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Abstract

Random effects models are popular statistical models for detecting and correcting spurious sample correlations due to hidden confounders
in genome-wide gene expression data. In applications where some confounding factors are known, estimating simultaneously the contribu-
tion of known and latent variance components in random effects models is a challenge that has so far relied on numerical gradient-based
optimizers to maximize the likelihood function. This is unsatisfactory because the resulting solution is poorly characterized and the effi-
ciency of the method may be suboptimal. Here, we prove analytically that maximum-likelihood latent variables can always be chosen or-
thogonal to the known confounding factors, in other words, that maximum-likelihood latent variables explain sample covariances not al-
ready explained by known factors. Based on this result, we propose a restricted maximum-likelihood (REML) method that estimates the
latent variables by maximizing the likelihood on the restricted subspace orthogonal to the known confounding factors and show that this
reduces to probabilistic principal component analysis on that subspace. The method then estimates the variance–covariance parameters
by maximizing the remaining terms in the likelihood function given the latent variables, using a newly derived analytic solution for this prob-
lem. Compared to gradient-based optimizers, our method attains greater or equal likelihood values, can be computed using standard ma-
trix operations, results in latent factors that do not overlap with any known factors, and has a runtime reduced by several orders of magni-
tude. Hence, the REML method facilitates the application of random effects modeling strategies for learning latent variance components
to much larger gene expression datasets than possible with current methods.
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Introduction
Following the success of genome-wide association studies
(GWAS) in mapping the genetic architecture of complex traits
and diseases in human and model organisms (Mackay et al. 2009;
Hindorff et al. 2009; Manolio 2013), there is now a great interest in
complementing these studies with molecular data to understand
how genetic variation affects epigenetic and gene expression
states (Albert and Kruglyak 2015; Franzén et al. 2016; GTEx
Consortium 2017). In GWAS, it is well-known that population
structure or cryptic relatedness among individuals may lead to
confounding that can alter significantly the outcome of the study
(Astle and Balding 2009). When dealing with molecular data, this
is further exacerbated by the often unknown technical or envi-
ronmental influences on the data generating process. This prob-
lem is not confined to population-based studies—in single-cell
analyses of gene expression, hidden subpopulations of cells and
an even greater technical variability cause significant expression
heterogeneity that needs to be accounted for (Buettner et al.
2015).

In GWAS, linear mixed models have been hugely successful in
dealing with confounding due to population structure (Yu et al.

2006; Astle and Balding 2009; Kang et al. 2010; Lippert et al. 2011;
Zhou and Stephens 2012). In these models, it is assumed that an
individual’s trait value is a linear function of fixed and random
effects, where the random effects are normally distributed with a
covariance matrix determined by the genetic similarities between
individuals, hence accounting for confounding in the trait data.
Random effect models have also become popular in the correc-
tion for hidden confounders in gene expression data (Kang et al.
2008; Listgarten et al. 2010; Fusi et al. 2012), generally outperform-
ing approaches based on principal component analysis (PCA), the
singular value decomposition (SVD), or other hidden factor mod-
els (Leek and Storey 2007; Stegle et al. 2010, 2012). In this context,
estimating the latent factors and the sample-to-sample correla-
tions they induce on the observed high-dimensional data is the
critical problem to solve.

If it is assumed that the observed correlations between sam-
ples are entirely due to latent factors, it can be shown that the
resulting random effects model is equivalent to probabilistic PCA,
which can be solved analytically in terms of the dominant eigen-
vectors of the sample covariance matrix (Tipping and Bishop
1999; Lawrence 2005). However, in most applications, some
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confounding factors are known in advance (e.g., batch effects, ge-
netic factors in population-based studies, or cell-cycle stage in
single-cell studies), and the challenge is to estimate simulta-
neously the contribution of the known as well as the latent factors.
This has so far relied on the use of numerical gradient-based
quasi-Newton optimizers to maximize the likelihood function (Fusi
et al. 2012; Buettner et al. 2015). This is unsatisfactory because the
resulting solution is poorly characterized, the relation between the
known and latent factors is obscured, and due to the high-
dimensionality of the problem, “limited memory” optimizers have
to be employed whose theoretical convergence guarantees are
somewhat weak (Liu and Nocedal 1989; Lin et al. 2017).

