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To investigate how CD4+ T cells function against a bacterial pathogen, we generated a 
Listeria monocytogenes-specific CD4+ T cell model. In this system, two TCRtg mouse 
lines, LLO56 and LLO118, recognize the same immunodominant epitope (LLO190-205) of 
L. monocytogenes and have identical in vitro responses. However, in vivo LLO56 and 
LLO118 display vastly different responses during both primary and secondary infection. 
LLO118 dominates in the primary response and in providing CD8 T cell help. LLO56 
predominates in the secondary response. We have also shown that both specific [T 
cell receptor (TCR)-mediated] and non-specific stimuli (bypassing the TCR) elicit distinct 
responses from the two transgenics, leading us to conclude that the strength of self-
pMHC signaling during development tightly dictates the cell’s future response in the 
periphery. Herein, we review our findings in this transfer system, focusing on the contri-
bution of the immunomodulatory molecule CD5 and the importance of self-interaction in 
peripheral maintenance of the cell. We also discuss the manner in which individual TCR 
affinities to foreign and self-pMHC contribute to the outcome of an immune response; 
our assertion is that there exists a spectrum of possible T cell responses to recognition 
of cognate antigen during infection, adding immense diversity to the immune system’s 
response to pathogens.

Keywords: CD4+ T cell, CD5, Listeria monocytogenes, immunomodulation, self-peptide, thymocytes, regulatory 
T cell

inTRODUCTiOn

The interaction of the T cell antigen receptor with its cognate antigen is essential for an adaptive 
immune response and involves the interaction between the T cell receptor (TCR) and peptide bound 
to an major histocompatibility molecule (MHC). Long before T cells meet cognate antigen in the 
periphery; however, they proceed through rigorous positive and negative selection in the thymus, 
according to the affinity of their rearranged TCR for self-peptide presented on self-MHC on thymic 
antigen-presenting cells (APCs).

The process of VDJ recombination and pairing of α and β chains allows for an astonishingly diverse 
panel of possible TCRs (1–3). There is a surprising level of redundancy inherent in the outcome of the 
combined processes of VDJ recombination and thymic selection, with a relatively limited number of 
unique TCRs able to recognize a broad spectrum of pathogen-derived antigens. There also exists the 
(non-mutually exclusive) phenomenon of multiple TCRs capable of recognizing the same peptide/
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MHC with similar affinities. What is the evolutionary advantage 
of such redundancy? It should be considered that heterogeneity 
in signaling responses following TCR engagement allows for the 
establishment of a full complement of key immune system play-
ers. This includes both effector and memory CD4+ and CD8+ T 
cells. Within the CD4+ T cell compartment, further specialization 
is accomplished via skewing of helper T (Th) cells, which produce 
key cytokines necessary for a full immune response and provide 
help to responding CD8+ T cells, and induction of regulatory T 
cells (Tregs) capable of preventing inflammatory damage during 
an otherwise overzealous immune response.

So, how do individual TCR affinities to foreign and self-
pMHC contribute to the outcome of an immune response? To 
better address this question, we have designed a T cell system 
involving transfer of two congenically marked TCR-transgenic 
T cells (LLO56 and LLO118), both recognizing the same Listeria 
monocytogenes-derived epitope. The T cells are transferred into 
normal B6 recipient mice, which are in turn infected with L. 
monocytogenes. In vitro, these two naïve T cells have very similar 
antigen responses to both peptide and intact Listeria. Not until 
they are activated in vivo can one appreciate the vastly different 
potential of the two. One, LLO118, responds robustly during pri-
mary infection, only to make a poor showing during a secondary 
response, where LLO56 dominates. Unlike LLO118, LLO56 is 
highly apoptotic following the primary immune response. 
Differential expression of CD5 associated with the two TCRs 
helps explain their differing in  vivo phenotypes. Intriguingly, 
these cells diverge in their response to both antigen-specific 
stimuli and non-specific stimuli, which bypasses TCR signal-
ing altogether, indicating that self-peptide-dictated imprinting 
during thymic selection and maintenance in the periphery can 
critically affect all aspects of behavior throughout the lifespan 
of a T cell.

