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Abstract: Background: Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder
characterized by persistent hyperglycemia, oxidative stress, and inflammation, contributing
to insulin resistance and long-term complications. Dietary antioxidants from plant sources,
such as polyphenols, flavonoids, carotenoids, and phenolic acids, have been increasingly
studied for their potential to modulate these pathophysiological mechanisms. Objective:
This review aims to summarize and critically analyze the current evidence on the biological
effects, therapeutic potential, and translational challenges of plant-derived antioxidants in
the prevention and management of T2DM. Methods: This narrative review was conducted
using peer-reviewed literature from PubMed, Scopus, and Web of Science. Emphasis
was placed on mechanistic studies, clinical trials, bioavailability data, and advances in
formulation technologies related to antioxidant compounds in the context of T2DM. Re-
sults: Plant antioxidants exert beneficial effects by modulating oxidative stress, reducing
systemic inflammation, and improving insulin signaling pathways. However, their clinical
application is limited by low bioavailability, chemical instability, and high interindivid-
ual variability. Recent developments, such as nanoencapsulation, synergistic functional
food formulations, and microbiome-targeted strategies, have shown promise in enhanc-
ing efficacy. Additionally, personalized nutrition approaches and regulatory advances
are emerging to support the integration of antioxidant-based interventions into diabetes
care. Conclusions: Plant-derived antioxidants represent a promising complementary tool
for T2DM management. Nonetheless, their effective clinical use depends on overcoming
pharmacokinetic limitations and validating their long-term efficacy in well-designed trials.
Integrating food technology, microbiome science, and precision nutrition will be crucial
to translate these compounds into safe, scalable, and personalized therapeutic options for
individuals with or at risk of T2DM.

Keywords: type 2 diabetes mellitus; antioxidants; oxidative stress; insulin resistance;
polyphenols
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1. Introduction
Type 2 diabetes mellitus (T2DM) is a rapidly escalating global health concern currently

affecting over 537 million individuals worldwide and projected to reach 783 million by
2045 [1]. Characterized by chronic hyperglycemia and insulin resistance, T2DM is closely
associated with increased oxidative stress and systemic inflammation [2], which play pivotal
roles in its pathogenesis and complications. Reactive oxygen species (ROS) disrupt insulin
signaling pathways and promote β-cell dysfunction, while pro-inflammatory cytokines
further impair glucose homeostasis, establishing a vicious cycle that accelerates disease
progression [3]. In this context, dietary strategies targeting redox balance and inflammatory
processes have garnered substantial interest. Among them, plant-derived antioxidants,
such as polyphenols, flavonoids, and carotenoids, have emerged as promising therapeutic
agents due to their multifaceted bioactivity and natural origin [4,5]. These compounds
exert their protective effects not only by scavenging ROS but also by modulating key
molecular pathways, including AMP-activated protein kinase (AMPK), nuclear factor
kappa B (NF-κB), and peroxisome proliferator-activated receptors (PPARs), which are
essential regulators of metabolic homeostasis [6,7].

Methodology

To ensure the scientific rigor, relevance, and clarity of this narrative review, the follow-
ing methodological steps were followed:

• Structured literature search: Conducted across five major scientific databases—
PubMed, Scopus, Web of Science, Embase, and ScienceDirect—to ensure broad and
multidisciplinary coverage.

• Timeframe and study types: Included peer-reviewed original research articles and
systematic reviews published between January 2010 and March 2024.

• Quality prioritization: Emphasis was placed on studies published in high-impact jour-
nals, particularly those indexed in Journal Citation Reports (JCR) and SCImago Journal
Rank (SJR), with a focus on Q1 journals in the fields of endocrinology, pharmacology,
and nutrition.

• Search strategy: Designed to reflect the multifactorial nature of type 2 diabetes mellitus
(T2DM) and its interplay with oxidative stress and plant-based interventions.
Keywords and Boolean operators included “type 2 diabetes mellitus”, “oxidative
stress”, “plant-derived antioxidants”, “polyphenols”, “flavonoids”, “carotenoids”,
“insulin resistance”, “AMP-activated protein kinase (AMPK)”, “NF-κB”, “gut micro-
biota”, “inflammation”, and “nutrigenomics.”

• Inclusion criteria:
Experimental and clinical studies involving in vitro, in vivo, or human subjects.

• Exclusion criteria:
Publications not in English.
Studies lacking experimental or clinical validation.
Narrative commentaries, dissertations, books, conference abstracts, or preprints.
Articles considered methodologically outdated or not aligned with current pathophys-
iological understanding.

• Scope of the review:
To critically synthesize current evidence on the mechanistic and translational role of
plant-derived antioxidants in T2DM.
Special focus on their ability to mitigate oxidative stress, modulate inflammation, and
improve insulin signaling.
Highlight key limitations (e.g., bioavailability, metabolic stability) and emerging re-
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search directions, including microbiome interactions, synergistic antioxidant strategies,
and personalized nutrition.

This narrative review critically synthesizes evidence from molecular, nutritional, and
clinical research on the potential of plant-derived antioxidants to modulate oxidative
stress, inflammation, and insulin resistance in T2DM. It also discusses key challenges,
such as bioavailability and metabolic stability, and explores emerging strategies, including
synergistic formulations, microbiome modulation, and precision nutrition.

2. Oxidative Stress, Inflammation, and Insulin Resistance in Type 2
Diabetes Mellitus

T2DM is a complex metabolic disorder characterized by chronic hyperglycemia, insulin
resistance, and β-cell dysfunction. One of the central pathological mechanisms underly-
ing T2DM is oxidative stress, which results from an imbalance between reactive oxygen
species (ROS) production and the antioxidant defense system [8]. Elevated ROS levels
contribute to mitochondrial dysfunction, endoplasmic reticulum stress, and β-cell apop-
tosis, exacerbating insulin resistance and impairing glucose homeostasis [9]. In addition,
oxidative stress triggers a cascade of inflammatory responses, which further deteriorate
insulin signaling pathways and worsen metabolic dysfunction [10]. Chronic low-grade
inflammation is another hallmark of T2DM and is closely linked to oxidative stress. Pro-
inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6),
and interleukin-1β (IL-1β), are upregulated in individuals with diabetes, contributing to
insulin receptor desensitization and impaired glucose uptake [11]. These cytokines activate
nuclear factor kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) signaling pathways,
which directly interfere with insulin receptor substrate (IRS) phosphorylation, leading to
insulin resistance [12]. Additionally, the accumulation of advanced glycation end-products
(AGEs) in diabetic patients exacerbates oxidative stress and inflammatory signaling, further
impairing metabolic control [13].

The interplay between oxidative stress and inflammation is particularly detrimental
in the adipose tissue of individuals with obesity-related T2DM. Dysfunctional adipocytes
release excessive free fatty acids (FFAs), which not only serve as substrates for oxidative
stress but also activate Toll-like receptors (TLRs), perpetuating inflammatory cascades [14].
This pro-inflammatory and oxidative environment disrupts insulin signaling and fosters
ectopic lipid accumulation in the liver and the skeletal muscle, further aggravating insulin
resistance [15]. Consequently, targeting oxidative stress and inflammation has emerged as
a crucial therapeutic approach in the management of T2DM.

Given the central role of oxidative stress in T2DM’s pathogenesis, endogenous an-
tioxidant systems, such as superoxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase (GPx), are often overwhelmed in diabetic patients [16]. The depletion of these
enzymatic antioxidants results in an unchecked accumulation of ROS, further impairing
insulin sensitivity and β-cell function. This has led to an increasing interest in dietary and
pharmacological antioxidants as potential interventions to restore redox homeostasis and
mitigate metabolic dysfunction in T2DM [17].

Plant-derived antioxidants, including polyphenols, flavonoids, and carotenoids, have
gained considerable attention for their ability to counteract oxidative stress and improve
insulin sensitivity [4]. These bioactive compounds exert their protective effects through
multiple mechanisms, including scavenging ROS, modulating inflammatory pathways,
and enhancing mitochondrial function [5]. Furthermore, some plant antioxidants directly
target key molecular regulators of insulin signaling, such as AMP-activated protein kinase
(AMPK) and peroxisome proliferator-activated receptor gamma (PPAR-γ), making them
promising candidates for T2DM management [7].
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Recent clinical and preclinical studies have demonstrated that diets rich in plant-based
antioxidants correlate with improved glycemic control, reduced oxidative damage, and
lower inflammatory markers in diabetic patients [18]. However, challenges related to
the bioavailability, metabolism, and stability of these compounds remain key hurdles in
their clinical translation [19]. Addressing these limitations through advanced formulation
strategies and nutrigenomic approaches could pave the way for more effective personalized
antioxidant therapies for T2DM [14].

The interplay between these mechanisms contributes to progressive β-cell dysfunction
and metabolic deterioration. Studies have demonstrated that oxidative stress induced
by excessive ROS production disrupts insulin signaling pathways and induces chronic
inflammation, creating a vicious cycle that perpetuates metabolic disturbances [20].

Mitochondria are central regulators of cellular energy metabolism, and their dysfunc-
tion is a hallmark of insulin resistance. In T2DM, excessive nutrient influx—particularly
from high-fat and high-glucose diets—leads to mitochondrial overload and excessive ROS
generation [21]. This oxidative burden impairs mitochondrial dynamics, reducing ATP syn-
thesis and leading to structural damage in key insulin-responsive tissues, such as skeletal
muscle, liver, and adipose tissue [22].

Mitochondrial ROS also contribute to defective insulin signaling by activating stress
kinases, such as JNK and inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ),
both of which inhibit insulin receptor substrate (IRS) phosphorylation, ultimately impairing
glucose uptake [23]. Furthermore, oxidative damage to mitochondrial DNA (mtDNA) exac-
erbates cellular stress and promotes further metabolic dysregulation [24]. Strategies aimed
at enhancing mitochondrial function, such as antioxidant therapies, caloric restriction,
and physical activity, have been proposed as potential interventions to mitigate insulin
resistance [25].

Beyond mitochondria, the endoplasmic reticulum (ER) also plays a critical role in
oxidative-stress-induced insulin resistance. The ER is responsible for protein folding and
secretion, particularly of insulin in pancreatic β-cells. However, in the hyperglycemic and
hyperlipidemic state of T2DM, ER stress is triggered due to protein misfolding, leading
to activation of the unfolded protein response (UPR) [26]. Prolonged UPR activation
results in apoptosis of β-cells through the PERK-eIF2α-CHOP pathway, contributing to
reduced insulin secretion and worsening hyperglycemia [27]. The interplay between
ER stress and oxidative stress is bidirectional; ROS can exacerbate ER stress, and ER
stress can further promote oxidative damage via calcium dysregulation and activation of
NADPH oxidase [28]. Recent studies suggest that pharmacological agents targeting ER
stress pathways, such as tauroursodeoxycholic acid (TUDCA), may help improve insulin
sensitivity and β-cell survival in T2DM [29,30].

Chronic, low-grade inflammation is a defining feature of T2DM largely driven by
adipose tissue dysfunction. In individuals with obesity-related insulin resistance, hyper-
trophied adipocytes exhibit increased secretion of pro-inflammatory cytokines, such as
TNF-α, IL-6, and IL-1β, all of which impair insulin signaling by activating NF-κB and
JNK pathways [31]. Additionally, macrophage infiltration into adipose tissue shifts the
immune balance toward a pro-inflammatory M1 phenotype, further exacerbating metabolic
inflammation [31]. The role of inflammation in insulin resistance extends beyond adipose
tissue to the liver and muscle, where increased cytokine signaling contributes to hep-
atic gluconeogenesis and reduced glucose uptake [32]. Emerging research highlights the
importance of resolving inflammation as a potential therapeutic target for T2DM, with inter-
ventions like omega-3 fatty acids, flavonoids, and anti-inflammatory drugs demonstrating
promising effects on glycemic control.
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Recent evidence suggests that the gut microbiota plays a crucial role in modulating
oxidative stress and inflammation in T2DM. Dysbiosis, characterized by an imbalance
in gut microbial composition, has been associated with increased intestinal permeability,
leading to systemic inflammation via endotoxin release [33]. Lipopolysaccharides (LPS)
derived from Gram-negative bacteria activate TLR4 signaling, further amplifying inflam-
matory responses and promoting insulin resistance [34]. Certain dietary antioxidants, such
as polyphenols and prebiotics, have been shown to modulate gut microbiota composition,
increasing beneficial bacteria while reducing inflammation-associated taxa [35]. This sug-
gests that gut-microbiota-targeted therapies could serve as a novel approach to managing
oxidative stress and metabolic dysfunction in T2DM.

Given the intricate relationship between oxidative stress, inflammation, and insulin
resistance, targeting these pathways offers a promising avenue for T2DM treatment. Cur-
rent therapeutic approaches focus on lifestyle modifications, such as dietary interventions
rich in antioxidants and anti-inflammatory compounds, regular physical activity, and
weight management [20]. Pharmacological strategies, including metformin, SGLT2 in-
hibitors, and GLP-1 receptor agonists, also exert beneficial effects by reducing oxidative
and inflammatory burden in T2DM patients [2].

3. Classification and Bioactivity of Plant-Derived Antioxidants
Plant-derived antioxidants represent a diverse group of bioactive compounds that

are integral to the neutralization of reactive oxygen species (ROS) and the mitigation of
oxidative stress, a pathological hallmark of numerous chronic diseases, including type
2 diabetes mellitus (T2DM). Oxidative stress arises from an imbalance between the pro-
duction of ROS and endogenous antioxidant defense mechanisms, leading to cellular and
molecular damage that exacerbates insulin resistance, β-cell dysfunction, and systemic
inflammation [36]. In T2DM, the overproduction of ROS is closely linked to hyperglycemia-
induced mitochondrial dysfunction, advanced glycation end-products (AGEs) formation,
and the activation of pro-inflammatory pathways, all of which contribute to the progression
of diabetic complications [37].