Intuitively, latent variables should explain sample covariances
not already explained by known confounding factors. Here, we
demonstrate analytically that this intuition is correct: latent varia-
bles can always be chosen orthogonal to the known factors with-
out reducing the likelihood or variance explained by the model.
Based on this result, we propose a method that is conceptually
analogous to estimating fixed and random effects in linear mixed
models using the restricted maximum-likelihood (REML) method,
where the variance parameters of the random effects are esti-
mated on the restricted subspace orthogonal to the maximum-
likelihood estimates of the fixed effects (Gumedze and Dunne
2011). Our method, called LVREML, similarly estimates the latent var-
iables by maximizing the likelihood on the restricted subspace or-
thogonal to the known factors, and we show that this reduces to
probabilistic PCA on that subspace. It then estimates the variance–
covariance parameters by maximizing the remaining terms in the
likelihood function given the latent variables, using a newly de-
rived analytic solution for this problem. Similarly to the REML
method for conventional linear mixed models, the LVREML solution
is not guaranteed to maximize the total likelihood function.
However, we prove analytically that for any given number p of la-
tent variables, the LVREML solution attains minimal unexplained
variance among all possible choices of p latent variables, arguably
a more intuitive and easier to understand criterion.

The inference of latent variables that explain observed sample
covariances in gene expression data is usually pursued for two rea-
sons. First, the latent variables, together with the known confound-
ers, are used to construct a sample-to-sample covariance matrix
that is used for the downstream estimation of variance parameters
for individual genes and improved identification of trans-eQTL
associations (Fusi et al. 2012; Stegle et al. 2012). Second, the latent
variables are used directly as “endophenotypes” that are given a bi-
ological interpretation and whose genetic architecture is of stand-
alone interest (Parts et al. 2011; Stegle et al. 2012). This study con-
tributes to both objectives. First, we show that the covariance ma-
trix inferred by LVREML is identical to the one inferred by gradient-
based optimizers, while computational runtime is reduced by
orders of magnitude (e.g., a 104-fold speed-up on gene expression
data from 600 samples). Second, latent variables inferred by LVREML

by design do not overlap with already known covariates and thus
represent new aggregate expression phenotypes of potential inter-
est. In contrast, we show that existing methods infer latent varia-
bles that overlap significantly with the known covariates (cosine
similarities of up to 30%) and thus represent partially redundant
expression phenotypes.

Materials and methods
Mathematical methods
All model equations, mathematical results, and detailed proofs
are described in a separate Supplementary material document.

Data
We used publicly available genotype and RNA sequencing data
from 1012 segregants from a cross between two yeast strains
(Albert et al. 2018), consisting of gene expression levels for 5720
genes and (binary) genotype values for 42,052 SNPs. Following
Albert et al. (2018), we removed batch and optical density effects
from the expression data using categorical regression. The ex-
pression residuals were centered such that each sample had
mean zero to form the input matrix Y to the model (cf.
Supplementary Section S2). L2-normalized genotype PCs were
computed using the SVD of the genotype data matrix with cen-
tered (mean zero) samples and used to form input matrices Z to
the model (cf. Supplementary Section S2). Data preprocessing
scripts are available at https://github.com/michoel-lab/lvreml.

LVREMl analyses
The LVREML software, as well as a script that details the LVREML

analyses of the yeast data, is available at https://github.com/
michoel-lab/lvreml.

PANAMA analyses
We obtained the PANAMA software from the LIMIX package available
at https://github.com/limix/limix-legacy.

The following settings were used to ensure that exactly the
same normalized data were used by both methods: (1) For param-
eter Y, the same gene expression matrix, with each sample nor-
malized to have zero mean, was used as input for LVREML, setting
the standardize parameter to false. (2) The parameter Ks requires
a list of covariance matrices for each known factor. Therefore, for
each column zi of the matrix Z used by LVREML, we generated a co-
variance matrices Ksi ¼ zizT

i . The use Kpop parameter, which is
used to supply a population structure covariance matrix to
PANAMA in addition to the known covariates, was set to false.

To be able to calculate the log-likelihoods and extract other
relevant information from the PANAMA results, we made the fol-
lowing modifications to the PANAMA code: (1) The covariance ma-
trices returned by PANAMA are by default normalized by dividing
the elements of the matrix by the mean of its diagonal elements.
To make these covariance matrices comparable to LVREML, this
normalization was omitted by commenting out the lines in the
original PANAMA code where this normalization was being per-
formed. (2) PANAMA does not return the variance explained by the
known confounders unless the use Kpop parameter is set to true.
Therefore, the code was modified so that it would still return the
variance explained by the known confounders. (3) The K matrix
returned by PANAMA does not include the effect of the noise pa-
rameter r2. Therefore, the code was modified to return the r21
matrix, which was then added to the returned K, i.e.,
Knew ¼ Kþ r21, to be able to use eq. (2) to compute the log-
likelihood. The modified code is available as a fork of the LIMIX

package at https://github.com/michoel-lab/limix-legacy

Results
REML solution for a random effects model with
known and latent variance components
Our model to infer latent variance components in a gene expres-
sion data matrix is the same model that was popularized in the
PANAMA software (Fusi et al. 2012) and scLVM software (Buettner
et al. 2015), where a linear relationship is assumed between ex-
pression levels and the known and latent factors, with random
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noise added (Supplementary Section S2). In matrix notation, the
model can be written as

