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Developments in machine learning in recent years have precipitated a surge in research on 
the applications of artificial intelligence within medicine. Machine learning algorithms are 
beginning to impact medicine broadly, and the field of spine surgery is no exception. Elec-
tronic medical records are a key source of medical data that can be leveraged for the cre-
ation of clinically valuable machine learning algorithms. This review examines the current 
state of machine learning using electronic medical records as it applies to spine surgery. 
Studies across the electronic medical record data domains of imaging, text, and structured 
data are reviewed. Discussed applications include clinical prognostication, preoperative 
planning, diagnostics, and dynamic clinical assistance, among others. The limitations and 
future challenges for machine learning research using electronic medical records are also 
discussed.
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INTRODUCTION

Electronic medical records (EMRs) have experienced wide-
spread adoption globally since their initial development in the 
1970s.1 Recent surveys indicate that 80.5% of United States hos-
pitals and 58.1% of South Korean hospitals report at least basic 
EMR usage, and EMR adoption is expected to rise in the com-
ing years.2-5 EMR systems contain a wide variety of data, includ-
ing demographics, vitals, labs, imaging studies, medications, di-
agnoses, and more. The breadth of EMR data is also expected 
to increase with the integration of new types of information such 
as patient-reported outcome scores.6 Data may also come from 
new sources such as wearable devices and patient-driven mo-
bile applications.7,8 The rise in EMR adoption and usage has gen-

erated a large and expanding collection of data.
The growing wealth of data housed within EMR systems has 

dovetailed well with concurrent advancements in computer pro-
cessing power and artificial intelligence (AI) techniques.9 Pow-
erful graphics processing units (GPUs) that had been developed 
for video game applications were first adapted to nongraphical 
machine learning (ML) tasks in 2004.10-12 Leveraging the large 
parallel processing capacity of GPUs allowed for a significant 
reduction in the time required to train AI algorithms. Further-
more, the recent release of open source computer programming 
libraries like Google’s TensorFlow and Facebook’s PyTorch has 
democratized the creation of complicated ML algorithms by 
simplifying the process and expanding accessibility to those 
with less domain expertise.13,14 Broadly accessible ML tools now 
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Fig. 1. Stacked area chart depicting the number of publica-
tions by publication year returned in PubMed searches using 
the search terms “artificial intelligence,” “machine learning,” 
or “deep learning.” Results were filtered to include publication 
dates between 1980 and 2018.
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Fig. 2. A breakdown of common types of machine learning algorithms used in medical applications. t-SNE, t-Stochastic Neigh-
bor Embedding. *Deep learning algorithms.
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exist to help create algorithms for clinical practice from EMR 
data. Reflecting the increase in accessibility, the number of arti-
cles on the topic of AI and related subtopics in medical litera-
ture has undergone exponential growth in recent years (Fig. 1). 
One bibliometric study found over 60% of articles on AI and its 
related subtopics were published between 2014 and 2018.15

Notable ML studies have used EMR data to create algorithms 

which optimize neuroradiology workflows, monitor patients for 
the earliest signs of acute kidney injury, and detect lung cancer 
with superior accuracy to physicians.16-18 AI is affecting medicine 
broadly, and spine surgery is no exception. This narrative review 
aims to examine the current body of literature to consider the 
applications of ML using EMRs in the context of spine surgery. 
ML applications across the EMR data domains of imaging data, 
text data, and structured data (demographics, vitals, labs, etc.) 
are discussed. Within these domains, current ML research ap-
plied to spine surgery is examined along with adjacent research 
that may be applicable to spine surgery in the future. These ap-
plications span the clinical topics of preoperative risk stratifica-
tion, preoperative planning, postoperative prognostication, and 
optimization of the clinical workflow. Finally, the limitations 
and future challenges for EMR-driven ML are discussed.