Plant-derived antioxidants, which include polyphenols, carotenoids, vitamins, and
organosulfur compounds, exhibit a wide range of chemical structures and biological ac-
tivities. These compounds not only directly scavenge ROS but also modulate key signal-
ing pathways involved in oxidative stress, inflammation, and glucose homeostasis [38].
For instance, polyphenols, such as flavonoids and phenolic acids, have been shown to
enhance insulin sensitivity by activating AMP-activated protein kinase (AMPK) and per-
oxisome proliferator-activated receptor gamma (PPAR-γ) pathways, while carotenoids
like β-carotene and lutein protect against oxidative damage by quenching singlet oxygen
and stabilizing cell membranes [39]. Furthermore, the bioactivity of these antioxidants is
influenced by their bioavailability, stability, and interactions with the gut microbiota, which
can modify their metabolic fate and therapeutic efficacy [40]. Furthermore, the growing
interest in plant-derived antioxidants stems from their potential to serve as complementary
or alternative therapeutic agents in the management of T2DM. Unlike synthetic antiox-
idants, which may have limited efficacy and potential side effects, natural antioxidants
offer a safer and more sustainable approach to reducing oxidative stress and improving
metabolic health [41]. Moreover, the synergistic effects of antioxidant combinations, as well
as advancements in nutrigenomics and personalized nutrition, have opened new avenues
for optimizing their use in diabetes prevention and treatment.
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3.1. Classification of Plant-Derived Antioxidants
3.1.1. Polyphenols

Polyphenols are a structurally diverse and biologically active class of secondary
metabolites widely distributed in the plant kingdom characterized by multiple phenolic
rings and hydroxyl groups that confer significant antioxidant properties. Their capacity
to donate hydrogen atoms or electrons, chelate transition metals, and modulate intracel-
lular signaling pathways underpins their protective effects against oxidative stress and
inflammation [42]. Polyphenols have been extensively studied for their role in mitigating
oxidative damage, modulating the gut microbiota, and influencing metabolic pathways
involved in chronic diseases, such as type 2 diabetes mellitus (T2DM) and cardiovascular
disorders [43].

Flavonoids

Flavonoids constitute the largest and most studied subclass of polyphenols, com-
prising over 6000 bioactive compounds categorized into flavonols, flavones, flavanones,
flavanols (catechins), anthocyanins, and isoflavones. These compounds exhibit strong
free radical scavenging properties, interact with key enzymes in cellular metabolism,
and modulate gene expression related to antioxidant defenses [44]. Their distribution
in dietary sources, such as fruits, vegetables, tea, cocoa, and wine, correlates with their
health-promoting effects.

• Quercetin: A predominant flavonol found in apples, onions, and berries, quercetin
exerts multifaceted biological effects, including the regulation of glucose homeostasis
through the activation of AMP-activated protein kinase (AMPK) and the facilitation of
glucose transporter type 4 (GLUT4) translocation in skeletal muscle cells. Furthermore,
it downregulates hepatic gluconeogenesis by inhibiting the expression of phospho-
enolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), enzymes
critical for glucose production [45].

• Kaempferol, also a flavonol found in leafy greens and berries, has demonstrated
glucose-lowering effects and mitochondrial protective properties through the activa-
tion of PGC-1α and the inhibition of JNK phosphorylation.

• Catechins: Predominantly found in green tea, catechins, particularly epigallocate-
chin gallate (EGCG), have been demonstrated to exert significant antioxidant and
anti-inflammatory properties. EGCG enhances insulin sensitivity by modulating the
insulin receptor substrate (IRS)/phosphatidylinositol 3-kinase (PI3K)/Akt pathway,
thereby improving glucose uptake and metabolic regulation. Additionally, catechins
exhibit neuroprotective properties by modulating oxidative-stress-related pathways
in neurodegenerative disorders [46].

• Anthocyanins: These pigmented flavonoids, found in berries, red grapes, and purple
corn, exhibit strong antioxidant and anti-inflammatory activities. Studies have demon-
strated their capacity to enhance insulin secretion from pancreatic β-cells, reduce
postprandial hyperglycemia, and inhibit the activation of nuclear factor-kappa B (NF-
κB), a key regulator of inflammatory responses. Moreover, anthocyanins have been
implicated in modulating gut microbiota composition, fostering the proliferation of
beneficial bacterial species while inhibiting pathogenic strains, thus exerting systemic
metabolic benefits [47].

• Isoflavones, such as genistein from soy, have estrogen-like activity and improve
insulin’s action by interacting with PPARγ and reducing oxidative damage [48].
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Phenolic Acids

Phenolic acids constitute another major subgroup of polyphenols, with hydroxycin-
namic acids (e.g., ferulic acid, caffeic acid) and hydroxybenzoic acids (e.g., gallic acid,
protocatechuic acid) being the most prevalent forms. These compounds are commonly
found in whole grains, coffee, fruits, and vegetables and possess potent antioxidant, anti-
inflammatory, and anti-diabetic properties [49].

• Ferulic acid: Predominantly present in rice bran, oats, and wheat, ferulic acid exerts
its antioxidant effects by scavenging reactive oxygen species (ROS) and enhancing the
activity of endogenous antioxidant enzymes, such as superoxide dismutase (SOD) and
catalase (CAT). Furthermore, it has been shown to modulate nitric oxide (NO) bioavail-
ability, improving endothelial function and vascular health in metabolic disorders [50].

• Caffeic acid: Commonly found in coffee, fruits, and herbs, caffeic acid exhibits strong
anti-inflammatory properties by inhibiting the production of pro-inflammatory cy-
tokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), thereby
modulating systemic inflammatory responses. Moreover, it has been shown to attenu-
ate lipid peroxidation and oxidative damage in neuronal cells, suggesting potential
neuroprotective effects [51].

• Hydroxybenzoic acids, such as gallic acid and protocatechuic acid, are abundant in
berries, tea, and wine. Gallic acid has been shown to protect β-cells from oxidative
injury, reduce hepatic gluconeogenesis, and attenuate pro-inflammatory cytokine
production by modulating MAPK and NF-κB signaling. Protocatechuic acid has
been linked to improved lipid metabolism and reduced insulin resistance in animal
models [52].

• Resveratrol: A naturally occurring stilbene found in grapes, red wine, and peanuts,
resveratrol has garnered significant attention due to its ability to activate sirtuin 1
(SIRT1), a protein deacetylase implicated in mitochondrial function, insulin sensitivity,
and longevity. Its cardioprotective effects are mediated through the enhancement of
endothelial nitric oxide synthase (eNOS) activity, the reduction of oxidative stress, and
the attenuation of inflammatory cascades [53].

• Lignans: These phytoestrogenic compounds, primarily found in flaxseeds and sesame
seeds, exhibit antioxidative and lipid-lowering effects. Secoisolariciresinol diglucoside
(SDG), a major lignan, has been shown to modulate gut microbiota metabolism, en-
hance short-chain fatty acid production, and reduce systemic oxidative stress markers
in diabetic individuals [54].

3.1.2. Carotenoids

Carotenoids are a class of lipophilic antioxidants predominantly found in pigmented
fruits and vegetables, such as carrots, tomatoes, and spinach. These compounds are
classified into carotenes (e.g., β-carotene) and xanthophylls (e.g., lutein and zeaxanthin).
Their antioxidant activity is primarily mediated through singlet oxygen quenching and
peroxyl radical scavenging, mechanisms that confer photoprotective and anti-inflammatory
effects [55].

• β-Carotene: A provitamin A carotenoid abundant in carrots, sweet potatoes, and leafy
greens, β-carotene exerts significant antioxidant effects by neutralizing reactive oxygen
species (ROS), particularly singlet oxygen and lipid peroxyl radicals. In experimental
models of T2DM, β-carotene supplementation has been shown to reduce oxidative
stress markers, such as malondialdehyde (MDA), increase antioxidant enzyme ac-
tivities, including glutathione peroxidase (GPx) and catalase (CAT), and enhance
insulin sensitivity. Furthermore, β-carotene has been implicated in the inhibition
of the formation of advanced glycation end-products (AGEs), which are linked to
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diabetic vascular complications. Comparative studies suggest that β-carotene may
act synergistically with vitamin E in preserving membrane integrity and suppressing
pro-inflammatory cytokine release, particularly in the context of high-fat-diet-induced
insulin resistance [56].

• Lutein and zeaxanthin: These xanthophylls, found in green leafy vegetables, corn,
and egg yolks, have been extensively studied for their protective effects on retinal
health, especially in diabetic retinopathy. Mechanistically, both compounds reduce
ROS accumulation in retinal pigment epithelial cells and inhibit nuclear factor-kappa B
(NF-κB) signaling, leading to the decreased expression of pro-inflammatory mediators,
such as TNF-α and IL-6. Beyond their ocular benefits, systemic administration of lutein
in diabetic rodents has been associated with improved lipid metabolism, increased
adiponectin levels, and the attenuation of hepatic steatosis. Clinical studies also report
reductions in circulating C-reactive protein (CRP) and improvements in antioxidant
capacity following lutein supplementation in patients with metabolic syndrome and
T2DM [57].

Notably, their absorption and bioavailability are enhanced when consumed with
dietary fats, highlighting the importance of food matrix considerations in therapeutic
design. Despite their promising roles, the clinical translation of carotenoids is limited by
variable bioavailability, susceptibility to oxidation, and differences in individual absorption
kinetics. Recent advances in delivery systems, such as nanoemulsions and liposomal
encapsulation, have been proposed to enhance the stability and gastrointestinal uptake of
carotenoids. Additionally, emerging evidence suggests that their metabolic activity may be
partly mediated through modulation of gut microbiota and bile acid metabolism, offering
new avenues for targeted interventions in metabolic disorders.

3.1.3. Vitamins

Vitamins with antioxidant properties, particularly vitamin C (ascorbic acid) and vita-
min E (tocopherols and tocotrienols), play essential roles in modulating oxidative stress,
inflammation, and insulin signaling pathways relevant to T2DM. These micronutrients act
not only as direct scavengers of ROS but also as synergistic agents within the endogenous
antioxidant network, influencing redox-sensitive signaling and cellular homeostasis.

• Vitamin C: As a water-soluble antioxidant, vitamin C acts by directly neutralizing a
broad spectrum of ROS, including superoxide anion, hydroxyl radicals, and singlet
oxygen. Importantly, it also regenerates oxidized vitamin E, thus maintaining the
redox cycle between aqueous and lipid compartments. In patients with T2DM, vita-
min C supplementation has been shown to reduce plasma levels of malondialdehyde
(MDA), improve endothelial-dependent vasodilation, and decrease markers of sys-
temic inflammation, such as C-reactive protein (CRP) and interleukin-6 (IL-6) [58].
Additionally, vitamin C enhances nitric oxide (NO) bioavailability and supports en-
dothelial nitric oxide synthase (eNOS) activity, contributing to improved vascular
function—a critical factor in preventing diabetic complications, such as nephropathy
and retinopathy.

• Vitamin E: Vitamin E is a lipophilic antioxidant composed of eight isoforms (α-, β-,
γ-, and δ-tocopherols and tocotrienols), with α-tocopherol being the most biologically
active and extensively studied. It protects membrane lipids from peroxidation, in-
terrupts lipid radical chain reactions, and modulates cellular signaling cascades. In
T2DM, vitamin E has demonstrated the capacity to modulate glucose homeostasis by
enhancing glucose transporter type 4 (GLUT4) translocation to the cell membrane and
preserving insulin receptor substrate-1 (IRS-1) activity. Furthermore, it inhibits NF-κB
activation, thereby reducing the expression of pro-inflammatory cytokines, such as
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TNF-α and IL-1β. Clinical trials have reported modest improvements in glycemic
control and lipid profiles following high-dose α-tocopherol supplementation, although
interindividual variability and baseline oxidative stress levels significantly influence
the outcomes [59,60].

3.2. Bioactivity of Plant-Derived Antioxidants

The bioactivity of plant-derived antioxidants is determined by their ability to interact
with multiple cellular and molecular targets, influencing critical physiological processes,
such as oxidative stress regulation, inflammatory response modulation, and insulin sig-
naling optimization. These bioactive compounds exert pleiotropic effects through direct
radical scavenging, enhancement of endogenous antioxidant defenses, and modulation
of signaling pathways implicated in metabolic homeostasis [42]. Given their multifaceted
roles, plant-derived antioxidants are increasingly recognized as potential therapeutic agents
for the prevention and management of chronic metabolic disorders, particularly type 2
diabetes mellitus (T2DM) and its associated complications [17].

3.2.1. Modulation of Oxidative Stress

Oxidative stress, defined as a pathological imbalance between reactive oxygen species
(ROS) production and antioxidant defense mechanisms, is a pivotal contributor to the onset
and progression of T2DM. Persistent oxidative stress not only exacerbates pancreatic β-cell
dysfunction due to their inherently low antioxidant capacity but also promotes insulin
resistance through oxidative damage to insulin-sensitive tissues [20]. Plant-derived antiox-
idants mitigate oxidative stress via two primary mechanisms: direct ROS neutralization
and upregulation of endogenous antioxidant enzyme systems.

Direct Scavenging of ROS

Several plant-derived antioxidants exhibit robust free radical scavenging properties
owing to their conjugated ring structures and hydroxyl functional groups, which facilitate
hydrogen atom donation and electron transfer to neutralize ROS [4,44].

• Flavonoids: Quercetin and catechins interact with superoxide anions (O2
−), hydroxyl

radicals (OH•), and hydrogen peroxide (H2O2), effectively reducing oxidative damage
to lipids, proteins, and DNA.

• Carotenoids: β-carotene and lycopene exert singlet oxygen (1O2) quenching activity,
thereby protecting polyunsaturated fatty acids from peroxidation, a key process in
diabetic complications, such as nephropathy and neuropathy [39].

Enhancement of Endogenous Antioxidant Enzymes

In addition to direct ROS neutralization, plant-derived antioxidants enhance cellu-
lar defense systems by upregulating key endogenous antioxidant enzymes, including
superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx).

• Resveratrol: This polyphenol from grapes and red wine activates nuclear factor ery-
throid 2-related factor 2 (Nrf2), a master regulator of antioxidant defense, leading
to increased expression of SOD and CAT, thereby reducing oxidative damage in
pancreatic β-cells and insulin-sensitive tissues [53].