Y ¼ ZVþ XWþ e; (1)

where Y 2 Rn�m is a matrix of gene expression data for m genes
in n samples, and Z 2 Rn�d X 2 Rn�p are matrices of values for d
known and p latent confounders in the same n samples. The col-
umns vi and wi of the random matrices V 2 Rd�m and W 2 Rp�m

are the effects of the known and latent confounders, respectively,
on the expression level of gene i and are assumed to be jointly
normally distributed:

pð½ vi
wi
�Þ ¼ N ð0; ½ B D

DT A
�Þ

where B 2 Rd�d; A 2 Rp�p, and D 2 Rd�p are the covariances of
the known–known, latent–latent, and known–latent confounder
effects, respectively. Lastly, e 2 Rn�m is a matrix of independent
samples of a Gaussian distribution with mean zero and variance
r2, independent of the confounding effects.

Previously, this model was considered with independent ran-
dom effects (B and A diagonal and D ¼ 0; Fusi et al. 2012;
Buettner et al. 2015). As presented here, the model is more gen-
eral and accounts for possible lack of independence between
the effects of the known covariates. Furthermore, allowing the
effects of the known and latent factors to be dependent (D 6¼ 0)
is precisely what will allow the latent variables to be orthogonal
to the known confounders (Supplementary Section S6). An
equivalent model with D ¼ 0 can be considered but requires
nonorthogonal latent variables to explain part of the sample co-
variance matrix, resulting in a mathematically less tractable
framework. Finally, it remains the case that we can always
choose A to be diagonal, because the latent factors have an in-
herent rotational symmetry that allows any non-diagonal
model to be converted to an equivalent diagonal model
(Supplementary Section S5). By definition, the known covariates
correspond to measured or “natural” variables, and hence, they
have no such rotational symmetry.

Using standard mixed-model calculations to integrate out the
random effects (Supplementary Section S2), the log-likelihood of
the unknown model parameters given the observed data can be
written as

LðX;A;B;r2jY;ZÞ ¼ �log detðKÞ � trðK�1CÞ; (2)

where

K ¼ ZBZT þ ZDXT þ XDTZT þ XAXT þ r21 (3)

and C ¼ ðYYTÞ=m is the sample covariance matrix. Maximizing
the log-likelihood (2) over positive definite matrices K without
any further constraints would result in the estimate K̂ ¼ C (note
that C is invertible because we assume that the number of genes
m is greater than the number of samples n; Anderson and Olkin
1985).

If K is constrained to be of the form K ¼ XAXT þ r21 for a given
number of latent factors p< n, then the model is known as proba-
bilistic PCA and the likelihood is maximized by identifying the la-
tent factors with the eigenvectors of C corresponding to the p
largest eigenvalues (Tipping and Bishop 1999; Lawrence 2005). In
matrix form, the probabilistic PCA solution can be written as

K̂ ¼ P1CP1 þ r̂2P2; (4)

where P1 and P2 are mutually orthogonal projection matrices on
the space spanned by the first p and last n�p eigenvectors of C,
respectively, and the maximum-likelihood estimate r̂2 is the av-
erage variance explained by the n�p excluded dimensions
(Supplementary Section S5).

If K is constrained to be of the form K ¼ ZBZT þ r21, the model
is a standard random effects model with the same design matrix
Z for the random effects vi for each gene i. In general, there exists
no analytic solution for the maximum-likelihood estimates of the
(co)variance parameter matrix B in a random effects model
(Gumedze and Dunne 2011). However, in the present context, it is
assumed that the data for each gene are an independent sample
of the same random effects model. Again using the fact that C ¼
ðYYTÞ=m is invertible due to the number of genes being greater
than the number of samples, the maximum-likelihood solution
for B, and hence K, can be found analytically in terms of C and
the SVD of Z. It turns out to be of the same form (4), except that
P1 now projects onto the subspace spanned by the known covari-
ates (the columns of Z; Supplementary Section S4).