ARTIFICIAL INTELLIGENCE, MACHINE 
LEARNING, AND DEEP LEARNING

AI refers to a variety of methods which all aim to direct com-
puters to simulate intelligent behavior. ML is a subtype of AI 
that describes the ability of an algorithm to learn patterns con-
tained in large datasets.19 Within ML, there are several distinc-
tions (Fig. 2). Within each of these categories, there are wide 
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varieties of algorithm architectures and methods that can be 
employed for ML problems. Of note, the high impact ML sub-
field of deep learning (DL) has risen in prominence in recent 
years (Fig. 1). DL uses neural networks with many layers which 
allow for complicated, nonlinear processing of input data.20 This 
allows DL algorithms to find highly abstracted data representa-
tions. In turn, these abstract representations enable strong per-
formance on complex tasks such as imaging classification. Tak-
en together, advances in the subfields of ML have yielded a large 
variety of algorithm architectures with various strengths and 
weaknesses. With this large toolkit of ML architectures, much 
of modern ML research in medicine is aimed at best applying 
these architectures to clinical tasks.

MATERIALS AND METHODS

The terms “((electronic medical records OR EMR OR elec-
tronic health records OR EHR)) AND (artificial intelligence 
OR machine learning OR deep learning)”, “(artificial intelli-
gence OR machine learning OR deep learning) AND spine”, 
and “((electronic medical records OR EMR OR electronic health 
records OR EHR)) AND spine” were used to search PubMed 
for relevant articles on the topics of ML, EMR, and spine sur-
gery. The citations from these articles were used to find further 
relevant research. In addition, other articles known to the au-
thors were pulled for review. The reviewed articles were used to 
construct this narrative review on applications of ML using EMR 
in spine surgery.

COMPUTER VISION AND IMAGING DATA

According to estimates by IBM, 90% of all medical data is 
imaging data.21 This is especially true in spine surgery as ad-
vanced imaging techniques are critical in diagnosis, intraopera-
tive guidance, and postoperative surveillance. Unfortunately, 
the increasing use of computed tomography (CT) and magnetic 
resonance imaging (MRI) scans increases the demand for im-
age interpretation.22 This allows a unique opportunity for the 
wide variety of powerful ML tools available today to provide 
vast improvements in the accuracy and speed of automated im-
aging analysis. This section will discuss some of the most perti-
nent ML advances in spine imaging and their corresponding 
impacts in surgical or clinical practice.

1. Automated Visualization and Segmentation
One of the most prominent applications of ML to imaging 

data in spine surgery is in vertebrae visualization and segmen-
tation. For humans, visualizing and identifying spine landmarks 
and measuring relevant physical dimensions requires time and 
effort, which can take up to 15 minutes per patient.23 In addi-
tion, imaging and interpreter variability can lead to skewed in-
terpretations of imaging in EMRs. In turn, this can lead to sub-
optimal outcomes, particularly in procedures that aim to ad-
dress spinal deformity, where specific measurements must re-
main accurate and consistent (e.g., distances between 2 spinous 
processes of adjacent vertebrae).24

Image processing is a difficult task even by the standards of 
modern computational techniques. To deliver quick and accu-
rate image interpretation, ML in imaging must overcome sev-
eral challenges. Generally, computational image analysis requires 
3 major stages: image classification, object detection, and seg-
mentation. In spine imaging, this might involve first determin-
ing the presence of vertebrae (image classification), separating 
bone from other tissues (detection), and clearly delineating these 
boundaries (segmentation). The large amount of pixel or voxel 
information that needs to be evaluated means that exceptional-
ly powerful machines are needed. In addition, algorithms must 
be flexible enough to address variability in spinal alignment and 
fusion status. Even carefully constructed algorithms relying on 
2-dimensional imaging struggle to properly diagnose spinal im-
balances that are important for preoperative diagnostics.25

Recent advances in computational speed and available medi-
cal data have given rise to stronger DL algorithms. In addition, 
more complex models require large batches of properly anno-
tated data to train, or modify computational parameters to op-
timize their ability to recognize salient imaging patterns. As CT 
and MRI scans became available in bulk, they became strong 
datasets for ML training, yielding stronger ML models.26