• Curcumin: The principal bioactive compound in turmeric enhances GPx activity and
prevents lipid peroxidation by modulating the Nrf2/Keap1 pathway, contributing to
improved glucose homeostasis and β-cell protection [61].

By mitigating oxidative stress, plant-derived antioxidants safeguard pancreatic β-cell
integrity, enhance insulin signaling, and attenuate the development of diabetes-related
complications, including retinopathy, nephropathy, and cardiovascular disease.
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3.2.2. Anti-Inflammatory Effects

Chronic low-grade inflammation is a hallmark of T2DM and a key driver of insulin
resistance. Pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and
interleukin-6 (IL-6), interfere with insulin receptor signaling, impairing glucose uptake and
exacerbating metabolic dysregulation. Plant-derived antioxidants exert anti-inflammatory
effects by modulating key inflammatory pathways, including nuclear factor-kappa B (NF-
κB) and mitogen-activated protein kinase (MAPK), thereby reducing systemic inflammation
and improving insulin sensitivity [6].

Inhibition of the NF-κB Pathway

NF-κB is a central regulator of inflammation controlling the transcription of pro-
inflammatory mediators, such as TNF-α, IL-6, and inducible nitric oxide synthase (iNOS).
Plant-derived antioxidants inhibit NF-κB activation through various mechanisms.

• Quercetin: Suppresses NF-κB signaling in adipose tissue, reducing TNF-α and IL-6
levels and thereby improving insulin sensitivity in diabetic patients [45].

• Anthocyanins: These pigments from berries and red grapes inhibit NF-κB activation
and decrease circulating C-reactive protein (CRP) levels, a key biomarker of systemic
inflammation [61].

Modulation of the MAPK Pathway

The MAPK pathway, including extracellular signal-regulated kinase (ERK), c-Jun
N-terminal kinase (JNK), and p38 MAPK, is crucial for inflammatory responses and
insulin resistance.

• Curcumin: Attenuates inflammation by inhibiting JNK and p38 MAPK phosphoryla-
tion, reducing cytokine-mediated insulin resistance [61].

• Epigallocatechin gallate (EGCG): A catechin from green tea that downregulates
ERK and JNK activation, mitigating inflammation and oxidative stress in metabolic
tissues [62].

Reduction of Inflammasome Activation

Inflammasomes, particularly the NLRP3 inflammasome, are critical regulators of IL-1β
and IL-18 production, mediators of metabolic inflammation.

• Resveratrol: Suppresses NLRP3 inflammasome activation by reducing mitochon-
drial ROS production, thereby attenuating inflammatory damage in insulin-sensitive
tissues [53].

• Quercetin: Inhibits inflammasome activation and IL-1β release, protecting against
inflammation-induced insulin resistance [45].

By targeting inflammatory pathways, plant-derived antioxidants enhance metabolic
health, reduce systemic inflammation, and mitigate the progression of T2DM.

3.2.3. Modulation of Insulin Signaling Pathways

Plant-derived antioxidants not only reduce oxidative stress and inflammation but also
directly enhance insulin sensitivity by modulating key intracellular pathways involved in
glucose metabolism.

• Quercetin: Enhances glucose uptake in skeletal muscle by activating the IRS/PI3K/Akt
pathway and promoting GLUT4 translocation to the plasma membrane, facilitating
cellular glucose entry [63].
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• Resveratrol: Activates AMP-activated protein kinase (AMPK), a crucial regulator of
energy homeostasis, promoting glucose uptake and inhibiting hepatic gluconeogenesis,
thus improving glycemic control [64].

3.2.4. Gut Microbiota Interactions

Recent research highlights the gut microbiota as a key mediator of metabolic health,
with plant-derived antioxidants modulating microbial composition and function. These
compounds promote the proliferation of beneficial bacteria, such as Lactobacillus and
Bifidobacterium, while inhibiting pathogenic species.

• Polyphenols: Polyphenols are metabolized into bioactive derivatives, such as
urolithins and equol, which exhibit potent anti-inflammatory and antioxidant effects,
further enhancing systemic metabolic health [65].

• Anthocyanins: Alter gut microbiota composition, favoring an anti-inflammatory
profile, which contributes to improved insulin sensitivity and reduced metabolic
endotoxemia [66].

Given the intricate interplay between plant-derived antioxidants and metabolic path-
ways, these bioactive compounds hold promise as therapeutic agents in preventing and
managing T2DM and its associated complications.

4. Molecular Targets of Antioxidants in Diabetes
Type 2 diabetes mellitus is characterized by chronic insulin resistance, systemic inflam-

mation, and mitochondrial dysfunction, all of which are tightly linked to elevated levels of
ROS and oxidative stress. Plant-derived antioxidants exert therapeutic effects not merely
through free radical scavenging but by targeting specific intracellular pathways, modulat-
ing gene expression, and influencing insulin signaling mechanisms. Understanding these
molecular targets is critical for rationally designing antioxidant-based interventions for
diabetes management [67].

A primary molecular target of dietary antioxidants is the insulin signaling cascade, par-
ticularly the insulin receptor substrate (IRS)/phosphatidylinositol 3-kinase (PI3K)/protein
kinase B (Akt) pathway, which regulates glucose uptake, glycogen synthesis, and metabolic
homeostasis. In individuals with type 2 diabetes mellitus, this pathway is often impaired
due to chronic inflammation, oxidative stress, and serine phosphorylation of IRS pro-
teins, leading to diminished downstream signaling and glucose intolerance. Plant-derived
polyphenols, including resveratrol, quercetin, and epigallocatechin gallate (EGCG), have
been extensively studied for their capacity to enhance Akt phosphorylation, preserve
IRS-1/2 activity, and stimulate GLUT4 translocation to the plasma membrane, thereby
facilitating glucose uptake in skeletal muscle and adipose tissue [68]. One critical mecha-
nism involves the inhibition of protein tyrosine phosphatase 1B (PTP1B), a known negative
regulator of insulin receptor activity. By downregulating PTP1B, these antioxidants sustain
insulin receptor phosphorylation and prevent desensitization of insulin signaling [69].

In addition, in vitro studies and diabetic animal models have demonstrated that
resveratrol-rich interventions significantly lower fasting glucose and enhance insulin sensi-
tivity via this mechanism. In parallel, several flavonoids activate AMP-activated protein
kinase (AMPK), a main regulator of cellular energy homeostasis. Activation of AMPK not
only promotes fatty acid oxidation and mitochondrial biogenesis but also inhibits hepatic
gluconeogenesis, thereby improving glycemic control. Also, compounds like baicalein,
fisetin, and luteolin have been reported to upregulate AMPK phosphorylation, reduce
hepatic glucose output, and restore insulin responsiveness in both hepatic and peripheral
tissues. These dual effects on both insulin-dependent and insulin-independent glucose reg-
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ulation pathways underscore the multifaceted therapeutic potential of plant antioxidants
in managing metabolic dysfunctions associated with type 2 diabetes mellitus [69].

Oxidative stress plays a central role in the development and progression of T2DM by
damaging pancreatic β-cells, impairing insulin signaling, and accelerating systemic inflam-
mation. In diabetic states, the overproduction of reactive oxygen species (ROS) overwhelms
endogenous defense mechanisms, leading to lipid peroxidation, protein carbonylation,
and DNA damage. Plant-derived antioxidants counteract this imbalance through two
primary mechanisms: direct ROS scavenging and the upregulation of endogenous antioxi-
dant enzymes. Key polyphenolic compounds, such as curcumin, kaempferol, and rutin,
have demonstrated the ability to activate the nuclear factor erythroid 2–related factor 2
(Nrf2) pathway, which controls the transcription of antioxidant response elements (AREs).
Upon activation, Nrf2 dissociates from its cytoplasmic repressor Keap1, translocates to
the nucleus, and binds to AREs to stimulate the expression of key detoxifying and antiox-
idant enzymes, including superoxide dismutase (SOD), catalase (CAT), and glutathione
peroxidase (GPx). These enzymes play critical roles in neutralizing superoxide radicals,
decomposing hydrogen peroxide, and maintaining glutathione homeostasis, thereby reduc-
ing oxidative load in insulin-sensitive tissues. Importantly, this antioxidant defense extends
to the preservation of pancreatic β-cell viability, a critical target in T2DM management.
β-cells are particularly vulnerable to oxidative stress due to their low expression of intrin-
sic antioxidant enzymes. Antioxidants, such as anthocyanins derived from blueberries,
blackcurrants, and chokeberries, have shown in rodent models the ability to reduce lipid
peroxidation, suppress nitric oxide overproduction, and restore SOD and GPx activity in
pancreatic and hepatic tissues [69,70]. These effects not only mitigate β-cell apoptosis but
also sustain insulin secretion capacity, contributing to better glycemic control. Together, the
modulation of oxidative stress by plant antioxidants underscores their therapeutic value not
merely as scavengers of free radicals but as metabolic regulators capable of reprogramming
redox-sensitive gene networks in diabetes.

Chronic low-grade inflammation is a critical contributor to the pathogenesis of type
2 diabetes mellitus, acting as a key mediator of insulin resistance and β-cell dysfunction.
A central axis in this inflammatory response is the nuclear factor kappa B (NF-κB) sig-
naling pathway, which regulates the transcription of pro-inflammatory cytokines, such
as tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β).
These cytokines impair insulin signaling by promoting serine phosphorylation of insulin
receptor substrates and interfering with glucose transporter expression [70]. Plant-derived
antioxidants exert potent anti-inflammatory effects by targeting upstream regulators of
NF-κB, particularly the IκB kinase β (IKKβ) complex, which initiates NF-κB activation via
phosphorylation of the inhibitory IκB protein. Polyphenols, such as luteolin, apigenin, and
resveratrol, have been shown to inhibit this process, preventing the nuclear translocation
of NF-κB p65 subunits and thereby downregulating the transcription of inflammatory
genes. This action results in reduced levels of circulating cytokines, diminished oxidative
stress, and improved insulin sensitivity. In parallel, these antioxidants also modulate
stress-responsive mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal
kinase (JNK) and p38 MAPK, which are activated in response to metabolic stress and
play pivotal roles in inflammation-induced insulin resistance. Activation of JNK leads to
serine phosphorylation of IRS-1, an inhibitory modification that disrupts insulin signal
transduction. Flavonoids, such as naringenin and kaempferol, have demonstrated the
ability to suppress JNK and p38 phosphorylation, preserving IRS-1 tyrosine phosphory-
lation and insulin receptor functionality [71]. Together, these mechanisms illustrate how
plant-derived antioxidants not only suppress inflammatory mediators at the transcriptional
level but also interrupt intracellular signaling cascades that lead to metabolic dysregulation.
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Their pleiotropic action supports the use of phytochemicals as anti-inflammatory insulin
sensitizers in the dietary management of type 2 diabetes mellitus.

Mitochondrial dysfunction is increasingly recognized as a central feature of insulin
resistance and type 2 diabetes mellitus, particularly in skeletal muscle, liver, and pancreatic
β-cells. Diabetic tissues often exhibit impaired oxidative phosphorylation, decreased mito-
chondrial DNA content, and altered dynamics, resulting in reduced ATP production and
increased production of ROS. Recent evidence indicates that plant-derived antioxidants
can ameliorate these dysfunctions by promoting mitochondrial biogenesis and improving
mitochondrial efficiency. Polyphenols, such as resveratrol and berberine, have been shown
to activate the PGC-1α/SIRT1/TFAM signaling axis, a critical pathway for mitochondrial
biosynthesis and respiratory function. Peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1α) regulates mitochondrial gene expression, while SIRT1, a
NAD+-dependent deacetylase, promotes mitochondrial transcription and stress resilience.
Mitochondrial transcription factor A (TFAM) is required for mitochondrial DNA replication
and transcription. Upregulation of these genes results in enhanced mitochondrial density,
improved fatty acid oxidation, and more efficient glucose utilization, collectively contribut-
ing to reductions in hyperglycemia, insulin resistance, and dyslipidemia [72]. In addition
to mitochondrial biogenesis, many plant antioxidants also modulate autophagy, a catabolic
process critical for cellular homeostasis and the removal of dysfunctional organelles and
misfolded proteins. Compounds, such as quercetin, epicatechins, and kaempferol, have
been reported to induce autophagy via the AMPK-mTOR and SIRT1-FOXO pathways,
thereby promoting the clearance of lipid droplets and reducing endoplasmic reticulum
stress, a known contributor to insulin resistance and β-cell apoptosis [73]. By restoring
mitochondrial integrity and enhancing autophagic flux, plant antioxidants support not
only cellular energy balance but also insulin signaling fidelity. These effects underscore
their broader role as metabolic modulators with the potential to counteract the bioenergetic
deficits seen in type 2 diabetes mellitus.

Adipokine hormones secreted by adipose tissue play crucial roles in regulating glucose
metabolism, lipid homeostasis, and systemic insulin sensitivity. Among these, adiponectin
is of particular interest due to its insulin-sensitizing, anti-inflammatory, and cardiopro-
tective properties. In type 2 diabetes mellitus, circulating adiponectin levels are typically
reduced, contributing to insulin resistance and chronic inflammation. Plant-derived antiox-
idants, including kaempferol, genistein, and anthocyanin-rich extracts, have been shown
to upregulate adiponectin expression and restore its receptor activity, thereby enhancing
insulin responsiveness in adipose and skeletal muscle tissues [74]. Simultaneously, these
compounds improve leptin sensitivity, which is often disrupted in obesity-linked type 2
diabetes mellitus, leading to appetite dysregulation and hyperphagia. Restoring leptin
signaling in the hypothalamus via antioxidant-mediated suppression of inflammation and
oxidative stress contributes to improved energy balance and glycemic control. Isoflavones,
such as genistein, have been shown to modulate hypothalamic signaling pathways, reduc-
ing resistance to leptin and suppressing neuroinflammatory cascades. Beyond adipose
tissue, plant antioxidants significantly influence the gut microbiota–brain–liver axis, a regu-
latory network critical to metabolic homeostasis. Polyphenols, such as quercetin, catechins,
and chlorogenic acid, have been shown to enhance the growth of beneficial microbial taxa,
including Akkermansia muciniphila, Bifidobacteria, and Faecalibacterium prausnitzii. These
shifts in microbial composition are associated with increased production of short-chain
fatty acids (SCFAs), particularly butyrate and propionate, which improve intestinal barrier
integrity, reduce metabolic endotoxemia, and lower systemic inflammation, all factors
implicated in the pathogenesis of insulin resistance [74,75]. Collectively, these effects reflect
a multi-organ modulatory role of plant antioxidants in type 2 diabetes mellitus, wherein
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adipokine regulation and microbiome remodeling act in concert to restore metabolic flexi-
bility, reduce low-grade inflammation, and support glucose homeostasis.