In the most general case where K takes the form (3), we show
first that every model of the form (1) can be rewritten as a model
of the same form where the hidden factors are orthogonal to the
known covariates, XTZ ¼ 0. The reason is that any overlap be-
tween the hidden and known covariates can be absorbed in the
random effects vi by a linear transformation and, therefore, sim-
ply consists of a reparameterization of the covariance matrices B
and D (Supplementary Section S6). Once this orthogonality is
taken into account, the log-likelihood (2) decomposes as a sum
L ¼ L1 þ L2, where q2 is identical to the log-likelihood of proba-
bilistic PCA on the reduced space that is the orthogonal comple-
ment to the subspace spanned by the known covariates (columns
of Z). Analogous to the REML method for ordinary linear mixed
models, where variance parameters of the random effects are es-
timated in the subspace orthogonal to the maximum-likelihood
estimates of the fixed effects (Patterson and Thompson 1971;
Gumedze and Dunne 2011), we estimate the latent variables X by
maximizing only the likelihood term q2 corresponding to the sub-
space where these X live (Supplementary Section S6). Once the
REML estimates X̂ are determined, they become “known” covari-
ates, allowing the covariance parameter matrices to be deter-
mined by maximizing the remaining terms q1 in the likelihood
function using the analytic solution for a model with known
covariates ðZ; X̂Þ (Supplementary Section S6).

By analogy with the REML method, we call our method the
REML method for solving the latent variable model (1), abbrevi-
ated “LVREML”. While the LVREML solution is not guaranteed to be the
absolute maximizer of the total likelihood function, it is guaran-
teed analytically that for any given number p of latent variables,
the LVREML solution attains minimal unexplained variance among
all possible choices of p latent variables (Supplementary Section
S6).

LVREML, a flexible software package for learning
latent variance components in gene expression
data
We implemented the REML method for solving model (1) in a
software package LVREML, available with Matlab and Python inter-
faces at https://github.com/michoel-lab/lvreml. LVREML takes as
input a gene expression matrix Y, a covariate matrix Z, and a pa-
rameter q, with 0 < q < 1. This parameter is the desired
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proportion of variation in Y that should be explained by the com-
bined known and latent variance components. Given q, the num-
ber of latent factors p is determined automatically (Supplementary
Section S7). LVREML centers the data Y such that each sample has
mean value zero, to ensure that no fixed effects on the mean need
to be included in the model (Supplementary Section S3).

When the number of known covariates (or more precisely the
rank of Z) exceeds the number of samples, as happens in eQTL
studies where a large number of SNPs can act as covariates (Fusi
et al. 2012), a subset of n linearly independent covariates will al-
ways explain all of the variation in Y. In Fusi et al. (2012), a heuris-
tic approach was used to select covariates during the likelihood
optimization, making it difficult to understand a priori which
covariates will be included in the model and why. In contrast,
LVREML includes a function to perform initial screening of the

covariates, solving for each one the model (1) with a single known
covariate to compute the variance b̂

2
explained by that covariate

alone (Supplementary Section S4). This estimate is then used to
include in the final model only those covariates for which
b̂

2 � htrðCÞ, where h > 0 is the second free parameter of the
method, namely the minimum amount of variation a known co-
variate needs to explain on its own to be included in the model
(Supplementary Section S7). In the case of genetic covariates, we
further propose to apply this selection criterion not to individual
SNPs, but to principal components (PCs) of the genotype data ma-
trix. Since PCA is a linear transformation of the genotype data, it
does not alter model (1). Moreover, selecting PCs as covariates
ensures that the selected covariates are linearly independent and
are consistent with the fact that genotype PCs are known to re-
veal population structure in expression data (Brown et al. 2018).
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Figure 1 (A) Gene expression variance explained by individual genotype PCs in univariate models vs their genotype variance explained. (B) Heatmap of
the estimated covariance matrix B [cf. (3)] among the effects on gene expression of the top 20 genotype PCs (by gene expression variance explained in
univariate models, cf. A, y-axis); the row labels indicate the genotype PC index, ranked by genotype variance explained (cf. A, x-axis). (C) Number of
hidden covariates inferred by LVREML as a function of the parameter q (the targeted total amount of variance explained by the known and hidden
covariates), with h (the minimum variance explained by a known covariate) set to retain 0, 5, 10, or 20 known covariates (genotype PCs) in the model.
For visualization purposes only the range of q upto q ¼ 0:6 is shown, for the full range, see Supplementary Figure S1.
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To test LVREML and illustrate the effect of its parameters, we
used genotype data for 42,052 genetic markers and RNA sequenc-
ing expression data for 5720 genes in 1012 segregants from a
cross between two strains of budding yeast (Albert et al. 2018),
one of the largest (in terms of sample size), openly available eQTL
studies in any organism (see Materials and methods). We first per-
formed PCA on the genotype data. The dominant genotype PCs
individually explained 2–3% of variation in the genotype data,
and 1–2% of variation in the expression data, according to
the single-covariate model [Supplementary Section S4,
Supplementary Equation (S16), and Figure 1A]. Although
genotype PCs are orthogonal by definition, their effects on gene
expression are not independent, as shown by the non-zero off-di-
agonal entries in the maximum-likelihood estimate of the covari-
ance matrix B [cf. (3); Figure 1B]. To illustrate how the number of
inferred hidden covariates varies as a function of the input pa-
rameter q, we determined values of the parameter h to include
between 0 and 20 genotype PCs as covariates in the model. As
expected, for a fixed number of known covariates, the number of
hidden covariates increases with q, as more covariates are
needed to explain more of the variation in Y, and decreases with
the number of known covariates, as fewer hidden covariates are
needed when the known covariates already explain more of the
variation in Y (Figure 1C).