With regards to spinal visualization and segmentation, many 
groups have applied sophisticated automated analysis of CT and 
MRI to both normal and pathological spines. One University of 
Cincinnati group used a “guess-and-revise” ML algorithm on 
sagittal MRI scans of whole spines. After selecting for the best 
available slices, the algorithm guesses the location of the center 
of each vertebra and calculates the location of each vertebral 
body and intervertebral disk. The initial guesses are revised and 
optimized based on the locations of other discs until the most 
probable spine labeling is attained.23 In this study, automated 
segmentation and identification were successful, though accu-
racy was lower on pathological spines. Recently, more advanced 
DL techniques, such as convolutional neural networks (CNNs), 
have proven effective in imaging tasks. Such neural nets consist 
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of several computational layers that apply mathematical convo-
lutions in sequence. These networks recognize motifs or pat-
terns in MRI and CT scans that allow the model to see an ob-
ject and segment it from the rest of the image. One study by 
Forsberg et al.27 used these CNNs to attain high accuracy and 
efficiency in labeling cervical and lumbar vertebrae in MRI im-
ages. The authors used a large but minimally-labeled set of MRI 
data that had only vertebrae positional labels for testing rather 
than the full vertebral outlines required by previous non-DL 
models. With one CNN for cervical vertebrae and one for lum-
bar vertebrae, the authors of the study were able to successfully 
segment vertebral bodies from IVDs and surrounding tissue 
with a high degree of precision and label both cervical and lum-
bar vertebrae with > 95% accuracy.

Even these powerful DL tools, however, struggle with bound-
ary problems and incomplete or poor-quality imaging. In the 
case of the previous study, the model’s most common error was 
labeling either T12 or S1 as lumbar vertebrae or T1 as cervical 
vertebrae. A more recent study was able to use an even stronger 
CNN specialized for processing 3-dimensional images to locate 
and perform accurate spine segmentation on partial spine CT 
scans and chest CT scans; the addition of a third dimension to 
image breakdown and analysis allowed especially efficient lo-
calization of the center of vertebral bodies and high accuracy in 
segmentation, even in images with poor imaging quality or where 
only parts of some vertebrae are identifiable on the scan.28 De-
spite these advances, ML in the near future will likely play a sup-
porting role in spine surgery rather than supply full automation.24

2. Preoperative Planning and Intraoperative Assistance
ML models in spine imaging analysis have clinical applica-

tions beyond examining large visual features. ML can regularize 
and expedite preoperative planning and intraoperative adjust-
ments, particularly in deformity cases where measurements 
and corrections rely on estimation and surgeon experience. Any 
surgical parameter that is manually measured or measured with 
computer assistance could be made more precise by ML mod-
els. For instance, Cobb angles are typically manually measured 
on a radiograph. Even among experienced surgeons, angle mea-
surements can vary almost 10%.29 Zhang et al.29 used a deep neu-
ral network (DNN) with 3 neural layers to perform spine seg-
mentation similar to the protocols mentioned above, identify 
the vertebral end plates, and measure Cobb angles. The DNN 
was able to attain a high degree of accuracy and consistency, 
approaching an error of only around 5% from Cobb angles cal-
culated by experienced spine surgeons. Automation could more 

accurately measure Cobb angles faster than manual measure-
ment and may enable studies of imaging parameters on a mas-
sive scale.

Another area of spine surgery that may benefit from ML mod-
els is pedicle screw placement. Like Cobb angle determination, 
pedicle screw placement is an inexact, by-the-eye surgical pro-
cedure. While novel navigation and robotics systems for screw 
placement have increased accuracy, ML can work to continue 
to optimize the outcomes of screw placement.30 One DL model 
from Burström et al.30 can successfully identify and segment the 
pedicles on MRI, which may enhance the consistency and ac-
curacy of pedicle screw placement. After utilizing similar tech-
niques and methods as described in the previous section to per-
form pedicle visualization, the model was able to identify the 
pedicle midpoint, the optimal site of a pedicle screw; while (like 
many current algorithms) deficient on spines with severe ab-
normal curvature, the model was generally able to attain high 
( > 95%) accuracy rates identifying optimal places for pedicle 
screw placement in normal spines. As a supplement to robotic 
and navigational aids, an automated pedicle identification mod-
el could standardize and improve pedicle screw placement.