In summary, plant-derived antioxidants target multiple molecular mechanisms central
to the pathogenesis of type 2 diabetes mellitus, including impaired insulin signaling, oxida-
tive stress, inflammation, mitochondrial dysfunction, and dysregulated adipokine signaling.
Through the modulation of pathways like IRS/PI3K/Akt, Nrf2-Keap1, NF-κB, and AMPK,
as well as influencing mitochondrial biogenesis, autophagy, and the gut microbiota, these
phytochemicals offer a multi-pronged approach to restoring metabolic homeostasis. Their
pleiotropic actions not only alleviate hyperglycemia and insulin resistance but also provide
cytoprotective and anti-inflammatory effects, underscoring their therapeutic potential as
adjuncts in the dietary management and prevention of type 2 diabetes mellitus.

To facilitate a comparative understanding of the main antioxidant classes discussed,
Table 1 provides a synthesis of their key molecular targets, mechanisms of action, clinical
evidence, limitations, and potential applications in the context of T2DM

Table 1. Comparative Overview of Plant-Derived Antioxidants in T2DM Management.

Antioxidant
Group

Representative
Compounds

Primary
Molecular
Targets

Mechanisms of
Action Clinical Evidence Key Limitations Potential

Applications

Polyphenols Quercetin,
Resveratrol, EGCG

IRS/PI3K/Akt,
NF-κB, AMPK,
Nrf2

↑ Insulin sensitivity,
↓ inflammation, ↑
antioxidant defense

Strong (RCTs and
meta-analyses)

Poor
bioavailability;
metabolism-
dependent effects

Adjunct therapy,
personalized
nutrition

Curcuminoids Curcumin NF-κB, JNK,
AMPK, PPARγ

Anti-inflammatory,
antioxidant;
modulates insulin
signaling

Moderate (human
studies,
meta-analyses)

Low solubility;
variable
absorption

Formulated
supplements,
nano-delivery
systems

Carotenoids β-Carotene, Lutein
Nrf2,
mitochondrial
ROS

ROS scavenging, ↓
lipid peroxidation,
↓ AGEs

Limited but
promising

Lipophilicity;
food matrix
dependent

Ocular protection,
vascular support

Vitamins Vitamin C,
Vitamin E

Nrf2, NF-κB,
eNOS

Redox balance, ↑
NO, ↓ systemic
inflammation

Mixed results,
dose-dependent

Variable efficacy;
threshold effects

Complementary
antioxidant
support

Lignans and
Stilbenes

Secoisolariciresinol,
Resveratrol

SIRT1, PGC-1α,
NLRP3

↑ Mitochondrial
biogenesis, ↓
inflammasome
activation

Emerging
evidence

Low
bioavailability;
population-
specific response

Gut microbiota
modulation,
metabolic
flexibility

5. Resveratrol: Mechanisms and Clinical Evidence
5.1. Antioxidant Properties (Nrf2/Keap1 Pathway)

Oxidative stress plays a critical role in T2DM pathogenesis by damaging cells and
exacerbating insulin resistance. Resveratrol exhibits potent antioxidant effects in diabetic
models, largely through activation of the Nrf2/Keap1 pathway [76,77]. Nrf2 is a transcrip-
tion factor that upregulates cellular antioxidant defenses; resveratrol has been shown to
increase Nrf2 protein levels and downstream antioxidant gene expression in high-glucose
and high-fructose diet models. By stabilizing Nrf2 (for example, via interference with its
inhibitor Keap1), resveratrol enhances the expression of cytoprotective enzymes, such as
heme oxygenase-1 (HO-1) and glutathione S-transferase (GST), thereby mitigating ROS ac-
cumulation. This Nrf2-mediated antioxidant action is thought to underlie many metabolic
benefits of resveratrol in diabetes [78].

In addition, resveratrol can directly scavenge free radicals due to its polyphenolic
structure, further reducing oxidative damage in pancreatic β-cells and peripheral tissue.
Through these mechanisms, resveratrol helps break the cycle of chronic hyperglycemia-
induced oxidative stress in T2DM [78].
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5.2. Anti-Inflammatory Effects (NF-κB and Pro-Inflammatory Cytokines)

Chronic low-grade inflammation is a hallmark of T2DM, and resveratrol exerts anti-
inflammatory effects by targeting key inflammatory pathways. Notably, resveratrol inhibits
the activation of nuclear factor kappa B (NF-κB), a transcription factor that controls the
expression of many pro-inflammatory genes [79]. In diabetic animal models, resveratrol ad-
ministration significantly decreased NF-κB activity, leading to lower levels of tumor necrosis
factor-α (TNF-α), interleukin-6 (IL-6), IL-1β, and other cytokines and chemokines [80].

These changes translate into reduced tissue inflammation; for example, resveratrol
attenuated inflammatory protein expression (TNF-α, IL-6, COX-2) in diabetic neuropathy
models, improving neuroinflammation and functional deficits [5]. Resveratrol’s anti-
inflammatory action is partly mediated by SIRT1, a deacetylase activated by resveratrol that
can bind and suppress NF-κB’s p65 subunit, leading to the inhibition of its transcriptional
activity [78].

By blocking NF-κB-driven gene transcription, resveratrol downregulates adhesion
molecules (ICAM-1, VCAM-1) and inflammatory enzymes, curbing the recruitment of
macrophages and inflammatory cells to tissues [81]. As a result, pancreatic islets, adipose
tissue, and the vasculature experience less inflammatory stress. This anti-inflammatory
property of resveratrol has been confirmed across multiple diabetic models, where it
consistently reduces the expression of TNF-α, IL-1β, IL-6, and other NF-κB downstream
mediators. By dampening inflammation, resveratrol helps improve insulin signaling and
prevents damage to insulin-producing cells in T2DM [82].

5.3. Effects on Insulin Sensitivity (AMPK/SIRT1 and IRS/PI3K/Akt Signaling)

A key anti-diabetic mechanism of resveratrol is the improvement of insulin sensitivity
in insulin-resistant tissues. Resveratrol activates cellular energy sensor pathways, such
as AMP-activated protein kinase (AMPK) and SIRT1, which in turn enhance insulin sig-
naling. In diabetic mice, resveratrol treatment significantly improved insulin sensitivity
as measured by HOMA-IR, an effect linked to AMPK activation [81]. AMPK activation
promotes glucose uptake (e.g., by increasing GLUT4 translocation) and fatty acid oxidation,
counteracting insulin resistance.

Concurrently, resveratrol-induced activation of SIRT1 (a NAD+-dependent deacety-
lase) appears to augment insulin’s action in liver and adipose tissue SIRT1 activation as
resveratrol improves insulin signaling through multiple routes; it deacetylates and activates
key metabolic regulators (FOXO1, PGC-1α), and it can suppress negative regulators of
insulin signaling [83]. For instance, resveratrol may inhibit protein tyrosine phosphatase
1B (PTP1B), a phosphatase that attenuates insulin receptor signaling, thereby enhancing
IRS-1/PI3K/Akt pathway activity [78].

In insulin-resistant animal models, resveratrol restored the NAD+/NADH ratio and
SIRT1 levels, leading to improved insulin sensitivity. Human cell studies likewise show
that resveratrol’s activation of AMPK/SIRT1 can upregulate the insulin signaling cascade
(IRS → PI3K → Akt), improving glucose uptake in muscle and adipose cells [78,84].

Collectively, these molecular actions translate into lower blood glucose and insulin
levels in vivo. In fact, a comprehensive analysis by Liu et al. found that resveratrol sig-
nificantly reduced blood glucose and improved insulin sensitivity in diabetic patients
without major adverse effects [82]. Thus, resveratrol acts as an insulin sensitizer by modu-
lating AMPK/SIRT1 and downstream insulin signaling pathways that are often impaired
in T2DM.
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5.4. Mitochondrial Function and Energy Metabolism (PGC-1α Activation)

Resveratrol favorably impacts mitochondrial function and energy metabolism, which
is crucial, as mitochondrial dysfunction contributes to insulin resistance in T2DM. Through
its activation of SIRT1 and AMPK, resveratrol upregulates PGC-1α (Peroxisome Proliferator-
Activated Receptor Gamma Coactivator-1α), a master regulator of mitochondrial biogenesis
and oxidative.

Studies in obese and diabetic animals demonstrate that resveratrol increases PGC-1α
activity, leading to enhanced mitochondrial biogenesis and respiratory capacity in skeletal
muscle and the liver [81]. This helps cells oxidize glucose and fatty acids more efficiently.
Improved mitochondrial function reduces ectopic lipid accumulation and improves insulin
action. For example, in high-fat-diet models, resveratrol treatment increases mitochondrial
gene expression and enzyme activities, which is associated with improved whole-body
glucose metabolism [83].

Additionally, resveratrol’s activation of SIRT1–PGC-1α signaling can induce the ex-
pression of antioxidant enzymes (via FOXO and PPAR pathways), protecting mitochondria
from hyperglycemia-induced oxidative damage [78]. By preserving mitochondrial in-
tegrity and function, resveratrol supports better energy utilization and prevents the energy
imbalances seen in diabetic tissues.

Notably, resveratrol has been likened to a caloric restriction mimetic, as it triggers
molecular responses (AMPK/SIRT1 activation, mitochondrial biogenesis) similar to those
observed under caloric restriction, which is known to improve metabolic health. In mus-
cle cells, resveratrol also promotes the Akt pathway and GLUT4 translocation, thereby
enhancing glucose uptake and utilization [83,84].

Overall, the effect of resveratrol on mitochondria is two-fold; it increases the number
and efficiency of mitochondria(via PGC-1α) and decreases mitochondrial oxidative stress,
thus tackling a root cause of insulin resistance in T2DM [84].

5.5. β-Cell Protection and Insulin Secretion

Preservation of pancreatic β-cell function is vital for T2DM management, and resver-
atrol has shown protective effects on β-cells through anti-apoptotic and insulinotropic
actions [85]. Chronic hyperglycemia and inflammation in T2DM can induce β-cell apopto-
sis and dysfunction. Resveratrol combats this by inhibiting pathways that lead to β-cell
death. For instance, by suppressing NF-κB and the inflammatory cascade, resveratrol
downregulates pro-apoptotic signals in pancreatic islets, thereby reducing β-cell stress and
improving cell survival [86]. This NF-κB inhibition is linked to the reduced expression of
β-cell apoptotic markers, thereby improving β-cell survival. In streptozotocin-induced
diabetic models (a widely used model of β-cell damage), resveratrol treatment preserved
β-cell mass and function, partly by blocking oxidative and inflammatory damage to the
pancreas [87].

Resveratrol also influences insulin secretion dynamics. It has been found to potentiate
glucose-stimulated insulin secretion (GSIS) under certain conditions. Mechanistic studies
revealed that resveratrol acutely inhibits β-cell ATP-sensitive K+ channels (K_ATP) and
voltage-dependent K+ channels (K_V) on the β-cell membrane, which leads to prolonged
cell depolarization and enhanced insulin exocytosis [87,88].

In pancreatic islet experiments, low-dose resveratrol increased insulin release through
this K+ channel blockade, an effect similar to that of some sulfonylurea drugs. Resveratrol’s
activation of SIRT1 in β-cells further contributes to insulin secretory capacity, as SIRT1
suppresses the expression of uncoupling protein 2 (UCP2), a mitochondrial protein that
normally reduces ATP production in β-cells, thereby enhancing insulin secretion [88]. By
repressing UCP2, resveratrol via SIRT1 increases ATP availability, facilitating glucose-
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stimulated insulin secretion. These combined actions result in more effective insulin
release in response to glucose, thereby improving glycemic control. It is worth noting
that the effect of resveratrol on insulin secretion can be context-dependent (very high
concentrations in vitro have been reported to inhibit secretion, potentially to prevent β-cell
exhaustion) [89]. However, in diabetic settings in vivo, resveratrol’s net effect tends to
be protective; it prevents β-cell apoptosis while normalizing insulin secretion dynamics.
Overall, resveratrol helps maintain functional β-cell mass as it shields β-cells from oxidative
and inflammatory injury and supports their insulin output, which is crucial for slowing
T2DM progression [86,88].

5.6. Clinical Evidence from Human Studies
5.6.1. Findings from Meta-Analyses and Clinical Trials

The potential benefits of resveratrol in T2DM have been evaluated in numerous clinical
trials, and several systematic reviews/meta-analyses summarize these outcomes. Current
evidence from human studies suggests that resveratrol supplementation can modestly
improve glycemic control and some cardiometabolic parameters in type 2 diabetic pa-
tients, although results vary between trials [90]. A 2022 meta-analysis of 17 randomized
controlled trials (RCTs) involving 871 patients concluded that resveratrol supplementa-
tion significantly improved glycemic control in T2DM compared to placebo, particularly
through reductions in fasting blood glucose (FBG) and HbA1c, with greater effects at
higher doses and longer durations [90]. Similarly, another comprehensive meta-analysis
in 2022 including 19 RCTs (1151 patients) found that high-dose resveratrol supplemen-
tation significantly lowered blood glucose and blood pressure, reinforcing its potential
cardiometabolic benefits [91]. Importantly, these benefits were achieved with a good safety
profile, as no serious adverse effects were reported across studies [89]. However, not all
clinical trials have demonstrated positive results, and some outcomes, such as lipid profiles,
have shown inconsistencies [92]. Meta-analytic data highlight significant heterogeneity
among studies, which may stem from differences in resveratrol doses, treatment durations,
and patient populations [89]. The following sections explore the clinical evidence for spe-
cific glycemic, metabolic, and cardiovascular outcomes and the conditions under which
resveratrol appears most effective.