When setting the parameter h, or equivalently, deciding the
number of known covariates to include in the model, care must
be taken due to a mathematical property of the model: the

maximizing solution exists only if the minimum amount of varia-
tion in Y explained by a known covariate (or more precisely, by a
principal axis in the space spanned by the known covariates) is
greater than the maximum-likelihood estimate of the residual
variance r̂2 (see Theorems 1 and 4 in Supplementary Sections S4
and S6). If noninformative variables are included among the
known covariates, or known covariates are strongly correlated,
then the minimum variation explained by them becomes small,
and potentially smaller than the residual variance, whose initial
“target” value is 1� q. Because LVREML considers the known covari-
ates as fixed, it lowers the value of r̂2 by including more hidden
covariates in the model, until the existence condition is satisfied.
In such cases, the total variance explained by the known and hid-
den covariates will be greater than the target value of the input
parameter q. Visually, the presence of noninformative dimen-
sions in the linear subspace spanned by the known covariates
(due to noninformative or redundant variables) is shown by a sat-
uration of the number of inferred hidden covariates with decreas-
ing q (Supplementary Figure S1B), providing a clear cue that the
relevance or possible redundancy of (some of) the known covari-
ates for explaining variation in the expression data needs to be
reconsidered.

LVREML attains likelihood values higher than or
equal to PANAMA

To compare the analytic solution of LVREML against the original model
with gradient-based optimization algorithm, as implemented in the

A B

C D

Figure 2 Log-likelihood values for LVREML (A, C) and PANAMA (B, D) using 0, 5, 10, and 20 PCs of the expression data (A, B) or genotype data (C, D) as known
covariates. The results shown are for 600 randomly subsampled segregants; corresponding results for 200, 400, and in the case of LVREML 1012
segregants are shown in Supplementary Figure S2.

M. A. Malik and T. Michoel | 5

academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab410#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab410#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab410#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab410#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab410#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab410#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab410#supplementary-data


PANAMA software (Fusi et al. 2012), we performed a controlled compari-
son where 0, 5, 10, and 20 dominant PCs of the expression data Y
were used as artificial known covariates. Because of the mathemati-
cal properties of the model and the LVREML solution, if the first d ex-
pression PCs are included as known covariates, LVREML will return the
next p expression PCs as hidden factors. Hence, the log-likelihood of
the LVREML solution with d expression PCs as known covariates and p
hidden factors will coincide with the log-likelihood of the solution
with zero known covariates and dþ p hidden factors (that is, proba-
bilistic PCA with dþ p hidden factors). Figure 2A shows that this is
the case indeed: the log-likelihood curves for 0, 5, 10, and 20 PCs as
known covariates are shifted horizontally by a difference of exactly
5 (from 0, to 5, to 10) or 10 (from 10 to 20) hidden factors.

In contrast, PANAMA did not find the optimal shifted probabilis-
tic PCA solution, and its likelihood values largely coincided with
the solution with zero known covariates, irrespective of the num-
ber of known covariates provided (Figure 2B). In other words,
PANAMA did not use the knowledge of the known covariates to ex-
plore the orthogonal space of axes of variation not yet explained
by the known covariates, instead arriving at a solution where p
hidden factors appear to explain no more of the variation than
p�d PCs orthogonal to the d known PCs. To verify this, we com-
pared the PANAMA hidden factors to PCs given as known covariates,
and found that in all cases where the curves in Figure 2B align,
the first d hidden factors coincided indeed with the d known
covariates (data not shown).

When genotype PCs were used as known confounders (using
the procedure explained above), the shift in log-likelihood values
was less pronounced, consistent with the notion that the geno-
type PCs explain less of the expression variation than the expres-
sion PCs. In this case, the likelihood values of LVREML and PANAMA

coincided (Figure 2, C and D), indicating that both methods found
the same optimal covariance matrix.

The explanation for the difference between Figure 2, A and C
is as follows. In Figure 2A, LVREML uses p hidden covariates to ex-
plain the same amount of variation as dþ p expression PCs. The
dominant expression PCs are partially explained by population
structure (genotype data). Hence, when d genotype PCs are given
as known covariates, LVREML infers p orthogonal latent variables
that explain the “missing” portions of the expression PCs not
explained by genotype data. This results in a model that explains

more expression variation than the p dominant expression PCs,
but less than pþ d expression PCs, hence the reduced shift in
Figure 2C.