3. Diagnostics and Clinical Prognostication
ML techniques are also becoming increasingly useful in clini-

cal diagnosis. ML methods can be extended to check for osteo-
porosis and fracture using models trained on both MRI and CT 
images,31,32 which are useful in spine and general orthopedic 
surgery. Even simple models trained quickly and on relatively 
scant data, such as regression-based on imaging density of ver-
tebral bodies in a CT scan and demographic information can 
achieve 90% accuracy in identifying osteoporosis with CT scans.32 
More complex computational models trained with more fea-
tures, such as topological features of the spine in an MRI scan 
or projected mechanical qualities of bone, have the capability of 
yielding even better results.31 For instance, such models have 
been used to create an automated system for detecting lytic and 
blastic bone tumors in spine CT scans33: in the corresponding 
study, extensive image processing on CT scans was performed 
to isolate out the vertebral bodies, while additional image dis-
cernment through a random forest classifier was employed to 
locate likely lesion centers and the border of the metastases in 
the bone. These DL models could be used as a fast, low-cost 
screening for every MRI and CT scan performed. Used in con-
junction with traditional radiology, ML techniques can enhance 
imaging efficiency and open up new pathways for effective di-
agnosis and treatment.
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NATURAL LANGUAGE PROCESSING 
AND TEXT DATA

EMRs are a significant contributor to stress and burnout among 
physicians.34,35 Studies have also shown that EMRs can reduce 
both the amount of time physicians look at their patients36 and 
the number of patients seen per provider.37 The AI techniques 
of natural language processing (NLP) can help alleviate these 
problems by enabling computers to assist clinicians with the ar-
duous process of clinical documentation. NLP transforms un-
structured text data into computer-recognizable formats for 
quantitative analysis. This technique has been utilized in a broad 
range of surgical and medical disciplines, yet to date there have 
not been many studies specific to spine surgery. This section 
will focus on the potential applications of NLP in spine surgery. 
Although the majority of articles discussed pertain to other 
fields of medicine, the findings are readily adaptable to spine 
surgery. Given that EMRs contain a plethora of textual data in 
the form of provider notes, imaging reports, etc., the applica-
tions for NLP are numerous.

1. Data Querying
NLP offers an efficient way to extract clinical data from med-

ical documents, which normally would be labor-intensive and 
time consuming. For example, groups have used NLP across 
various medical disciplines to extract key clinical data from text 
documents such as patient records,38 discharge summaries,38-40 
pathology reports,40,41 and radiology reports.40,42 These techni
ques can be adapted to assist spine surgeons via data extraction. 
For example, Tan et al.43 trained a model to identify informa-
tion pertaining to low back pain (LBP) from lumbar spine im-
aging reports. Initially, the group determined 26 distinct find-
ings to extract, such as annular fissure, scoliosis, disc protru-
sion, or spondylosis. The authors developed both rules-based 
and ML models for the task. The ML model achieved an aver-
age specificity of 0.95 and sensitivity of 0.94. While both mod-
els were similar in specificity, the authors found that the ML 
model achieved greater sensitivity in the detection of “compound 
findings,” such as “nerve root displaced or compressed.”43 An-
other example of NLP is a rules-based approach recently pub-
lished by Wyles et al.44 for the analysis of total hip arthroplasty 
operative notes. Their algorithms captured information per-
taining to operative approach, fixation method, and bearing 
surface. All the models demonstrated an accuracy of > 90% 
and demonstrated external validity.44 Robust NLP methods 
may enable unstructured qualitative data to be converted into 

quantitative statistics for analysis on a massive scale. This can 
enable the exploration of novel research topics, as well as new 
methods for quality improvement of clinical operations on a 
day to day basis.