5.6.2. Effects on Glycemic Control (HbA1c, Glucose, Insulin Sensitivity)

Resveratrol supplementation has demonstrated notable improvements in several
indices of glycemic control in T2DM patients. Among these, fasting blood glucose (FBG) is
the most consistently improved parameter.

5.6.3. Fasting Blood Glucose (FBG)

Several meta-analyses report that resveratrol-treated groups exhibit significantly lower
FBG levels compared to placebo-treated controls [93]. The magnitude of FBG reduction
appears to be dose-dependent:

• High-dose regimens (≥500–1000 mg/day) reduced FBG by approximately 0.7–1.0 mmol/L
(~13–18 mg/dL) [79].

• Lower doses (<500 mg/day) yielded smaller or negligible reductions.
• In one meta-analysis, trials using ≥1000 mg/day achieved a mean FBG drop of

~18.8 mg/dL [93].

These improvements in fasting glucose likely reflect enhanced insulin-mediated glu-
cose uptake and/or reduced hepatic glucose production [91].
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5.6.4. Glycated Hemoglobin (HbA1c)

HbA1c, a marker of long-term glycemic control, has shown modest improvements
with resveratrol supplementation. While early meta-analyses with shorter-duration trials
often reported no significant effect, more recent studies suggest otherwise.

• A 2022 meta-analysis detected a small but significant improvement in HbA1c (~0.4%
absolute reduction at 3 months) with resveratrol vs. placebo [90].

• One RCT found that 3 months of resveratrol (250 mg/day), when added to standard
anti-diabetic therapy, led to a statistically significant decrease in HbA1c [94].

• Another trial using 1 g/day for 45 days reported a reduction in both HbA1c and
fasting glucose [79].

These findings suggest that while resveratrol is not a substitute for conventional
glucose-lowering drugs, it may provide incremental benefits in long-term glycemic control,
particularly when used for extended durations at adequate doses [93].

5.6.5. Insulin Sensitivity and HOMA-IR

Resveratrol has also been shown to enhance insulin sensitivity, aligning with pre-
clinical findings. Several trials report reductions in fasting insulin levels and HOMA-IR
(Homeostasis Model Assessment of Insulin Resistance) in resveratrol-treated patients.

• A meta-analysis of five trials (153 patients) found that resveratrol significantly lowered
HOMA-IR, indicating improved insulin action (pooled decrease in HOMA-IR by
~0.5 units).

• Concurrently, fasting insulin concentrations decreased in response to resveratrol sup-
plementation [92,95].

• In a placebo-controlled trial, resveratrol (1 g/day for 6 weeks) led to a ~20% reduction
in fasting insulin and insulin resistance index [79].

• Another small-scale study (5 mg twice daily) observed improved insulin sensitivity
and increased Akt phosphorylation in platelets, a surrogate for insulin signaling
activity [89].

These findings suggest that resveratrol provides an additive metabolic benefit, even
in patients already receiving standard anti-diabetic medications [93]. Mechanistically,
these improvements in insulin sensitivity are attributed to resveratrol’s activation of AMPK,
suppression of inflammation, and enhanced mitochondrial function, all of which counteract
insulin resistance [79].

However, in patients with relatively well-controlled or early-stage T2DM, some studies
have not detected a significant resveratrol effect on insulin sensitivity, potentially due to
ceiling effects or suboptimal dosing. Overall, human clinical data indicate that resveratrol
modestly improves glycemic parameters, including lowering fasting and postprandial
glucose and enhancing insulin responsiveness, particularly when administered at higher
doses for longer durations [91].

5.7. Impact on Lipid Profile and Cardiovascular Parameters

The effect of resveratrol on lipid profiles in T2DM patients is less pronounced than
its glucose-lowering effect, with mixed findings in the literature. Some clinical trials and
meta-analyses have reported modest improvements in certain lipid parameters, while
others found no significant changes [90].

For instance, a 2022 meta-analysis by Abdelhaleem et al. reported that resveratrol
significantly reduced total cholesterol (mean decrease ~5–6 mg/dL) in diabetic patients [90].
However, changes in LDL-C and triglycerides were not statistically significant in most
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pooled analyses [96]. Similarly, a meta-analysis by Wei Gu et al. found no improvement in
triglyceride or HDL-C levels, even at high doses of resveratrol [79,89].

One RCT observed a small increase in HDL cholesterol (+2 mg/dL) after 45 days of
high-dose resveratrol (1 g/day) [79], but this finding has not been consistently replicated
across other studies. On balance, resveratrol’s direct effects on lipid metabolism in humans
appear modest; it may slightly reduce total and/or LDL cholesterol in some cases, but
overall lipid profile changes (including triglycerides and HDL) remain variable and often
not significant. These inconsistencies may arise due to differences in baseline lipid levels,
concurrent medications, or the relatively short duration of many trials (which are often
insufficient to observe significant cholesterol changes, as these typically require longer-term
interventions) [93].

Beyond blood lipids, resveratrol has shown more pronounced benefits on blood
pressure and vascular function, which are particularly relevant for T2DM patients, given
their high prevalence of hypertension. Several clinical studies have documented reductions
in blood pressure with resveratrol supplementation.

• Meta-analyses indicate that resveratrol (particularly at higher doses) was associated
with significantly lower systolic and diastolic blood pressure compared to placebo [90].

• Pooled data indicate an average systolic BP reduction of 5–8 mmHg and a diastolic
reduction of ~2–4 mmHg in resveratrol-treated diabetics [96].

• One meta-analysis found a mean systolic BP drop of 7.97 mmHg and a diastolic drop
of 3.55 mmHg with resveratrol vs. the control [79].

These are clinically relevant improvements in blood pressure, likely reflecting resver-
atrol’s vasodilatory and endothelial-protective properties, which are mediated through
increased nitric oxide bioavailability and reduced arterial inflammation.

Improved blood pressure control may contribute to resveratrol’s reported benefits with
regard to diabetic cardiovascular outcomes in some studies, such as enhanced circulation
in diabetic foot ulcers and decreased arterial stiffness.

In contrast to blood pressure, resveratrol’s effect on body weight or adiposity indices
appears minimal. RCTs generally show no significant change in body weight or waist cir-
cumference due to resveratrol supplementation [96], which suggests its metabolic benefits
are not due to weight loss.

Taken together, while resveratrol is not a potent lipid-modulating agent, it may confer
cardiovascular benefits in T2DM by modestly improving cholesterol levels (in select cases)
and significantly reducing blood pressure. These cardiometabolic effects support the idea
of resveratrol as an adjunct therapy to improve overall risk factors in diabetes [93].

5.8. Inflammation and Oxidative Stress Biomarkers in Patients

Consistent with its mechanistic actions, resveratrol supplementation in T2DM pa-
tients has been shown to ameliorate biomarkers of inflammation and oxidative stress in
clinical studies.

A recent meta-analysis (2024) focusing on inflammatory and oxidative outcomes in
diabetic patients found that resveratrol significantly lowers circulating inflammatory mark-
ers, particularly C-reactive protein (CRP) [94]. CRP, a key marker of systemic inflammation,
was reduced with an average effect size (SMD) of about −1.4, indicating a clinically relevant
anti-inflammatory effect [94].

Interestingly, while the meta-analysis showed clear reductions in CRP, resveratrol did
not significantly reduce IL-6 or TNF-α levels on average [94]. However, there was a trend
toward lower IL-6 levels (p = 0.06), suggesting that longer interventions may be necessary
to detect statistically significant changes in these pro-inflammatory cytokine. The lack of
statistical significance for cytokine reductions could also be attributed to high variability
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between studies or insufficient duration to observe meaningful shifts in inflammatory
pathways [97].

Beyond inflammation, resveratrol’s antioxidative effects are reflected in reductions
in oxidative stress biomarkers. The 2024 meta-analysis reported significant decreases in
lipid peroxidation products, including malondialdehyde (MDA) and 8-isoprostanes, in
resveratrol-treated groups. These biomarkers reflect oxidative damage to lipids, a process
exacerbated by hyperglycemia and chronic inflammation in poorly controlled diabetes [96].

Additionally, resveratrol supplementation led to improvements in endogenous an-
tioxidant defenses, particularly through increases in glutathione peroxidase (GPx) and
catalase levels in T2DM patients. These findings suggest that resveratrol enhances the
body’s intrinsic antioxidant capacity, likely through Nrf2 pathway activation, as previously
discussed [90].

Some studies also assessed superoxide dismutase (SOD) activity and total antioxidant
capacity, although the meta-analysis did not find significant changes in these markers,
likely due to high heterogeneity across clinical trials [94].

Overall, the human clinical evidence supports that resveratrol can attenuate both
pro-inflammatory and pro-oxidant states in T2DM. Reductions in CRP and oxidative stress
biomarkers suggest a potential role for resveratrol in mitigating diabetes-related complica-
tions, as chronic inflammation and oxidative damage drive atherosclerosis, neuropathy, and
other long-term diabetic sequelae. These findings further reinforce the potential of resvera-
trol as a therapeutic adjuvant, targeting not just glycemic control but also the underlying
inflammatory and oxidative milieu of diabetes [97].

5.9. Dose–Response Relationships and Safety Considerations

Clinical evidence suggests a dose–response relationship with resveratrol in T2DM,
where higher doses and longer durations tend to yield greater metabolic improvements.
Human trials have tested doses from 5 mg/day up to 3 g/day, but meta-analyses indicate
that a threshold of 300–500 mg/day is required for consistent benefits [96]. Subgroup
analyses reveal that doses below 100 mg/day show no significant effects, while doses
≥500 mg/day are associated with better glycemic control, including significant reductions
in HbA1c and fasting glucose [91]. The most pronounced benefits appear with doses of
≥1000 mg/day, particularly in terms of blood pressure reduction and insulin sensitivity.

Regarding safety, resveratrol is generally well-tolerated, with no serious adverse effects
reported in diabetic patients. The most common side effects include mild gastrointestinal
discomfort (e.g., nausea, diarrhea), typically observed at higher doses (>1 g/day) [96].
Studies using 1 g/day for several months found no organ toxicity and good adherence.
Even doses up to 5 g/day in non-diabetic populations have been well-tolerated, although
gastrointestinal issues may increase at these extremes [95].

Notably, resveratrol does not induce hypoglycemia, as its mechanism enhances insulin
sensitivity rather than forcing glucose reduction [91,93]. This makes it a safe adjunct
therapy for patients on conventional anti-diabetic medications. While drug interactions
are theoretically possible (e.g., via effects on hepatic metabolism enzymes), no clinically
relevant interactions have been reported in trials [91,93].

In summary, resveratrol is safe for use in T2DM, and achieving sufficient doses
(≥300 mg/day) is key to realizing its metabolic benefits. However, long-term safety
beyond one year remains uncertain, requiring further research.

6. Curcumin and Its Role in Insulin Sensitivity
Curcumin is a bioactive molecule present in turmeric, a spice extracted from its name-

sake plant (Curcuma longa), that has been widely studied for its medical properties [98].
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Curcumin is a polyphenol belonging to the group of curcuminoids, the phenolic com-
pounds that give turmeric its yellow color. This compound has been reported to exhibit
antioxidant, antimicrobial, anti-inflammatory, anti-diabetic, hepatoprotective, and antimu-
tagenic properties [99]. The role it presents in improving insulin sensitivity has been
particularly reported in the context in T2DM. Evidence suggests that this molecule exerts its
effects through several mechanisms, such as anti-inflammatory and antioxidant properties,
that can be relevant in managing insulin resistance and oxidative stress associated with
T2DM [99,100]. Its particular chemical structure confers curcumin the ability to have many
molecular targets. Despite the significant effects it has been proven to have, there are
notorious differences between its effectiveness reported in vitro and in vivo. It has been
justified that its bioavailability and low water solubility could be reasons behind its lower
results in vivo [101].

Curcumin’s ameliorative capacity to enhance insulin sensitivity in T2DM seems to
be specially driven by its ability to reduce inflammation and oxidative stress. Noticeably,
inflammation is one of the pathogenic factors important for the increased insulin resistance
and rise in blood glucose levels that appear in T2DM [102]. Several studies have shown
that curcumin can protect against diabetes by decreasing inflammation, as summarized
by Gu et al. [99]. Inflammatory mediators, such as IL-6 and TNF-α, were decreased in
blood or different cell types in diabetic rats treated with curcumin via suppression of the
NF-κB pathway [100]. In addition, curcumin can inhibit JNK phosphorylation and prevent
inflammation in diabetic cardiomyopathy [76]. Oxidative stress has also been shown to
be related to the pathogenesis of T2DM [103], which makes the antioxidant properties
of curcumin another probable mechanism through which this molecule exerts its anti-
diabetic effects [99]. A meta-analysis performed by Qin et al. indicated that curcumin had
antioxidant effects by reducing the levels of malondialdehyde (MDA), a product of lipid
peroxidation, and enhancing superoxide dismutase (SOD) activity [104]. Shafabakhsh et al.
additionally showed that curcumin’s oral administration could ameliorate antioxidant
indicators in patients with T2DM.

Despite said anti-inflammatory and antioxidant effects, several other mechanisms
and signaling pathways seem to be involved in the way curcumin exerts its benefits.
First, curcumin metabolites were reported to improve insulin sensitivity by activating the
PI3K-AKT-GSK3B and AMPK signaling pathways and suppressing the phosphorylation of
ERK/JNK, which are crucial in counteracting insulin resistance, in high-glucose-induced
insulin-resistant HepG2 cells [61]. Curcumin has also been shown to increase circulating
levels of irisin [105] and adiponectin [106], a myokine and an adipokine, respectively, which
can also improve insulin sensitivity. Moreover, curcumin has the potential to upregulate
or activate the key regulator PPARγ to extend its capacity to combat insulin resistance.
Lee et al. (2022) also reported that curcumin can restore insulin homeostasis in diet-induced
obese aged mice by enhancing hepatic insulin-degrading enzyme (IDE) expression and pre-
serving islet integrity [107]. Finally, not only does curcumin directly affect hyperglycemia in
the previously stated ways, but it also can reduce other diabetic complications by regulating
lipid metabolism [108].

