suggesting that the presence of this ALOX15 
variant may increase the production of AA metabolites participating in the pathogenesis of 
asthma. Some ALOX15 variants have been shown to exacerbate inflammation by regulating 
the synthesis and release of pro-inflammatory IL-6. Thus, Fairfax et al.51 reported that specific 
ALOX15 polymorphisms (rs11078527 and rs11568131) were significantly associated with IL-6 
production in lipopolysaccharide-stimulated primary human peripheral blood mononuclear 
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cells and could influence the expression of tumor necrosis factor (TNF) and IL-1β through 
trans-acting effects, thereby promoting acute inflammation.

While some ALOX15 variants are pro-inflammatory and may increase the susceptibility 
to airway inflammatory diseases, others have been found to reduce the risk of airway 
inflammation. Tremblay et al.52 reported the protective effects of ALOX15 variants rs2664593 
and rs7217186 in allergic asthma and airway hyperresponsiveness. Ferreira et al.53 conducted 
a genome-wide association study (GWAS) on a wide range of allergic disease phenotypes 
in 180,129 patients with asthma, hay fever, and/or eczema in Europe and detected 136 
independent risk-associated variants; among them, ALOX15 rs71368508 could reduce the 
risk of allergic diseases. Another ALOX15 variant has been suggested to have a significant 
protective effect against developing NPs and CRS. Kristjansson et al.54 in a GWAS study 
with 4,366 NP and 5,608 CRS samples from Iceland and the UK revealed gene mutations 
related to NPs and CRS; among them, the highest association with the diseases was shown 
by low-frequency ALOX15 missense variant rs34210653 (p.T560M), which could reduce 
the risk of NPs and CRS by 68% and 36%, respectively. Schurmann et al.55 showed that the 
p.T560M ALOX15 mutant lacked an OH group and could not form a hydrogen bridge, which 
significantly reduced its catalytic activity. This finding suggests that the p.T560M substitution 
in ALOX1 may decrease the production of pro-inflammatory mediators in eosinophils 
and nasal mucosal epithelial cells as well as reduce the number of circulating eosinophils, 
thus protecting against NPs and CRS. It is worth noting that the frequency of rs34210653 
(p.T560M) varies among racial groups: it is highest in Hispanics (8.0%), followed by white 
Europeans (1.2%), lowest in Black/African Americans (0.5%), and not detected in East Asians 
(0%),56 suggesting that the association of rs34210653 with CRS and NPs may be race-specific.

Epigenetic modifications
Several studies have indicated that epigenetic mechanisms regulate the transcription of the 
ALOX15 gene in the airway epithelium and that methylation and acetylation modifications 
are increased in inflammation. Thus, a recent study of children with allergic asthma found 

690https://e-aair.org https://doi.org/10.4168/aair.2021.13.5.684

ALOX15 in Airway Inflammation

Hypomethylation

Hypomethylation

DNA

rs2664593

c.292-C c.292-T

rs7217186

rs11078527

Acute inflammation (IL-6)

rs11568131

rs34210653

12 kb

rs71368508

NP
CRS

Asthma
Hay fever
Eczema

Acetylation

Hist
one

The expression of ALOX15

Allergic asthma
Airway hyperresponsiveness

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 2. The role of ALOX15 genetic variations and epigenetic modifications in airway inflammatory diseases. Multiple genetic variants of ALOX15 carrying 
mutations at different sites have distinct effects on airway diseases, with some increasing the risk of developing airway inflammation (c.292C>T, rs11078527, and 
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significant changes in the methylation status of 47 allergy-associated genes involved in 
asthma, which inversely correlated with gene expression: in particular, the hypomethylation 
of ALOX15 increased its expression, which was associated with the pathogenesis of asthma.57 
Besides DNA methylation, histone modifications at the ALOX15 promoter site also play a 
key role in transcriptional regulation. There is evidence that in IL-4-treated epithelial cells, 
the hypomethylation in histone H3 trimethyllysine 27 (H3K27me3) at the ALOX15 promoter 
upregulates ALOX15 expression.58 It was found that in colon cancer cells, the acetylation 
of H3 and H4, and hypomethylation at the H3K9 site could activate ALOX15.59 However, 
further studies are needed to confirm the role of histone modifications in airway diseases. 
These results characterize ALOX15 as an epigenetic marker for airway diseases because DNA 
hypomethylation and histone modifications up-regulating ALOX15 expression should result 
in the elevated production of pro-inflammatory metabolites involved in all stages of airway 
inflammation-related diseases.