DeRivATiOn AnD CHARACTeRiZATiOn 
OF LiSTeRiOLYSin O-SPeCiFiC TCR-
TRAnSGeniC MiCe

The T cell receptors of the LLO56 and LLO118 mouse lines were 
originally cloned from a panel of T cell hyrbidomas generated 
from B6 mice infected with L. monocytogenes. The two TCRs 
recognize the same immunodominant epitope of listeriolysin 
O (LLO190-205/I-Ab), and both express Vα2 and Vβ2. The TCR 
sequences of these cells are nearly identical, differing by only 15 
amino acids in the complementary determining regions (CDRs). 
Flow cytometry-based analysis of the two transgenics shows 
that LLO56 and LLO118 have similar naïve phenotypes, the 
only notable exception being their expression of CD5, a negative 
regulator of T cell activation (4). CD5 surface expression cor-
relates with TCR self-reactivity, as CD5 levels are determined 
during thymic T cell development according to the strength of 
signal perceived via TCR–self-pMHC engagement during thymic 
T cell development (5). The LLO56 mouse expresses significantly 
higher levels of CD5 on mature thymocytes, splenocytes, and 
peripheral lymph node (LN) CD4+ T cells. LLO56 and LLO118 

have similar functional affinities for LLO190-205/I-Ab, as measured 
by their in vitro proliferative response to peptide stimulation or 
stimulation with L. monocytogenes-infected splenocytes. Surface 
plasmon resonance (SPR) analysis of the soluble LLO118 and 
LLO56 TCR interaction with LLO190-205/I-Ab revealed that they 
have the same overall affinity (KD).

In our standard transfer system, 3 × 103 congenically marked, 
CD4+ T cell-enriched bead sorted cells from LLO56 Rag1−/− and 
LLO118 Rag1−/− mice are co-transferred into B6 recipient mice 
via intravenous (IV) retro orbital injection on day 0. On day 1, 
recipient mice are infected (IV) with 103 CFU L. monocytogenes 
(1043S). Mice are then sacrificed at day 7 to interrogate the pri-
mary immune response. To analyze the recall response, mice are 
re-infected with 105 CFU L. monocytogenes on day 35 and then 
sacrificed on day 39.

LLO56 and LLO118 respond distinctly at both the primary 
and secondary time points. Annexin V staining reveals that 
LLO56 are highly apoptotic by day 7 (4). LLO118 are recovered 
from the spleens of recipient mice at a ratio of ~5:1 the number 
of LLO56 recovered. This ratio holds even as the numbers of 
injected cells are increased 10-fold or if LLO56 and LLO118 cells 
are transferred into separate mice. Therefore, the difference in 
response is not due to MHC-antigen competition nor a limited 
proliferative niche, but rather inherent differences in the capacity 
of the two cell types to respond to infection.

Interestingly, the secondary response in our transfer model is 
dominated by LLO56 cells, which outstrip LLO118 cells at a ratio 
of ~10:1. We hypothesize that this is due at least in portion to the 
massive downregulation of TCR levels observed on LLO118 cells 
recovered after a primary infection (4). Starting at day 8, this differ-
ence in TCR mean fluorescence intensity (MFI) in the two cells is 
on the order of 1–1.5 logs, and it has been shown that TCR down-
regulation can greatly reduce the proliferative ability of T cells (6).

We also compared the ability of LLO56 and LLO118 to 
provide CD4+ T cell help for a CD8+ T cell response in the 
context of a primary L. monocytogenes infection. Using a transfer 
model similar to that described above, with the addition of the 
L. monocytogenes-OVA system, we found equal numbers of 
OVA-specific CD8+ T cells (as measured by tetramer staining) 
in mice co-injected with either LLO56 or LLO118 CD4+ T cells 
during a primary response. However, significantly more OVA-
specific CD8+ T cells were found after a recall response in mice 
co-transferred with LLO118 CD4+ T cells. Thus, the more robust 
LLO118 primary response correlates with a better CD8+ T cell 
response after secondary infection (4).