Several clinical trials have supported that curcumin supplementation can improve
markers of insulin sensitivity. In one of them, the results suggested that it is an effective
antihyperglycemic agent, as shown by decreased blood glucose levels and reduced cir-
culating glycogen synthase kinase-3 beta (GSK-3β) following dietary supplementation
with curcumin [109]. Furthermore, Mahdavi et al. systematically reviewed the effects of
curcumin supplementation in glycemic control and found a reduction in fasting blood
glucose (FBG) and hemoglobin A1c (HbA1c) levels in most studies [110]. A different study
in women with polycystic ovary syndrome additionally reported significant reductions in
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fasting plasma glucose after supplementation with this compound. In conclusion, both
animal and clinical studies have presented solid evidence in favor of curcumin’s ability to
prevent T2DM. Future directions seem to be focused on improving its bioavailability to
tackle the limitations it can present in clinical settings.

7. Flavonoids and Metabolic Regulation: A Focus on Quercetin
Flavonoids constitute a diverse subclass of polyphenols with wide-ranging bioactiv-

ity in metabolic disorders, including T2DM. Among them, quercetin has been the most
extensively studied. However, other flavonoids, such as kaempferol, epicatechin, and narin-
genin, also exert protective effects via modulation of oxidative stress, inflammation, and
insulin signaling. This section highlights the mechanistic role of flavonoids in T2DM, with
a particular focus on quercetin as a representative compound. Quercetin, a flavonoid found
in onions, apples, berries, broccoli, and tea, has emerged as a compound of significant
interest in the complementary approach to type 2 diabetes [111]. This interest stems from
its ability to exert multiple actions on the mechanisms underlying insulin resistance and
impaired glucose metabolism. The molecular structure of quercetin, featuring a flavonoid
core with several hydroxyl groups, underlies the notable antioxidant, anti-inflammatory,
and regulatory properties of cell signaling pathways related to glycemic homeostasis [112].

A significant area of research in the field of quercetin’s biological activities is its poten-
tial to mitigate oxidative stress, a critical component in the progression of DM2 [113]. Ox-
idative stress arises from the damage inflicted by ROS on pancreatic β-cells and peripheral
tissues. Different preclinical trials in murine models of induced diabetes have demonstrated
that quercetin administration enhances the activity of endogenous antioxidant enzymes,
including superoxide dismutase, catalase, and glutathione peroxidase [114,115]. This aug-
mentation in antioxidant enzyme activity contributes to a reduction in lipid peroxidation
and the subsequent limitation of the cascade of events that leads to chronic inflammation.
This antioxidant activity is not only observed in vivo, as in vitro studies have shown how
quercetin acts directly as a free radical scavenger, reducing the generation of ROS associated
with hyperglycemia [116].

The anti-inflammatory activity of quercetin constitutes another one of its fundamental
mechanisms in metabolic regulation [117]. In scenarios of insulin resistance, low-grade in-
flammation plays a prominent role in the dysfunction of insulin signaling, mainly through
cytokines like tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) [117,118].
Quercetin has been shown to modulate critical signaling pathways involved in the expres-
sion of these pro-inflammatory mediators, including the nuclear factor kappa B (NF-κB)
and mitogen-activated protein kinase (MAPK) pathways [119]. In several studies utilizing
experimental models, quercetin supplementation has been observed to reduce plasma
levels of TNF-α and IL-6, with a concomitant positive impact on insulin sensitivity and the
integrity of the affected tissues [120,121].

In addition to its antioxidant and anti-inflammatory properties, quercetin has been
shown to directly influence insulin signaling and glucose homeostasis through several
cellular mechanisms. It has been documented to promote the phosphorylation of the
insulin receptor substrate (IRS-1) at tyrosine residues and reduce phosphorylation at serine
residues, thereby enhancing the efficiency of the intracellular signaling cascade [122]. This
modification in signaling contributes to the increased translocation of glucose transporter
type 4 (GLUT4) to the cell membrane, particularly in skeletal muscle, favoring glucose
uptake and glycemic control [123]. In contrast, several studies have reported that quercetin
activates AMP-activated protein kinase (AMPK), a major regulator of energy metabolism.
AMPK activation promotes fatty acid oxidation, attenuates hepatic lipogenesis, and, ul-
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timately, contributes to improved insulin sensitivity and the prevention of associated
metabolic dysfunctions [124].

While the preponderance of evidence originates from in vitro and animal studies,
human research has also emerged that lends support to the relevance of quercetin as an
adjunct in the management of DM2. Preliminary clinical trials have demonstrated that daily
supplementation (generally in the range of 500 to 1000 mg) has been associated with modest
improvements in insulin resistance and glucose tolerance profiles, as well as reductions in
inflammatory markers [124,125]. In addition, studies on patients with metabolic syndrome
have shown that after a period of quercetin treatment, there was an improvement in basal
glucose levels and total antioxidant capacity [126]. However, the available data remain
limited and are sometimes affected by small sample sizes and relatively short intervention
durations. Despite these limitations, the consistency of the results in different populations
and settings warrants further investigation in larger clinical trials with robust designs
to clarify both the actual efficacy of the compound and the optimal doses and potential
long-term effects.

One of the challenges associated with the utilization of quercetin in clinical settings
pertains to its relatively low bioavailability. Quercetin, a lipophilic flavonoid, exhibits a
limited ability to dissolve in aqueous media [127]. Consequently, its intestinal absorp-
tion may be compromised, and, following ingestion, the substance undergoes extensive
metabolism by intestinal microbiota and hepatic and extrahepatic enzymes [128]. Some
studies suggest that glycosylated forms of quercetin or its co-administration with lipids
could enhance its absorption [129]. Conversely, others advocate for encapsulations and
nanoparticles to improve its stability and prevent premature degradation. The combination
of quercetin with other flavonoids, such as catechins or resveratrol, has also been proposed,
with the hypothesis that favorable synergism could be achieved in the regulation of glucose
metabolism and inflammatory signaling [130].

Another salient aspect pertains to the potential impact of quercetin on the intestinal
microbiota. This microbiota is not only implicated in its metabolism; it may also be
modulated by the regular consumption of foods rich in phenolic compounds [131]. It has
been posited that quercetin may favor the growth of certain beneficial bacteria and attenuate
the proliferation of microorganisms that favor systemic inflammation [132]. However, this
area of study still requires further empirical support to draw firm conclusions. The prospect
of intervening in the microbiota and insulin signaling through dietary guidelines or specific
supplements offers novel opportunities for the prevention and management of DM2.

The extant body of data on quercetin suggests its potential to improve metabolic
regulation through multiple axes of action. It decreases oxidative stress by boosting endoge-
nous antioxidant systems, moderates inflammatory responses linked to insulin resistance,
and promotes insulin signaling through the activation of key cellular pathways, such as
AMPK, and the modulation of IRS-1. Although the results of preclinical and early clinical
studies are promising, establishing clear dosing guidelines, defining the optimal duration
of treatment, and resolving bioavailability issues remain challenges. Notwithstanding
these challenges, quercetin exemplifies the potential of plant-derived bioactive compounds
to augment the therapeutic armamentarium against type 2 diabetes, whether through
dietary integration or the administration of validated supplements in rigorous clinical trials.
Beyond quercetin, other flavonoids have also demonstrated promising anti-diabetic effects
through distinct molecular mechanisms. Kaempferol, a flavonol found in kale, tea, and
broccoli, activates AMPK and promotes PGC-1α expression, contributing to enhanced mi-
tochondrial biogenesis and improved insulin sensitivity. It also exhibits anti-inflammatory
properties by downregulating NF-κB signaling and pro-inflammatory cytokines [133].
Epicatechin, abundant in green tea and cocoa, has been shown to enhance endothelial
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function and stimulate GLUT4 translocation, facilitating glucose uptake in skeletal muscle
cells [134]. Additionally, naringenin, a flavanone present in citrus fruits, suppresses JNK
phosphorylation and modulates lipid metabolism, thereby improving insulin sensitivity
and reducing hepatic steatosis in diabetic models [135]. These findings highlight the shared
and complementary pathways through which diverse flavonoids can mitigate metabolic
dysfunctions associated with T2DM.

8. Anthocyanins and Glycemic Control
Anthocyanins are distinguished not only by their role in the reddish, violet, and blue

colors of numerous fruits and vegetables but also by their high therapeutic potential in the
context of DM2 [132,136]. Within this family of compounds, various anthocyanidins are
recognized (cyanidin, delphinidin, peonidin, malvidin, or pelargonidin, among others),
which appear in the form of glycosides linked to sugars, such as glucose or rhamnose.
The physicochemical properties and bioavailability of each anthocyanin are determined
by the glycosidic bonds and the number and position of hydroxyl groups. These factors
also explain the differences observed in the absorption, metabolism, and biological activity
profiles between them [137]. Although they are often grouped under the same name, in
practice, notable heterogeneity is observed in their efficacy and in the physiological effects
they promote.

The antioxidant action of anthocyanins has been extensively documented, and it is
among the earliest recognized mechanisms. It has been demonstrated that these molecules
are capable of neutralizing free radicals and reducing the formation of reactive oxygen
species (ROS), which are the primary causes of lipid peroxidation and oxidative damage
to proteins and DNA, even at relatively low concentrations [138]. In the context of DM2,
this oxidative stress contributes decisively to pancreatic β-cell dysfunction and the onset
of micro- and macrovascular complications, so the ability of anthocyanins to mitigate this
process is considered particularly relevant [139]. Research has demonstrated that antho-
cyanins function as both direct free radical scavengers and modulators of the activity and
expression of endogenous enzymes, including superoxide dismutase and catalase, thereby
amplifying the body’s antioxidant response [140]. It has been noted that in combination
with other flavonoids present in the diet, such as proanthocyanidins, a synergistic effect
can be observed that further reinforces cellular protection against oxidative stress [141].

The impact of anthocyanins on inflammation, a process closely linked to DM2, con-
stitutes another fundamental axis of their therapeutic potential. A substantial body of
research employing mouse models of obesity and induced diabetes has demonstrated that
supplementation with anthocyanins derived from berries (e.g., blueberries, blackberries,
strawberries) results in a substantial reduction in the concentration of pro-inflammatory
cytokines, including interleukin 6 (IL-6), interleukin 1 beta (IL-1β), and tumor necrosis
factor alpha (TNF-α) [142]. This decrease has been shown to positively correlate with an
improvement in insulin signaling, suggesting that the attenuation of low-grade inflamma-
tion contributes to the partial restoration of insulin sensitivity [143]. Studies in this line
indicate that anthocyanins can regulate key inflammatory pathways, such as the nuclear
factor kappa B (NF-κB) activation pathway and the mitogen-activated protein kinases
(MAPK) pathway [144]. These pathways are essential for the transcription of genes that
code for pro-inflammatory mediators. Consequently, the attenuation of these pathways
could potentially mitigate overstimulation of the innate immune system and foster a less
deleterious metabolic milieu for tissues.

A notable effect of anthocyanins, particularly those derived from select fruits, such as
blueberries and red grapes, is their capacity to enhance glycemic homeostasis and insulin
sensitivity [145]. This phenomenon occurs through several mechanisms, including the



Antioxidants 2025, 14, 725 25 of 53

activation of AMP-activated protein kinase. AMPK, regarded as an “energy sensor” within
cells, is stimulated, leading to the translocation of glucose transporter type 4 (GLUT4) to the
cell membrane in skeletal muscle, thereby augmenting glucose uptake [146]. In addition,
the inhibition of enzymes responsible for carbohydrate degradation in the digestive tract,
such as α-amylase and α-glucosidase, has been observed. This inhibition reduces the rapid
release of glucose into the blood after carbohydrate ingestion and prevents postprandial
hyperglycemic peaks [147]. In addition, research involving animal models and cell cultures
has indicated that exposure to anthocyanins facilitates the appropriate phosphorylation
of the insulin receptor substrate (IRS-1) on tyrosine residues. This, in turn, enhances the
transmission of the intracellular insulin signal [148].

In the clinical setting, a multitude of trials have substantiated the efficacy of antho-
cyanins in enhancing various metabolic parameters in individuals with diabetes or at risk
of developing it [149]. Several studies have documented improvements in fasting blood
glucose, insulin sensitivity, and lipid profile following supplementation with standardized
anthocyanin extracts over the course of several weeks [150]. These data suggest that reg-
ular consumption of anthocyanin-rich fruits and vegetables is associated with a reduced
risk of developing type 2 diabetes mellitus in the long term. This association could be
attributed to the direct effect of anthocyanins on insulin modulation or the displacement of
ultra-processed foods in the diet, which are known to be more harmful.

The bioavailability of anthocyanins has been a subject of controversy, as they are
typically characterized by limited absorption in the small intestine, with a significant frac-
tion of these compounds reaching the colon [151]. It is well-established that anthocyanin
metabolites, such as various phenolic acids resulting from the breakdown of the flavy
structure, can retain or even enhance certain biological properties [152]. It has been pro-
posed that regular anthocyanin consumption may exert a prebiotic effect by promoting
the proliferation of beneficial bacteria and the production of short-chain fatty acids [153].
These phenomena could positively impact the integrity of the intestinal barrier and, con-
sequently, the systemic inflammation associated with insulin resistance [154]. However,
the magnitude of these effects is contingent on variables like the basal composition of the
microbiota, the specific dietary source of anthocyanins, and the individual’s health status.
Consequently, the necessity of larger controlled trials is evident to specify personalized
supplementation guidelines.

A significant challenge to the clinical and nutraceutical application of anthocyanins is
their instability. It has been observed that factors like pH, temperature, and the presence of
transition metals can affect their structure and accelerate their degradation [155]. Conse-
quently, formulation strategies, such as microencapsulation or the addition of stabilizing
compounds (e.g., certain polysaccharides), are being explored with the aim of improving
their durability and efficacy in functional products specifically targeted at the control of
DM2 [156].