2. Clinical Assistance
Aside from data extraction, some sophisticated NLP applica-

tions have shown promise for more dynamic clinical use, assist-
ing clinicians in real time. One such way is through the auto-
mated creation of spine radiological reports, as demonstrated 
by Han et al. using a weakly supervised DL model.45 Their model 
generated reports pertaining to 3 spinal diseases: lumbar verte-
brae deformities, neural foraminal stenosis, and intervertebral 
disc degeneration.45 The generated text noted any association 
between the diseases and the location. One example would be 
“At L3–4, disc degenerative changes are associated with neural 
foraminal stenosis.”45 The use of NLP in automated note gener-
ation can ease the work burden of clinicians and increase clini-
cal efficiency. These models could be adapted to other text-based 
documents in spine surgery. In addition to note generation, ML 
methods can also be employed in speech recognition technolo-
gies. A group from Google developed 2 neural network models, 
connectionist temporal classification (CTC) and listen attend 
and spell (LAS), to automatically transcribe provider-patient 
conversations.46 The latter model produced a word error rate of 
18.3% and the former 20.1%. The authors noted that error came 
in recognizing casual conversations, which may be less clinical-
ly relevant.46 When identifying key medical terms, the CTC 
model had precision and recall rates ranging from 80%–90%, 
and the LAS model demonstrated a 98.2% recall in identifying 
drug names.46 Another study developed a deep neural network 
model for medical voice recognition trained on over 270 hours 
of speech data and compared the performance to professional 
medical transcriptionists.47 The model had a 15.4% error rate 
when applied to a “realistic clinical use case” and performed 
equally as well as humans.47 The 2 studies discussed here illus-
trate the ability of ML to recognize real conversations between 
patients and providers. With further refinement, this software 
could be hugely beneficial for clinical and office work, creating 
less need for providers to manually input notes.

Overall, the use of NLP in spine surgery is still in its early 
stages. Generally speaking, rules-based approaches have been 
the dominant approach to NLP tasks. However, as ML libraries 
and algorithms continue to develop, we may see more sophisti-
cated text-based applications, such as the generation of complex 
notes or voice recognition software. Given the vast amount of 
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EMR text data available, there is much room for innovation 
and creativity.

STRUCTURED DATA

The remainder of EMR data is quite comprehensive, includ-
ing demographic information, labs, vitals, medical history com-
ponents, social history components, procedures, medications, 
and other variables. Unlike unstructured imaging and text data, 
this data benefits from inherent structure. Once extracted from 
EMR systems, this structured data is primed for integration 
with ML techniques to create better risk stratification systems, 
allow for personalized treatment algorithms, improve postop-
erative clinical prognostication, and refine reimbursement mod-
els.26 As a result, this EMR data constitutes a large proportion of 
current and potential future research opportunities investigat-
ing the applications of ML in spine surgery.

1. Risk Stratification
ML algorithms allow for better risk stratification and the cre-

ation of entirely new classification systems that aid spine sur-
geons in their decision-making process. For example, one re-
cent study by Ames et al. demonstrated the efficacy of ML in 
patient clustering to better create new classification systems and 
guide the preoperative decision-making process. While this 
study used prospective data, as opposed to that from an EMR 
system, it presents an opportunity to be repeated using retro-
spective EMR data on larger datasets to establish external valid-
ity. This could increase the study’s generalizability and remove 
any potential bias that may have existed in the original prospec-
tive study.26,48 Also, EMR data can be used to better identify high-
risk patients and predict complications and prevent those com-
plications. One recent study by Zhang et al.49 demonstrated the 
ability of quantitative CT ML algorithms to assess vertebral 
strength and predict vertebral fracture risk in elderly patients. 
This is especially important considering the mortality rate of 
Medicare patients with vertebral compression fractures is ap-
proximately 2 times that in matched cohorts.50

2. Personalized Treatment Algorithms
The use of ML with EMR data also allows for the creation of 

more personalized treatment algorithms. One recent study dem-
onstrated the ability of ML to predict a specific patient’s response 
to functional restoration rehabilitation for chronic LBP. While 
this study was conducted in a prospective manner, large EMR 
datasets could be analyzed via this method to increase general-

izability. The resultant predictions would allow surgeons and 
patients to better understand the likelihood of success and make 
more informed treatment decisions.50,51 Another study used 
EMR data to predict the need for intraoperative or postopera-
tive blood transfusion.52 This allows for the surgical team to 
better preoperatively optimize these patients and have equip-
ment available to mitigate blood loss and expedite transfusions 
as needed. Lastly, for certain conditions where comparable treat-
ments exist and overall literature is nonconfirmatory, ML algo-
rithms could help with in-depth analysis of patient information 
to create personalized treatment algorithms.