It is unclear why PANAMA did not find the correct solution when
expression PCs were used as known covariates (Figure 2B), but
this behavior was consistent across multiple subsampled data-
sets of varying sizes (Supplementary Figure S2) as well as in other
datasets (data not shown).

PANAMA and PEER infer hidden factors that are
partially redundant with the known covariates
Although PANAMA inferred models with the same covariance ma-
trix estimate K̂ and hence the same likelihood values as LVREML

when genotype PCs where given as known covariates, the in-
ferred hidden covariates differed between the methods.

As explained, hidden covariates inferred by LVREML are auto-
matically orthogonal to the known covariates and represent line-
arly independent axes of variation. In contrast, the latent
variables inferred by PANAMA overlapped with the known genotype
covariates supplied to the model, with cosine similarities of up to
30% (Figure 3A). In PANAMA, covariances among the effects of the
known confounders are assumed to be zero. When the optimal
model (i.e., maximum-likelihood K̂) in fact has effects with non-
zero covariance (as in Figure 1B), the optimization algorithm in
PANAMA will automatically select hidden confounders that overlap
with the known confounders to account for these non-zero cova-
riances (Supplementary Section S6), thus resulting in the ob-
served overlap. Hence, the common interpretation of PANAMA

factors as new determinants of gene expression distinct from
known genetic factors is problematic.

To test whether the overlap between inferred and already
known covariates also occurs in other methods or is specific to
PANAMA, we ran the PEER software (Stegle et al. 2012) on a reduced
dataset of 200 randomly selected samples from the yeast data
(PEER runtimes made it infeasible to run on larger sample sizes).
PEER is a popular software that uses a more elaborate hierarchical
model to infer latent variance components (Stegle et al. 2010). PEER

hidden factors again showed cosine similarities of up to 30%
(Figure 3B), suggesting that its hidden factors also cannot be
interpreted as completely new determinants of gene expression.
We also tested the hidden factors returned by PEER when no

A B C

Figure 3 Cosine similarity between known covariates (five genotype PCs) given to the model and hidden factors inferred by PANAMA (A) and PEER (B), and
cosine similarity between gene expression PCs and hidden factors inferred by PEER (C) when no known covariates are given to the model. Results are for
randomly subsampled data of 200 segregants.
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known covariates are added to the model. In this case, model (1)
reduces to probabilistic PCA and both LVREML and PANAMA correctly
identify the dominant expression PCs as hidden factors (Figure 2,
A and B). Despite its more complex model, which does not permit
an analytic solution even in the absence of known covariates, PEER

hidden factors in fact do overlap strongly with the same domi-
nant expression PCs (cosine similarities between 60% and 80%),
indicating that the added value of the more complicated model
structure may be limited, at least in this case.

LVREML is orders of magnitude faster than PANAMA

An analytic solution does not only provide additional insight into
the mathematical properties of a model but can also provide sig-
nificant gains in computational efficiency. The LVREML solution can
be computed using standard matrix operations from linear alge-
bra, for which highly optimized implementations exist in all pro-
gramming languages. Comparison of the runtime of the Python
implementations of LVREML and PANAMA on the yeast data at multiple
sample sizes showed around 10 thousand-fold speed-up factors,
from several minutes for a single PANAMA run to a few tens of milli-
seconds for LVREML (Figure 4). Interestingly, the computational cost
of LVREML did not increase much when known covariates were in-
cluded in the model, compared to the model without known cova-
riates that is solved by PCA (Figure 4A). In contrast, runtime of
PANAMA blows up massively as soon as covariates are included
(Figure 4B). Nevertheless, even in the case of no covariates, PANAMA

is around 600 times slower than the direct, eigenvector decomposi-
tion-based solution implemented in LVREML. Finally, the runtime of
LVREML does not depend on the number of known or inferred latent
factors, whereas increasing either parameter in PANAMA leads to an
increase in runtime (Supplementary Figure S3).

Discussion
We presented a random effects model to estimate simulta-
neously the contribution of known and latent variance compo-
nents in gene expression data, which is closely related to models
that have been used previously in this context (Lawrence 2005;
Stegle et al. 2010, 2012; Fusi et al. 2012; Buettner et al. 2015). By in-
cluding additional parameters in our model to account for non-
zero covariances among the effects of known covariates and
latent factors, we were able to show that latent factors can

always be taken orthogonal to, and therefore linearly indepen-
dent of, the known covariates supplied to the model. This is im-
portant, because inferred latent factors are not only used to
correct for correlation structure in the data but also as new, data-
derived “endophenotypes”, that is, determinants of gene expres-
sion whose own genetic associations are biologically informative
(Parts et al. 2011; Stegle et al. 2012). As shown in this paper, the
existing models and their numerical optimization result in hid-
den factors that in fact overlap significantly with the known
covariates, and hence their value in uncovering “new” determi-
nants of gene expression must be questioned.