Further insight into the proliferative and memory-forming 
capacities of these cells was achieved using analysis of three 
different mathematical models that considered the differen-
tiation of naïve cells first into effector and then memory cells. 
While the three   models reach no consensus on a difference 
in the rate of  memory  cell formation in LLO56 and LLO118 
cells, LLO56 memory T  cells are predicted to have a half-
life nearly three times longer than LLO118 memory T  cells 
t t1 2

118
1 2
564 3 5d vs  11 5 13 9 days/ /. . . .≈ − ≈ −( ). This predicted 

 difference in memory maintenance would explain the better 
performance of LLO56 during a recall response (7).
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T CeLL ReSPOnSiveneSS TO SPeCiFiC 
AnD nOn-SPeCiFiC STiMULi iS SeT 
DURinG THYMiC DeveLOPMenT AnD 
MAinTAineD in THe PeRiPHeRY

In  vitro analysis of LLO56 and LLO118 revealed inherent dif-
ferences in the manner in which the two TCRs to respond to 
stimulus, be it antigen specific (that is, perceived through the 
TCR) or non-specific. When LLO56 and LLO118 were stimu-
lated in vitro with either their cognate antigen or a combination 
of anti-CD3/anti-CD28, both cells upregulated CD25 and CD69, 
and produced IL-2 (8). However, LLO56 produces nearly twice as 
much IL-2 as LLO118 at higher peptide (or anti-CD3/28) concen-
trations. However, LLO56 also produced more IL-2 in response to 
treatment with PMA plus ionomycin, which stimulate signaling 
downstream of the TCR. Further examination of the pathways 
activated by PMA plus ionomycin also showed increased phos-
phorylated Erk (pErk) in LLO56 in response to non-specific 
stimuli, as well as higher basal p21 (increased basal levels of 
phosphorylated TCRζ). These findings indicate that naïve LLO56 
and LLO118 emerge from the thymus distinct in their capacities 
to respond to both cognate antigen and non-specific stimulation. 
While their in vitro affinities for LLO190-205/I-Ab are similar, their 
avidities (the strength of signal actually perceived by the cell via 
the TCR) clearly differ.

To better understand the behavioral divergence of these 
two transgenics, we interrogated thymocytes from LLO56 and 
LLO118 mice at each stage of development. Although the abso-
lute cellularity of the thymus in the LLO118 mouse is greater, 
we found that the frequency of CD4+ single-positive (SP) 
thymocytes to be greater in the LLO56 mouse. This suggests 
that selection of CD4+CD8+ double-positive (DP) thymocytes 
is more efficient in the context of the LLO56 TCR. While 
pre-selection DP thymocytes from both mice are refractory to 
PMA plus ionomycin stimulation, we found a population of 
CD4+SP thymocytes in both LLO56 and LLO118 mice produc-
ing IL-2; this population is significantly greater in the LLO56 
mice. Likewise, phospho-ERK staining is higher in CD4+SP 
LLO56 thymocytes. We also observed greater Annexin V and 
7-aminoactinomycin-D (7-AAD) staining in post-selection 
LLO56 thymocytes than in LLO118 thymocytes, indicating that 
increased cell death accompanies increased basal ERK phospho-
rylation, according to TCR self-reactivity and as established in 
developing thymocytes (8).