3. Clinical Prognostication
The integration of EMR data with ML algorithms could have 

the greatest potential impact on postoperative clinical prognos-
tication. It would allow surgeons to better predict and prepare 
for postoperative complications, more efficiently utilize hospital 
resources, and prioritize patient surveillance on those who are 
at the greatest risk. In fact, multiple studies have demonstrated 
the ability to build predictive models using EMR data for major 
perioperative complications in spine surgery, particularly surgi-
cal site infections.53-57 Other models have also been created us-
ing EMR data to predict physical disability, return to work, ma-
jor complications, readmission rates, walking ability, need for 
inpatient rehab following spine surgery, discharge, and disposi-
tion.58-61 More specific algorithms have been created to predict 
preoperative factors impacting survival, discharge, and read-
mission rates in patients following spine surgery for spinal me-
tastasis.56,62,63 While some of these studies have used the Nation-
al Surgical Quality Improvement Program database and insur-
ance databases in the past, similar algorithms could be produced 
for other indications using large EMR datasets. Then, ML tech-
niques such as ridge linear regression and to a much larger ex-
tent nonlinear DL models like ANNs can identify the features 
most relevant and helpful to predicting each post-surgical out-
come.57 Used in a hospital-wide fashion, these models could 
identify the most vulnerable postoperative patients and help di-
rect postoperative triage and patient surveillance. Recently, one 
group even used EMR data to create an application to predict 
which patients are at higher risk of prolonged postoperative 
opioid use. This application, which will allow surgeons to better 
identify patients that may require increased surveillance follow-
ing surgery, is especially important given the current opioid cri-
sis in the United States.64
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4. Reimbursement 
The integration of EMR data with ML algorithms also has 

huge ramifications on reimbursement processes, particularly in 
creating new classifications systems for bundled care models.48,65 
Moreover, all of the aforementioned impacts on risk stratifica-
tion, personalized treatment algorithms, and clinical prognosti-
cation will allow for more accurate reimbursement models and 
financial optimization of clinical practice.

LIMITATIONS AND CHALLENGES

ML applications using EMR data in spine surgery hold im-
mense promise for the future. Despite the impressive advance-
ments of recent years, there are still several challenges that must 
be addressed to bring robust algorithms into clinical practice. 
Many of these limitations are not unique to spine surgery. Sev-
eral limitations of using ML with EMRs are discussed below.

1. Electronic Medical Record Systems
ML applications utilizing EMR data are rapidly advancing, 

but EMR systems themselves pose a significant challenge to 
progress. It is often quite difficult to effectively extract data from 
EMR systems.66 Notably, many studies reviewed in this article 
used large publicly available databases rather than attempt to 
gather the same data from their own institutional EMR sys-
tems.52,57,59,63,67 EMR systems do not follow standardized proto-
cols for data storage and application programming interfaces, 
making it difficult to interface EMRs with other systems.1 Not 
only does this impact data extraction, but it also affects clinical 
integration. Another major challenge lies in building the neces-
sary infrastructure to clinically integrate ML tools with EMRs 
for evaluation. Over the coming years, it may be important for 
EMR systems to adapt to simplify data extraction and to allow 
integration of ML models into the clinical workflow. Only then 
will these algorithms begin to benefit clinical practice in a mean-
ingful way.

2. Data Quality
Once data extraction has been completed, the quality of the 

EMR data is a further challenge. ML techniques are best suited 
for large amounts of high quality, consistent data with clear la-
beling. Poor data quality is a common barrier to creating a high 
performing algorithm for clinical application.68 Unfortunately, 
the data found in EMRs is by nature heterogeneous and noisy, 
and several studies have called the quality of EMR data into 
question.69-73 Inaccuracies and missing data points are a com-

mon problem. Furthermore, there may be disconnects between 
the labeling and the reality in EMR data. One common criti-
cism is that International Classification of Diseases codes are 
often unreliable for diagnosis, as they are primarily used for 
billing.74 Training algorithms on such poor-quality data may ul-
timately be dangerous for patients.75 Future applications of ML 
to EMR data will need to employ rigorous data mining tech-
niques to ensure high-quality data for training.76 Parsing signal 
from noise in EMR data remains a significant challenge in cre-
ating useful ML algorithms.