To solve our model, we did not rely on numerical, gradient-
based optimizers, but rather on an analytic REML solution. This
solution relies on a decomposition of the log-likelihood function
that allows us to identify hidden factors as PCs of the expression
data matrix reduced to the orthogonal complement of the sub-
space spanned by the known covariates. This solution is guaran-
teed to minimize the amount of unexplained variation in the
expression data for a given number of latent factors and is analo-
gous to the widely used REML solution for conventional linear
mixed models, where variance parameters of random effects are
estimated in the subspace orthogonal to the maximum-
likelihood estimates of the fixed effects.

Having an analytic solution is not only important for under-
standing the mathematical properties of a statistical model, but
can also lead to significant reduction of the computational cost
for estimating parameter values. Here, we obtained a 10,000-fold
speed-up compared to an existing software that uses gradient-
based optimization. On a yeast dataset with 1012 samples, our
method could solve the covariance structure and infer latent fac-
tors in less than half a second, whereas it was not feasible to run
an existing implementation of gradient-based optimization on
more than 600 samples.

The experiments on the yeast data showed that in real-world
scenarios, LVREML and the gradient-based optimizer implemented in
the PANAMA software resulted in the same estimates for the sample
covariance matrix. Although the latent variables inferred by both
methods are different (orthogonal vs partially overlapping with the
population structure covariates), we anticipate that downstream
linear association analyses will nevertheless give similar results as
well. For instance, established protocols (Stegle et al. 2012) recom-
mend to use known and latent factors as covariates to increase the

A B

Figure 4 Runtime comparison between LVREML (A) and PANAMA (B), with parameters set to infer 85 hidden covariates with either 0 known covariates or
including 10 genotype PCs as known covariates, at multiple sample sizes. Running PANAMA on the full dataset of 1012 segregants was infeasible. For
runtime comparisons at other parameter settings, see Supplementary Figure S3.
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power to detect expression QTLs. Since orthogonal and overlapping
latent factors can be transformed into each other through a linear
combination with the known confounders, linear association mod-
els that use both known and latent factors as covariates will also
be equivalent (Supplementary Section S8).

While we have demonstrated that the use of latent variance
components that are orthogonal to known confounders leads to
significant analytical and numerical advantages, we acknowl-
edge that it follows from a mathematical symmetry of the under-
lying statistical model that allows us to transform a model with
overlapping latent factors to an equivalent model with orthogo-
nal factors. Whether the true but unknown underlying variance
components are orthogonal or not, nor their true overlap value
with the known confounders, can be established by the models
studied in this paper precisely due to this mathematical symme-
try. Such limitations are inherent to all latent variable methods.

To conclude, we have derived an analytic REML solution for a
widely used class of random effects models for learning latent vari-
ance components in gene expression data with known and un-
known confounders. Our solution can be computed in a highly
efficient manner, identifies hidden factors that are orthogonal to the
already known variance components, and results in the estimation
of a sample covariance matrix that can be used for the downstream
estimation of variance parameters for individual genes. The REML
method facilitates the application of random effects modeling strat-
egies for learning latent variance components to much larger gene
expression datasets than currently possible.

Data availability
The LVREML software and all data processing and analysis scripts
underlying this article are available at https://github.com/
michoel-lab/lvreml.

The modified code for running the PANAMA analyses is available
as a fork of the LIMIX package at https://github.com/michoel-lab/
limix-legacy.

No new data were generated in support of this research.
Expression levels in units of log2(TPM) for all yeast genes and

segregants were obtained from https://doi.org/10.7554/eLife.
35471.021.

Information on experimental batch and growth covariates for
all yeast segregants was obtained from https://doi.org/10.7554/
eLife.35471.022.

Genotypes at 42,052 markers for all yeast segregants were
obtained from https://doi.org/10.7554/eLife.35471.023.

Supplementary material is available at G3 online.

Funding
This research was supported in part by a grant from the Research
Council of Norway (grant number 312045) to T.M.

Conflicts of interest
The authors declare that there is no conflict of interest.

Literature cited
Albert FW, Bloom JS, Siegel J, Day L, Kruglyak L. 2018. Genetics of

trans-regulatory variation in gene expression. eLife. 7:e35471.

Albert FW, Kruglyak L. 2015. The role of regulatory variation in com-

plex traits and disease. Nat Rev Genet. 16:197–212.

Anderson TW, Olkin I. 1985. Maximum-likelihood estimation of the

parameters of a multivariate normal distribution. Linear Algebra

Appl. 70:147–171.