Since we had documented the importance of self-pMHC 
education in the earliest development of LLO56 and LLO118, 
we sought to determine whether continued tonic self-
peptide–MHC signaling was necessary for their peripheral 
maintenance and responsiveness. To accomplish this, LLO56 
splenocytes were transferred to H-2M deficient mice, which 
fail to present a normal range of processed peptides due to 
the fact that nearly all MHC class II molecules are occupied 
by class II invariant chain-associated peptide (CLIP). LLO56 
cells were then recovered and purified, and their responsive-
ness to non-specific stimuli tested. Unlike their counterparts 
transferred into wild-type B6 mice, LLO56 cells transferred 

into H-2M-deficient mice lost sensitivity to stimulation via 
PMA plus ionomycin, as measured by IL-2 production and 
ERK phosphorylation and were similar to the LLO118 cells. 
Likewise, we also observed reduced ERK phosphorylation 
in LLO56 cells transferred into MHC class II-deficient mice 
(8). These behavioral changes were noticeable as early as 
24 h post-transfer. These findings indicated that continued 
TCR–self-peptide–MHC ligation is critical for the preserva-
tion of T cell responsiveness.

CD5 AnD THe DYnAMiCS OF LLO TCRtg 
T CeLL ReSPOnSeS

CD5 belongs to group B of the scavenger-receptor cysteine-rich 
(SRCR) superfamily; the extracellular portion of CD5 consists 
of three SRCR repeats. In mice, the Cd5 gene encodes a 67-kDa 
monomeric membrane-spanning glycoprotein expressed on 
thymocytes, mature CD4+ and CD8+ T cells, as well as peritoneal 
B-1 B cells and subsets of dendritic cells (9–12). CD5 species-
specific homophilic binding can lead to productive engagement; 
other CD5 ligands have been reported, but none have been 
independently verified (13). The molecular mass and expression 
pattern of CD5 in humans is similar to that in mice. Indeed, the 
high level of conservation of the Cd5 gene throughout mam-
malian and avian species suggests an ancient and critical role for 
CD5 in the immune system (14–17). The finding that a naturally 
occurring soluble form of CD5 is a pattern-recognition receptor 
(PRR), which is capable of recognizing fungal β-glucan (but not 
components of bacterial cell wall), reinforces the evolutionary 
significance of this molecule (18).

The role of CD5 as an immunomodulatory cell surface 
molecule has been appreciated since the publication of the Cd5-
knockout mouse (15, 19). CD5 is capable of regulating signaling 
via both the TCR and the B cell receptor (BCR). In the absence 
of CD5, thymocytes are hyperresponsive to antigen stimulation 
(as measured by Ca2+ signaling) and peritoneal B-1 cells, levels 
of which are elevated in certain autoimmune diseases, become 
resistant to apoptosis and instead enter the cell cycle. However, 
CD5-knockout mice do not develop significant overt immunity 
(19, 20). In addition to its expression on peripheral effector T cells, 
CD5 is also expressed on CD4+ Tregs. While CD5 is dispensable 
for thymic Treg development (21), peripheral Treg induction is 
impaired in its absence (22).

The immunomodulatory nature of CD5 is independent of 
its extracellular domains, but an intact cytoplasmic domain is 
required for its inhibitory function (23, 24). CD5 localizes to 
the immune synapse at the onset of TCR signaling (25). The 
intracellular domain of CD5 contains four potential tyrosine 
phosphorylation sites, including an immunoreceptor tyrosine-
based activation motif (ITAM), immunoreceptor tyrosine-based 
inhibition motif (ITIM), and several potential serine/threonine 
phosphorylation sites (26). In this way, CD5 is able to recruit 
both negative and positive regulators of B and T cell signaling 
(27). CD5 is tyrosine phosphorylated upon TCR engagement, 
and coprecipitaiton studies have demonstrated that CD5 associ-
ates with CD2 and CD4 or CD8, as well as with TCR ζ/Zap70, 
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Lck, Fyn, SHP-1, and CK2. SHP-1 binding to the intracellular 
ITIM motif mediates the immunomodulatory behavior of CD5 
(28–33).