EFFECTS OF ALOX15 INHIBITORS

Several natural compounds, such as flavonoids, coumarins, catechins, and emodin, have 
been shown to exert significant inhibitory effects on ALOX15.60 These inhibitors act 
on distinct regulatory pathways and may potentially have therapeutic effects on airway 
inflammation. Flavonoids are powerful antioxidants with anti-allergic activity, which can 
suppress the release of pro-inflammatory mediators and Th2 cytokines (IL-4 and IL-13), and 
down-regulate CD40 ligand expression in high-affinity immunoglobulin E (IgE) receptor-
positive cells (mast cells and basophils), thus making flavonoid intake beneficial for patients 
with asthma.61 Coumarin derivatives can reduce allergic inflammation by reducing the release 
of histamine and the secretion of TNF-α, IL-1β, and IL-4.62 Epigallo-catechin-3-gallate is a 
catechin that can inhibit the epithelial-mesenchymal transition induced by transforming 
growth factor β1 (TGF-β1) and prevent the migration of human bronchial epithelial cells, 
thereby reducing airway remodeling in asthma.63 In a mouse model of asthma, emodin 
was found to suppress the infiltration of inflammatory cells through inhibition of the 
Notch pathway and decrease the levels of inflammatory cytokines such as IL-5, IL-17, and 
interferon-γ in BALF and serum.64 These data indicate that plant-derived ALOX15 inhibitors 
have therapeutic potential in the treatment of airway inflammatory diseases.

CONCLUSIONS

The role of ALOX15 in airway diseases is underlain by its regulation of eosinophil-
mediated inflammation through the ALOX15-15-HETE-PE axis, which activates ERK and 
the downstream IL-4Rα signaling pathway controlling eosinophil trafficking to the sites 
of allergic inflammation.65 However, it should be noted that the targets of the metabolites 
produced by ALOX15 as well as the mechanisms regulating the expression of pro-
inflammatory chemokines and airway remodeling-related transcription factors are still 
unclear. Therefore, future studies are needed to determine whether, in addition to the ERK 
pathway, other signaling mechanisms are regulated by ALOX15. Although GWAS studies 
on ALOX15 have revealed exciting data, they have mainly been conducted on the European 
population, and it is unclear whether the effects of the identified ALOX15 variants on airway 
diseases are race-specific; therefore, further research is needed to determine the clinical 
significance of ALOX15 mutations in different racial groups. Limited pharmacological 
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agents targeting the ALOX15 pathway have been approved for use so far. However, previously 
discovered protective loss-of-function variants such as proprotein convertase subtilisin/
kexin type 9 (PCSK9) have been successfully used in clinical practice and have guided further 
drug development studies.66 Leukotriene inhibitors are a class of drugs that act by inhibiting 
the action of 5-lipoxygenase (5-LOX), a member of the lipoxygenase family highly similar 
to ALOX15, which was approved for use in asthma and allergic rhinitis.67 These data show 
that the compounds targeting ALOX15 present a new strategy for the treatment of allergic 
diseases, providing a foundation for the development of novel anti-allergy drugs, taking 
into consideration the genomic data. Furthermore, the findings of Forno et al.68 support the 
feasibility of using the nasal methylome for future clinical applications, such as predicting 
the development of asthma among wheezing infants. The epigenetic modifications 
of ALOX15, which may serve as markers in the diagnosis and risk prediction of airway 
inflammatory diseases, should be further investigated. The development and testing of 
ALOX15-targeting drugs for therapeutic intervention in airway inflammatory diseases is the 
focus of our future work. Extensive studies on the genetic and epigenetic mechanisms would 
yield valuable information about the clinical potential and enhance our understanding of the 
etiology of airway inflammatory diseases.
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