Astle W, Balding DJ. 2009. Population structure and cryptic related-

ness in genetic association studies. Stat Sci. 24:451–471.

Brown BC, Bray NL, Pachter L. 2018. Expression reflects population

structure. PLoS Genet. 14:e1007841.

Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, et al.

2015. Computational analysis of cell-to-cell heterogeneity in

single-cell RNA-sequencing data reveals hidden subpopulations

of cells. Nat Biotechnol. 33:155–160.

Franzén O, Ermel R, Cohain A, Akers N, Di Narzo A, et al. 2016.

Cardiometabolic risk loci share downstream cis and trans genes

across tissues and diseases. Science. 353:827–830.

Fusi N, Stegle O, Lawrence ND. 2012. Joint modelling of confounding

factors and prominent genetic regulators provides increased ac-

curacy in genetical genomics studies. PLoS Comput Biol. 8:

e1002330.

GTEx Consortium. 2017. Genetic effects on gene expression across

human tissues. Nature. 550:204.

Gumedze F, Dunne T. 2011. Parameter estimation and inference in

the linear mixed model. Linear Algebra Appl. 435:1920–1944.

Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al.

2009. Potential etiologic and functional implications of

genome-wide association loci for human diseases and traits. Proc

Natl Acad Sci U S A. 106:9362–9367.

Kang HM, Sul JH, Zaitlen NA, Kong S, Freimer NB, et al. 2010.

Variance component model to account for sample structure in

genome-wide association studies. Nat Genet. 42:348–354.

Kang HM, Ye C, Eskin E. 2008. Accurate discovery of expression

quantitative trait loci under confounding from spurious and gen-

uine regulatory hotspots. Genetics. 180:1909–1925.

Lawrence N. 2005. Probabilistic non-linear principal component

analysis with Gaussian process latent variable models. J Mach

Learn Res. 6:1783–1816.

Leek JT, Storey JD. 2007. Capturing heterogeneity in gene expression

studies by surrogate variable analysis. PLoS Genet. 3:e161.

Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, et al. 2011. FaST

linear mixed models for genome-wide association studies. Nat

Methods. 8:833–835.

Lin H, Mairal J, Harchaoui Z. 2017. A generic quasi-Newton algorithm

for faster gradient-based optimization. arXiv preprint arXiv:

1610.00960 v2.

Listgarten J, Kadie C, Schadt EE, Heckerman D. 2010. Correction for

hidden confounders in the genetic analysis of gene expression.

Proc Natl Acad Sci U S A. 107:16465–16470.

Liu DC, Nocedal J. 1989. On the limited memory BFGS method for

large scale optimization. Math Program. 45:503–528.

Mackay TF, Stone EA, Ayroles JF. 2009. The genetics of quantitative

traits: challenges and prospects. Nat Rev Genet. 10:565–577.

Manolio TA. 2013. Bringing genome-wide association findings into

clinical use. Nat Rev Genet. 14:549–558.

Parts L, Stegle O, Winn J, Durbin R. 2011. Joint genetic analysis of

gene expression data with inferred cellular phenotypes. PLoS

Genet. 7:e1001276.

Patterson HD, Thompson R. 1971. Recovery of inter-block informa-

tion when block sizes are unequal. Biometrika. 58:545–554.

Stegle O, Parts L, Durbin R, Winn J. 2010. A Bayesian framework to

account for complex non-genetic factors in gene expression lev-

els greatly increases power in eQTL studies. PLoS Comput Biol. 6:

e1000770.

Stegle O, Parts L, Piipari M, Winn J, Durbin R. 2012. Using probabilistic

estimation of expression residuals (peer) to obtain increased

8 | G3, 2022, Vol. 12, No. 2

academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab410#supplementary-data
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab410#supplementary-data
https://github.com/michoel-lab/lvreml
https://github.com/michoel-lab/lvreml
https://github.com/michoel-lab/limix-legacy
https://github.com/michoel-lab/limix-legacy
https://doi.org/10.7554/eLife.35471.021
https://doi.org/10.7554/eLife.35471.021
https://doi.org/10.7554/eLife.35471.022
https://doi.org/10.7554/eLife.35471.022
https://doi.org/10.7554/eLife.35471.023
academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkab410#supplementary-data


power and interpretability of gene expression analyses. Nat

Protoc. 7:500–507.

Tipping ME, Bishop CM. 1999. Probabilistic principal component

analysis. J R Stat Soc B. 61:611–622.

Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, et al. 2006.

A unified mixed-model method for association mapping that

accounts for multiple levels of relatedness. Nat Genet. 38:

203–208.

Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model

analysis for association studies. Nat Genet. 44:821–824.

Communicating editor: G. de los Campos

M. A. Malik and T. Michoel | 9