Considerable work has been done to show the precision 
with which CD5 expression is regulated during thymic devel-
opment. CD5 expression on pre-selection double-negative 
(DN) thymocytes is minimal; these developing thymocytes 
require pre-TCR engagement for upregulation of CD5 to be 
observed (5). CD5 levels increase approximately sixfold on DP 
thymocytes and reach maximal levels on post-selection CD4+ 
and CD8+SP thymocytes, where expression is finely tuned 
according to TCR levels and the overall perceived strength of 
signal during selection (5). CD5 levels are then maintained as 
thymocytes egress from the thymus and join peripheral circu-
lation. These findings have been extended to commonly used 
TCR-transgenic mouse models AND (CD4+ TCR transgenic 
recognizing moth cytochrome c), H-Y (CD4+ TCR transgenic 
recognizing the male Y antigen), P14 (CD8+ TCR transgenic 
recognizing LCMV gp33-41), and DO10 (CD8+ TCR transgenic 
recognizing OVA). Examination of thymocytes from these mice 
revealed higher CD5 levels on AND than on H-Y, and higher 
CD5 levels on P14 than on DO10. Likewise, larger CD4+SP 
thymocyte populations are observed in AND relative to H-Y, 
and larger CD8+SP populations are observed in P14, relative 
to DO-10 (5). A study using the DO10 mouse in the context 
of both H-2d and H-2b-mediated antigen presentation echoed 
these findings, as did another that extended findings on the rela-
tionship between CD5 expression and self-reactivity to a larger 
panel of TCR transgenics (23, 34). The CD5 levels studied are 
maintained on peripheral lymphocytes, reinforcing the finding 
that CD5 expression is carefully tuned during thymic selection 
according to TCR–self-peptide–MHC signal intensity, and sus-
tained during the life of the cell as long as MHC presentation of 
self-peptide is accessible in the periphery.

Is has been debated whether CD5 directly influences T cell 
responses, or whether it is simply a marker of TCR–self-peptide–
MHC avidity, established during thymic selection. To explore 
this issue in our system, we crossed LLO56 TCR-transgenic mice 
onto a CD5-deficient background (CD5−/−). CD4+SP thymocytes 
from LLO56/CD5−/− mice express higher levels of CD69 than 
their wild-type counterparts, indicating that in the absence of 
CD5 these thymocytes perceive a stronger signal during selec-
tion. These cells also produce more IL-2 and exhibit greater 
ERK phosphorylation in response to non-specific stimulation, 
in the absence of CD5 expression (8). Surprisingly, the absence 
of CD5 on the LLO56 background (LLO56/CD5−/−) does not 
change its apoptotic phenotype at day 7 post-infection, in our 
transfer system (unpublished observations). CD5 can be viewed 
as a “surrogate marker” of the TCR signal experienced during 
thymic education, and it also appears that CD5 (as a negative 
regulator) wields some influence on the overall responsiveness of 
the T cell post-selection. However, at least in the context of our 
TCR-transgenic system, loss of CD5 inhibition is not sufficient to 
“rescue” the phenotype of LLO56 at day 7. Clearly, further inter-
rogation of the role of CD5 during an ongoing immune response 
is necessary.

These observations also bring up relevant findings regarding 
CD5 expression and the induction of peripheral Tregs. Henderson 
and colleagues recently reported that peripheral induction of 
CD4+ Tregs is decreased in CD5lo cells and cells from CD5−/− 
mice. They found that low levels of effector cytokines produced 
by bystander lymphocytes inhibited Treg conversion in these 
mice. In CD5 intact mice, on the other hand, CD5hi cells are 
able to mitigate this inhibition of Treg induction via blockade 
of mammalian target of rapamycin (mTOR) signaling (22). This 
study reinforces the findings of Martin and colleagues, who 
showed that Ly6Clo and Ly6Chi naïve CD4+ T cells have intrinsic 
differences when it comes to their abilities to differentiate into 
Tregs in the periphery. The authors demonstrated that Ly6C 
expression was tuned in the periphery according to TCR-based 
self-recognition, and that more self-reactive cells exhibited lower 
surface levels of Ly6C. In turn, they showed that Ly6Clo cells had 
significantly higher levels of CD5 and were more likely to dif-
ferentiate into Tregs in the periphery (35). These findings, along 
with the observation that minimal doses of strong agonist pep-
tides can efficiently induce Treg differentiation in the periphery, 
suggests a dual role for CD5 (35, 36). Clearly, CD5 serves as a 
marker of self-reactivity on both thymocytes and lymphocytes. 
Strong CD5 expression “tags” these self-reactive naïve cells as 
those most likely to become activated, with great specificity 
and intensity, during an immune response. At the same time, 
CD5 also serves as an “insurance policy,” helping keep these 
potentially destructive cells from initiating autoimmunity and 
instead dedicating them, via induction of Treg programming, 
to the protection of the organism in question from a potentially 
devastating inflammatory episode.