The scientific evidence suggests that anthocyanins could play a valuable role in the
management of type 2 diabetes. These compounds have a multifaceted mechanism of action
impacting various processes, such as insulin signaling modulation, chronic inflammation
reduction, and, potentially, favorable adjustment of the intestinal microbiome. However,
the path toward effective and widespread implementation requires further research to
more accurately establish doses, the most active chemical forms, the influence of the food
matrix, and the ways in which individual factors (genetics, age, dietary habits) modulate
the therapeutic response. Notwithstanding, the evidence amassed to date substantiates the
promotion of a diet abundant in brightly colored fruits and vegetables, particularly those
exhibiting purple hues. This dietary recommendation is predicated on the premise of lever-
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aging the benefits that anthocyanins confer to the general population, with a heightened
focus on individuals afflicted with metabolic disorders associated with type 2 diabetes.

9. Carotenoids in Diabetes Management
Diabetes mellitus is a multifactorial metabolic disorder characterized by chronic hyper-

glycemia resulting from defects in insulin secretion, insulin action, or both [157]. The global
prevalence of diabetes has reached epidemic proportions, with the International Diabetes
Federation reporting over 537 million affected adults in 2021, a number projected to rise to
783 million by 2045 [158]. Type 2 diabetes mellitus (T2DM), in particular, is closely linked
to obesity, a sedentary lifestyle, and dietary factors, and it is associated with increased risks
of cardiovascular disease, nephropathy, retinopathy, and neuropathy [159].

A growing body of evidence implicates oxidative stress and chronic low-grade in-
flammation in the pathogenesis and progression of T2DM [160]. Hyperglycemia-induced
production of reactive oxygen species (ROS) can impair pancreatic β-cell function and
promote insulin resistance in peripheral tissues. As a result, dietary antioxidants have
attracted attention for their potential to modulate these pathogenic pathways. Among them,
carotenoids, naturally occurring pigments found in colorful fruits and vegetables, have
emerged as promising candidates due to their potent antioxidant, anti-inflammatory, and
immunomodulatory properties [161]. Moreover, evidence suggests that dietary carotenoids
may not only reduce oxidative stress associated with hyperglycemia but also improve
insulin signaling pathways [162].

Epidemiological and clinical studies suggest an inverse association between dietary
carotenoid intake and the risk of developing T2DM [163,164]. Specific carotenoids, such as
β-carotene, lutein, zeaxanthin, and lycopene, have been examined for their capacity to im-
prove glycemic control, reduce oxidative stress, and enhance insulin sensitivity. Therefore,
this section aims to critically examine the biochemical mechanisms and therapeutic poten-
tial of carotenoids in the management of diabetes, integrating insights from mechanistic,
epidemiological, and clinical research [165].

According to the above-mentioned facts, carotenoids, such as β-carotene, lycopene,
lutein, and zeaxanthin, have been shown to possess antioxidant properties that can mitigate
the cellular damage associated with diabetes. In diabetic states, elevated glucose levels lead
to increased generation of reactive oxygen species (ROS), contributing to β-cell dysfunction
and insulin resistance [161]. Carotenoids neutralize ROS and inhibit lipid peroxidation,
thereby preserving cellular function. For instance, β-carotene supplementation has been
reported to improve insulin sensitivity and reduce oxidative stress markers in diabetic ro-
dent models [166]. Moreover, in diabetic human models, a randomized, placebo-controlled
crossover clinical trial [167] showed improvements in insulin metabolism, reduced insulin
resistance, and increased levels of plasma nitric oxide and glutathione, indicating enhanced
antioxidant capacity after six weeks of supplementation (three times daily) with β-caroten
(0.05 g). In addition, a longitudinal study assessed the relationship between serum β-
carotene levels at age 50 and insulin sensitivity at age 70 in non-diabetic participants.
The findings revealed that higher serum β-carotene concentrations were associated with
improved insulin sensitivity two decades later, suggesting a potential long-term protective
effect against insulin resistance [168].

Epidemiological data further support the inverse association between carotenoid in-
take and diabetes risk. A cross-sectional study using NHANES data found that individuals
with higher plasma levels of carotenoids exhibited better glycemic control and lower insulin
resistance [164]. Similarly, lycopene has been shown to reduce HbA1c levels and enhance
antioxidant enzyme activity in diabetic patients [169]. Furthermore, carotenoids may exert
anti-inflammatory effects by modulating signaling pathways, such as NF-κB, and inhibiting
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pro-inflammatory cytokine expression, mechanisms that are increasingly implicated in
the pathophysiology of insulin resistance [6]. In this line, a study by Vincent et al. [170]
examined the effects of an 8-week antioxidant supplementation regimen—including β-
carotene (10 mg/day), vitamin C (500 mg/day), and vitamin E (800 IU/day)—on insulin
sensitivity and oxidative stress in overweight and normal-weight young adults. The results
indicated a 15% reduction in HOMA-IR in overweight participants, along with significant
decreases in oxidative stress markers, such as lipid hydroperoxides. Additionally, there
were reductions in endothelial adhesion molecules, suggesting improved vascular function.

Despite these promising findings, challenges remain. The bioavailability of carotenoids
varies significantly depending on the food matrix, preparation methods, and individual
factors, such as gut microbiota and genetic polymorphisms [171]. Moreover, while obser-
vational studies provide correlations, randomized controlled trials (RCTs) investigating
the direct impact of carotenoid supplementation on diabetic outcomes remain limited and
show mixed results. Some RCTs report significant improvements in metabolic param-
eters, while others show minimal to no effects, highlighting the need for standardized
methodologies and longer follow-up durations. In agreement with this, a meta-analysis
by Beydoun et al. [172] reported an inverse association between total carotenoids and
metabolic syndrome, with β-carotene showing the strongest association among individ-
ual carotenoids. Moreover, a recent systematic review [173] found that moderate dietary
intakes of β-carotene were associated with a lower risk of T2DM, potentially through
the reduction of insulin resistance. However, supplementation with β-carotene did not
show a significant protective effect against T2DM in randomized controlled trials. Despite
these studies indicating that dietary intake of β-carotene is associated with improved
metabolic parameters, supplementation does not consistently show the same benefits. This
highlights the importance of obtaining β-carotene through a balanced diet rich in fruits
and vegetables.

Thus, carotenoids could offer a promising complementary approach in the manage-
ment of diabetes due to their potent antioxidant and anti-inflammatory properties [162].
Evidence from both animal studies and human cohorts supports their beneficial effects
on glycemic control and insulin sensitivity [164]. However, variations in study designs,
bioavailability, and individual responses necessitate further investigation through well-
designed clinical trials [171]. As a practical point of view for sport and nutrition profes-
sionals, integrating carotenoid-rich foods into the diet may serve as a feasible strategy to
support conventional diabetes therapies and reduce the burden of diabetic complications.

10. Green Tea Catechins and Insulin Resistance
Green tea is a popular beverage that has gained interest from scientists because of

its health benefits. Catechins are polyphenolic antioxidants that account for about 30%
of the ingredients present in tea and have been reported to have anti-diabetic and anti-
inflammatory effects [174,175]. Among its conjugates, epigallocatechin (EGC) accounts for
the majority of catechins in green tea, and it is the one that has been more broadly studied
for its properties [176]. Nevertheless, other forms, such as (−)-epicatechin, have also been
shown to inhibit oxidative stress and inflammation and to regulate events in digestion
that affect glucose homeostasis. Multiple studies and their reviews indicate that catechins
and, particularly, EGCG have benefits with regard to insulin resistance and glycemia in the
context of T2DM. Catechin intake can improve insulin sensitivity and reduce FBG both in
healthy individuals and those with risk factors for T2DM [177]. In addition to anti-diabetic
effects, EGCG has been reported to have anti-obesity, hypotensive, and cardiovascular
comorbidity prevention properties [178,179].
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Green tea catechins seem to exert their benefits through several mechanisms. Studies
have shown that catechins are able to inhibit carbohydrate digestive enzymes, such as
α-amylase and α-glucosidase, and decrease FBG levels in vitro and in diabetic rat models.
One study [180] additionally proved that EGCG could act as an insulin-mimetic compound
and increase glucose transporter GLUT4 translocation to the membrane and enhance
glucose absorption in L6 skeletal muscle cells through the PI3K/AKT pathway. EGCG
has been reported to have some differences in the pathways affected depending on the
tissue, which might be related to stated variations in its affinity for target proteins in several
organs [181]. Furthermore, catechins have also been proven to enhance insulin sensitivity
and reduce its resistance when combined with coffee chlorogenic acids, as shown by a
decreased homeostatic model assessment of insulin resistance index (HOMA-IR) and better
postprandial insulin responses [182,183]. In addition, Xin et al. [184] showed that a complex
formed by three components—hawthorn polyphenols, D-chiro-inositol (DCI), and EGCG—
had synergistic hypoglycemic effects mediated by PI3K/AKT/GSK-3 in the liver of induced
diabetic mice, subsequently relieving insulin resistance. Hence, catechins can significantly
alleviate T2DM by improving insulin sensitivity. Catechins have also been shown to exert
their anti-diabetic actions through oxidative stress relieving effects [185], mitochondrial
function improving effects [186], inflammation prevention [187], and intestinal microbiota
regulation [177].

Despite the increasing evidence of multiple possible targets for catechins, some of
their benefits in clinical trials and the optimal doses needed to activate a response are yet to
be elucidated [179]. Interestingly, a randomized placebo-controlled study indicated that
participants’ fasting plasma glucose decreased after three months of daily consumption of
epicatechin-enriched bread [188]. Takahashi et al. additionally showed in human adults that
ingestion of catechin-rich green tea during the evening, but not in the morning, decreased
postprandial glucose levels. However, as stated when speaking about other compounds,
the low bioavailability of catechins is a challenge to overcome in their discussed relevance
for T2DM prevention or treatment [189].

11. Synergistic Effects of Antioxidant Combinations
Oxidative stress, a biological state characterized by an excess of reactive oxygen species

(ROS) relative to the body’s capacity to neutralize them through antioxidant defenses, has
emerged as a central factor in the progression of numerous chronic and degenerative
diseases. These include, but are not limited to, cardiovascular disease, type 2 diabetes,
neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases, and vari-
ous forms of cancer [190]. In this line, ROS can damage cellular components, including
lipids, proteins, and DNA, leading to inflammation, cellular dysfunction, and, ultimately,
tissue degradation.

Antioxidants, both endogenous (e.g., superoxide dismutase, glutathione) and exoge-
nous (e.g., vitamin C, polyphenols), play a critical role in neutralizing these reactive species
and maintaining redox homeostasis [191]. While individual antioxidants have been ex-
tensively studied and utilized in both dietary and therapeutic contexts, growing evidence
suggests that the efficacy of antioxidant intervention can be significantly enhanced through
strategic combinations. This is due to potential synergistic effects, whereby the combined
action of two or more antioxidants produces a greater biological effect than the sum of their
separate actions [192].

Such synergy can arise from various mechanisms; some antioxidants can regenerate
others (e.g., vitamin C restoring oxidized vitamin E), while others may act on different cellu-
lar targets or within distinct compartments of the cell [193]. Additionally, the bioavailability,
stability, and pharmacokinetics of certain antioxidants can be improved when administered
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in combination, enhancing their overall therapeutic potential [5]. Thus, these properties
make synergistic antioxidant combinations a promising frontier in nutritional application.

One of the best-documented synergistic interactions is between vitamin C (ascorbic
acid) and vitamin E (α-tocopherol). Vitamin E is lipid-soluble and acts primarily within cell
membranes to prevent lipid peroxidation, while vitamin C is water-soluble and circulates
in the aqueous compartments of the cell and plasma. When vitamin E neutralizes a free
radical, it becomes a radical itself. Vitamin C can regenerate this oxidized form of vitamin
E back to its active state, thereby sustaining its antioxidant activity [194]. In this line, many
studies in test tubes and animal models show clear synergistic antioxidant effects, with
vitamin C and E together providing stronger protection against lipid peroxidation and
oxidative stress than either alone. However, while some human studies show increased
antioxidant capacity and changes in blood levels of both vitamins with supplementation,
the evidence for a strong synergistic effect in reducing markers of oxidative stress is less
consistent [195]. Some trials found no additional benefit from combining the vitamins
compared to taking either alone [196,197].

Beyond vitamins, polyphenols—naturally occurring compounds found in fruits, veg-
etables, tea, and wine—are potent antioxidants that often exhibit greater efficacy when
used in combination. For example, the combined use of resveratrol and quercetin has been
shown to exert stronger anti-inflammatory and antioxidant effects than either compound
alone. A study by Pérez-Vizcaíno and Pérez Vizcaino demonstrated that these flavonoids
jointly modulate signaling pathways, such as nuclear factor κB (NF-κB) and nuclear fac-
tor erythroid-like 2 (Nrf2), more effectively, contributing to reduced oxidative stress and
improved vascular function [198]. Moreover, for cancer activity, this combination can
also reshape the tumor microenvironment, promoting immune activation and reducing
immunosuppressive cell populations, which may enhance anti-tumor responses [199].

Synergy is also observed in combinations involving glutathione (GSH), a key intra-
cellular antioxidant, and selenium, a trace element required for the activity of glutathione
peroxidase [200]. Adequate selenium intake enhances the enzymatic activity of glutathione
peroxidase, allowing for more effective detoxification of peroxides and hydroperoxides in
cells. In this case, one antioxidant serves as a cofactor that boosts the functional capacity of
another, underlining the importance of micronutrient balance in antioxidant therapy [201].
Although most studies have been conducted in animal models, in human models, depletion
of both selenium and glutathione appears to increase susceptibility to liver injury caused
by drugs and toxins, highlighting their combined importance in liver protection [202].
Furthermore, regarding the combination of selenium with other elements, a randomized
controlled trial by Mazloom et al. observed that a combination of vitamins C and E together
with selenium significantly improved oxidative stress biomarkers and glycemic control in
patients with type 2 diabetes, suggesting that such combinations could have therapeutic
value in metabolic disorders [203].

Moreover, in neurodegenerative conditions, combinations, such as melatonin with α-
lipoic acid, have shown promise. Melatonin, a pineal hormone with antioxidant properties,
can cross the blood–brain barrier and scavenge ROS directly, while α-lipoic acid works
to regenerate endogenous antioxidants like GSH and coenzyme Q10 [204]. In this line,
in vitro studies show that melatonin combined with ALA more effectively reduces markers
of oxidative DNA damage than either agent alone, indicating an important synergistic
effect [205].