3. The Black Box Problem
Some studies have created ML algorithms that outperform 

physicians in clinical tasks.16,77 These algorithms are exciting, as 
they point toward the development of tools that could improve 
the quality of care. However, one drawback of many ML mod-
els is that they cannot explain themselves. These models are of-
ten referred to as “black boxes,” meaning that although the in-
puts and outputs are visible, the internal behavior of the model 
remains hidden.78,79 Despite impressive validated results, the 
black box nature of many ML algorithms is a significant barrier 
to patient and physician trust and ultimate clinical use.

In order to utilize ML tools effectively, ML tools will need to 
provide explanations for their outputs.80 This is particularly 
challenging since ML models may have millions of parameters 
containing a massive amount of nuanced information. The chal-
lenge is to take this high-dimensional model and abstract its re-
lationships into an interpretable form while maintaining ade-
quate fidelity to the model’s inner workings.79 To this end, some 
significant progress has already been made in developing meth-
ods for dissecting the internal workings of ML models.81 On 
imaging data, heatmaps may provide insight by pointing to re-
gions that the algorithm finds important for its ultimate deci-
sion. NLP algorithms may highlight particularly important piec-
es of text. Algorithms integrating labs and vitals might highlight 
the most influential pieces of data in the decision-making pro-
cess. Few studies in this review included tools for model inter-
pretation. Future ML developments will need to be accompa-
nied by tools for model interpretation that open up the black 
box in order to achieve clinical use.

4. Generalizability
ML algorithms work best on tasks with narrow definitions. 

Unfortunately, slight changes of input data distributions can 
derail an algorithm altogether. Thus, many ML algorithms fail 
to generalize across institutions, patient populations, patholo-
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gies, and other domains. Multiple studies of ML in spine sur-
gery have discovered issues with the generalizability of proposed 
models.55,82 For example, Janssen et al.55 attempted an external 
validation of a surgical site infection treatment algorithm on 
898 consecutive patients. The results were rather poor com-
pared to the initial study, with a low positive predictive value 
pointing to problems of overfitting and generalizability.54,55 One 
way this limitation can be addressed is through fine-tuning of 
algorithms with data from the institution to which the algo-
rithm will be applied. Although this is a plausible solution, this 
route is limited to institutions with large quantities of data. Small-
er institutions and private practices might be precluded from 
employing ML tools if they require fine-tuning to be effective. 
Therefore, it is essential that ML algorithms are robust and gen-
eralize well in order to maximize utility. Unfortunately, few cur-
rent studies of ML applications to spine surgery pursue external 
validation.82 This trend is not limited to spine surgery. One re-
cent review by Kim et al.83 found that only 6% of AI algorithms 
designed for diagnostic image analysis included external valida-
tion in the results. Fortunately, this appears to be changing, as 
several calls for “technovigilance” have arisen, advocating care-
ful external validation of ML study results.83,84

5. Legal
As high-risk decisions begin to be augmented by and dele-

gated to AI systems, questions of legal ramifications will need 
to be answered. Medical malpractice standards currently gov-
ern culpability in care settings. However, it is unclear who is re-
sponsible for predictive errors in AI algorithms in current law. 
Determining responsibility for the outputs of algorithms will be 
necessary before advancing EMR-based ML to clinical imple-
mentation.85

6. Ethical
One notable ethical challenge that arises frequently in the 

discussion of ML algorithms in medicine is the potential for 
bias.85 Discrepancies in data quality across groups may intro-
duce unwanted bias into algorithms and cause harm to those 
underrepresented in EMR training data.86 In some cases, algo-
rithms may provide undue weight to proxy variables or con-
founders to generate predictions, which may translate to harm-
ful outcomes for patients. Future development of AI systems 
will need to address these challenges and examine potential bi-
ases to avoid unintended consequences before advancing to 
clinical implementation.

CONCLUSION

EMRs represent a rich source of medical data, and ML algo-
rithms may be able to successfully harness the value of this data 
to impact the field of spine surgery. Strides have already been 
made in using ML algorithms to read radiographs, generate re-
ports, and project clinical outcomes for patients with impres-
sive results. However, several challenges still remain to be ad-
dressed. Despite these challenges, progress is rapid, and it ap-
pears these algorithms will eventually reach a point of mean-
ingful clinical integration with profound impact on the practice 
of spine surgery.
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