Although only the LLO system is reviewed herein, it stands 
to reason that these findings can be extended to other models 
of infectious disease. Presumably, during an infection, there will 
be a large number of foreign antigens presented to T cells, which 
in turn will have been selected on a wide variety of self-antigens 
during thymic development and will therefore express varying 
levels of CD5. By extension of our findings, we would predict 
that within this T cell compartment are cells that will respond 
robustly (in terms of effector function, B cell help, T cell help, 
and/or regulatory function) and cells that will respond to a lesser 
degree, giving breadth to the immune response as a whole.

SUMMARY

Using our LLO TCR-transgenic transfer system, we have 
demonstrated the importance of heterogeneous responses by 
different CD4+ T cells following TCR engagement. The CD4+ 
TCR-transgenic LLO56, bearing high levels of CD5 reflective 
of strong sensing of self-pMHC during thymic development, 
responds poorly during a primary response to cognate antigen. 
LLO118, on the other hand, has a robust proliferative response 
to the same cognate antigen and, at the same time, provides 
help during the shaping of the CD8+ T cell response. We see the 
responses of LLO56 and LLO118 reverse during secondary infec-
tion, where LLO56 dominates the recall response.
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FiGURe 1 | After interaction with self-peptide on thymic APC, both cells perceive a signal strong enough to guide them safely through positive 
selection. However, the signal sensed by cell Z is quantitatively or qualitatively stronger, resulting in greater CD5 expression on the mature thymocyte Z, relative to 
mature thymocyte X. Upon egress from the thymus, these differing CD5 levels are sustained. In the periphery, both naïve T cells are maintained via tonic signaling 
(i.e., periodic TCR recognition of self-pMHC). Upon initial TCR recognition of the same peptide, cell Z exhibits increased levels of phosphorylated ERK and produces 
higher amounts of IL-2, relative to cell X. However, by the peak of the immune response, cell X is highly proliferative and capable of generating CD8+ T cell help, 
whereas cell Z is highly apoptotic and a poor generator of CD8+ T cell help. Some cell Z clones, however, may differentiate into regulatory T cells, due at least in part 
to their high expression of CD5. During a recall response, memory cell Z now proliferates strongly in response to the same cognate antigen sensed during the 
primary immune response, while proliferation of cell X is negligible.

December 2015 | Volume 6 | Article 6215

Milam and Allen CD4+ T Cell Functional Heterogeneity

Frontiers in Immunology | www.frontiersin.org

We have highlighted only these two distinct cell fates using 
our system; however, there is ostensibly a whole “spectrum” of 
possible CD4+ T cell responses to recognition of cognate anti-
gen during infection, adding necessary diversity to the immune 
system’s response to pathogens. Two such outcomes, along 
the spectrum of possible CD4+ T cell responses, are mapped 
in Figure  1. Importantly, this spectrum of fates includes 
activation of cells that respond robustly to acute insults, cells 
that preferentially become memory cells, cells specialized in 
providing CD8+ T cell help, and cells more easily drawn into 
a Treg fate, just to name a few. These properties are not neces-
sarily mutually exclusive and are determined in large part by 
recognition of self-peptide during thymic selection. A strong 
case has also been made for the role of cross-reactivity (that 

is, the ability of one TCR to recognize multiple pMHC) during 
thymic selection. It should also be considered that increased 
CD5 expression on LLO56 could be due, at least in part, to an 
ability of LLO56 to cross-react more strongly with self-antigens 
in the thymus (37–40).
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