Understanding the synergistic effects of antioxidant combinations offers promising
avenues for enhancing therapeutic outcomes and preventing oxidative-stress-related dis-
eases. While several studies affirm the benefits of such combinations, further clinical
research is necessary to optimize formulations, dosages, and delivery methods. This is



Antioxidants 2025, 14, 725 30 of 53

important because not all antioxidant combinations yield synergistic effects [206]. Thus,
understanding these factors is crucial for designing effective antioxidant mixtures in foods
and supplements.

12. Gut Microbiota and Antioxidant Interactions
The human gut microbiota comprises a complex ecosystem of trillions of microorgan-

isms that play a fundamental role in host metabolism, immune regulation, and nutrient
processing. In recent years, mounting evidence has implicated gut dysbiosis, a state of
microbial imbalance, as a key contributor to the development and progression of type 2
diabetes mellitus. Dysbiosis in diabetic individuals is typically characterized by reduced
microbial diversity, decreased levels of beneficial commensals, and an increase in pro-
inflammatory bacteria that promote intestinal barrier dysfunction, lipopolysaccharide (LPS)
leakage, and low-grade systemic inflammation [75]. Importantly, this pathological process
is not unidirectional. The gut microbiota dynamically interacts with dietary and pharma-
cological inputs, including plant-derived antioxidants, which can both influence and be
influenced by the microbial ecosystem. This bidirectional relationship offers a compelling
therapeutic opportunity; by modulating the microbiota with targeted antioxidant interven-
tions, it may be possible to reduce inflammation, improve insulin sensitivity, and restore
metabolic homeostasis in individuals with type 2 diabetes mellitus [207].

Plant antioxidants, such as polyphenols, flavonoids, anthocyanins, and tannins, are
often poorly absorbed in the upper gastrointestinal tract. A significant proportion, esti-
mated at over 90%, reaches the colon intact, where it encounters a dense and metabol-
ically active microbial community. These compounds serve as substrates for microbial
metabolism, undergoing deglycosylation, dehydroxylation, demethylation, and ring fission
reactions that produce a wide array of bioactive metabolites, including urolithins, phenolic
acids, and hydroxycinnamates [208]. These microbial transformations frequently result in
metabolites with enhanced bioavailability, altered pharmacokinetics, and distinct biological
activity compared to the parent compound. For instance, ellagitannins from berries and
pomegranates are transformed by Gordonibacter species into urolithin A, which has been
shown to improve mitochondrial function, reduce oxidative stress, and enhance insulin sen-
sitivity in preclinical models [208,209]. Conversely, many polyphenols exert prebiotic-like
effects, selectively promoting the growth of beneficial bacterial taxa, such as Akkermansia
muciniphila, Faecalibacterium prausnitzii, and Bifidobacterium adolescentis. These microbes are
associated with improved glucose tolerance, reduced adiposity, and enhanced gut barrier
function, supporting the hypothesis that antioxidants may act as modulators of microbial
ecology [208,210].

One of the principal mechanisms through which microbiota-mediated antioxidant
effects are exerted is through the generation of short-chain fatty acids (SCFAs). SCFAs,
such as butyrate, acetate, and propionate, are microbial fermentation products of dietary
polyphenols and fibers. These compounds act on G-protein-coupled receptors (GPR41,
GPR43) in the gut epithelium and immune cells to regulate energy metabolism, improve
glucose uptake, and attenuate inflammation. Butyrate serves as the primary energy source
for colonic epithelial cells, maintaining tight junction integrity and reducing intestinal
permeability [211]. This limits the translocation of LPS and other microbial antigens
into circulation, effectively lowering metabolic endotoxemia and the associated systemic
inflammatory response, which is a known contributor to insulin resistance. In addition,
SCFAs and microbial metabolites of polyphenols inhibit histone deacetylases (HDACs),
promoting epigenetic changes that suppress inflammatory gene expression. Collectively,
these interactions position the microbiota not just as a passive receiver of antioxidants but
as an active co-contributor to their metabolic and immunomodulatory benefits [211].
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Anthocyanins, found in berries, grapes, and red cabbage, are extensively metabolized
by gut microbes into phenolic acids with anti-diabetic effects. These metabolites have been
shown to enhance gut barrier function, reduce hepatic gluconeogenesis, and modulate glu-
cose transporters. Moreover, anthocyanins increase the abundance of butyrate-producing
bacteria, contributing to improved insulin sensitivity [212]. Resveratrol modulates the
gut microbiota by suppressing the growth of opportunistic pathogens like Desulfovibrio
and promoting Lactobacillus and Bifidobacterium species. This contributes to reduced
inflammation and improved intestinal health. In type 2 diabetes mellitus mouse models,
resveratrol supplementation was associated with improved glucose tolerance and reduced
weight gain, effects that were attenuated in antibiotic-treated animals, underscoring the
microbiota’s mediating role. Berberine is well-known for its antimicrobial activity, but, in
subclinical doses, it selectively remodels the microbiota, increasing the relative abundance
of SCFA-producing and anti-inflammatory species. This has been associated with improved
glycemic control, lipid profile, and insulin sensitivity in both rodents and human trials.
Notably, berberine also increases GLP-1 secretion, an effect attributed in part to changes in
microbial composition [213]. Catechins from green tea promote the growth of Akkermansia
muciniphila, a mucin-degrading bacterium associated with reduced adiposity and improved
insulin sensitivity. They also inhibit Clostridium species involved in endotoxin production.
These microbial shifts correspond to reductions in inflammatory cytokines, insulin resis-
tance, and hepatic lipid accumulation in animal models [214]. Curcumin is poorly absorbed
but extensively modified by gut microbes into metabolites, such as tetrahydrocurcumin,
which retains anti-inflammatory and antioxidant activity. Curcumin also improves the
Firmicutes-to-Bacteroidetes ratio and increases SCFA production. In diabetic rats, curcumin
supplementation restored microbial diversity and improved fasting glucose and insulin
resistance markers [215]. Quercetin enhances the gut’s microbial diversity and promotes col-
onization by Lactobacillus and Bacteroides, which improve gut barrier function and reduce
inflammation. Quercetin metabolites also have insulin-sensitizing properties and reduce
hepatic lipid accumulation, further supporting their role in improving glucose metabolism.

Microbiota-mediated antioxidant activity contributes not only to peripheral insulin
sensitivity but also to the preservation of pancreatic β-cell function. SCFAs and polyphenol-
derived metabolites exert anti-apoptotic effects on β-cells, promote insulin gene expression,
and reduce oxidative damage. For instance, butyrate has been shown to increase Pdx1 and
Ins1 gene expression, which is essential for β-cell identity and insulin secretion. Addition-
ally, by reducing gut-derived inflammation, microbiota-modulating antioxidants decrease
the systemic cytokine burden that impairs β-cell viability and insulin biosynthesis. Several
in vivo studies demonstrate that diets enriched in antioxidant polyphenols reduce islet
inflammation, increase islet mass, and restore insulin secretion in diabetic animals [216].

While most microbiota–antioxidant interactions have been studied in animal mod-
els, human data are emerging. Several randomized clinical trials have demonstrated that
polyphenol-rich interventions (e.g., cranberry extract, green tea catechins, resveratrol) result
in measurable changes in gut microbiota composition and correlate with improvements in
HbA1c, fasting glucose, and inflammatory biomarkers in patients with type 2 diabetes mel-
litus. Moreover, advances in metagenomic sequencing and metabolomics have facilitated
the identification of polyphenol-responder phenotypes, individuals whose microbiota com-
position is predictive of a favorable metabolic response to specific antioxidants [207,217].
This opens the door for personalized dietary recommendations that consider microbiota
profiles to optimize antioxidant efficacy. Emerging interventions also combine prebiotics
(e.g., inulin, FOS) with polyphenols to create symbiotic formulations, which have shown
synergistic effects on glucose control, microbiota diversity, and SCFA production. These
innovations represent a shift from general dietary guidelines to precise functional nutrition
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in diabetes care. Despite promising findings, several challenges remain. First, there is signif-
icant interindividual variability in microbiota composition, making it difficult to generalize
outcomes [207]. Second, the dose and bioavailability of antioxidants are often inconsistent
across studies, and the extent to which microbial metabolism contributes to systemic effects
is not always clear. Moreover, most of the current evidence stems from animal models, and
while translational potential is high, robust long-term clinical trials are needed to validate
microbiota-targeted antioxidant therapies in diverse populations. Finally, integrating micro-
biome data into clinical practice will require user-friendly analytical tools and standardized
protocols for microbiota assessment and dietary personalization [218].

In conclusion, plant-derived antioxidants and the gut microbiota interact in a syner-
gistic and dynamic manner, influencing each other’s composition, bioactivity, and health
effects. Through microbiota-mediated pathways, including SCFA production, metabolite
transformation, gut barrier reinforcement, and immune modulation, antioxidants exert pro-
found effects on insulin sensitivity, inflammation, and glycemic control in type 2 diabetes
mellitus. This growing body of evidence underscores the potential of microbiota-aware
dietary strategies and precision antioxidant therapy in diabetes management. Future re-
search should focus on identifying microbial biomarkers of responsiveness, optimizing
polyphenol delivery systems, and conducting integrative human trials to translate this
promising science into practical, individualized interventions for type 2 diabetes mellitus
care (Figure 1).

Figure 1. Microbiota-mediated metabolism of plant antioxidants and their impact on insulin sensitiv-
ity, oxidative stress, and inflammation.

13. Nutrigenomics and Personalized Antioxidant Therapy
The interaction between nutrition and genetic factors has long been suggested and, in

some cases, directly linked to specific diseases. Research over the years trying to under-
stand this connection has referred to it as nutrigenomic, and now it is recognized as a key
contributor to the development and progression of various health conditions [219]. Nu-
trigenomics proposes that the body possesses a distinct signaling system that predisposes
individuals to specific patterns of gene expression. In this context, nutrients consumed act
as stimuli that are detected by cellular sensory mechanisms, subsequently influencing the
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expression of genes, proteins, and metabolites. Moreover, nutrigenomics seeks to elucidate
how nutrition contributes to maintaining physiological homeostasis and to identify cellular
interactions that activate inflammatory stress pathways, thereby enhancing our understand-
ing of diet-related diseases [220]. This discipline highlights the dynamic interplay between
bioactive dietary compounds and genetic activity. Additionally, it incorporates approaches
from nutritional systems biology to identify biomarkers that indicate susceptibility to
nutrition-associated pathologies [221]. Nutrigenetics examines how individual genetic
variations affect responses to specific nutrients, influencing dietary needs and disease risk.
In contrast, nutrigenomics explores how nutrients and bioactive food compounds regulate
gene expression and cellular processes [222]. Together, they form the basis of personalized
nutrition and the prevention of diet-related diseases.

13.1. Nutrigenomics and the Role of the Microbiome

At the core of this discipline lies the concept that dietary components serve not only
as sources of energy and structural elements but also as signaling molecules capable of
modulating transcriptional activity. These nutrient–gene interactions impact key phys-
iological processes, including inflammatory responses, oxidative stress regulation, and
metabolic homeostasis [219]. Understanding these mechanisms is essential for identify-
ing the molecular pathways involved in diet-related diseases and developing targeted
nutritional strategies aimed at disease prevention and health optimization.

The gut microbiome is crucial in modulating gene expression, metabolism, and im-
mune responses. The human microbiome, composed of approximately 40 trillion microor-
ganisms, interacts dynamically with dietary components, influencing health outcomes
through complex molecular pathways [223]. Alterations in microbiota composition—due
to infection, antibiotics, lifestyle, or diet—can shift the balance toward pro-inflammatory
or protective profiles [45]. For instance, specific microbial species, such as Veillonella and
Streptococcus, have been detected in atherosclerotic plaques, while Akkermansia muciniphila
has shown protective effects against diet-induced atherosclerosis [224]. Also, the balance
between bacterial families like Firmicutes and Bacteroidetes has also been linked to obesity
risk [225,226]. Probiotics, which include strains like Lactobacillus and Bifidobacterium, exert
beneficial effects on gastrointestinal health, lactose intolerance, and, possibly, metabolic and
bone disorders [225]. Novel approaches, such as fecal microbiota transplantation, further
illustrate the therapeutic potential of modulating microbial populations [227].

Beyond the influence of the microbiome, the molecular basis of nutrigenomics also
involves a range of metabolic enzymes whose activity is modulated by specific dietary
components. These enzymes play a pivotal role in processing bioactive compounds, me-
diating gene–nutrient interactions, and, ultimately, shaping individual susceptibility to
disease [228]. Key enzymes, such as Cytochrome P450 (CYPs), are involved in the oxidation
of various dietary compounds; for example, the activity of CYP1A2 can be induced by
indole-3-carbinol from cruciferous vegetables or inhibited by naringenin in grapefruit [135],
modulating the metabolism of potential carcinogens [229,230]. Similarly, Glutathione S-
transferases (GSTs)—especially GSTM, GSTP, and GSTA isotypes—serve as detoxifying
enzymes by conjugating reduced glutathione to reactive electrophiles, thereby prevent-
ing DNA damage and mutagenesis [231]. Impaired GST activity has been associated
with increased disease susceptibility. Additionally, as specified by Mishra et al., MTHFR
(methylenetetrahydrofolate reductase) plays a central role in one-carbon metabolism, with
the 677C→T polymorphism affecting enzyme efficiency and influencing folate require-
ments and disease risk. For instance, individuals with the TT genotype may require higher
folate intake to mitigate risks of vascular and neoplastic diseases [232]. These interactions
underscore the bidirectional relationship between diet and gene expression mediated by
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microbial metabolites, revealing promising strategies for personalized nutrition and an-
tioxidant therapy. Incorporating microbiome dynamics into nutrigenomic models may
enhance the precision and efficacy of dietary interventions aimed at preventing chronic
diseases [219,220].

13.2. Genetic Variability and Personalized Antioxidant Strategies

Research has further demonstrated that the diet–disease relationship is modulated
by genetic and ethnic variability. For instance, one study found a significantly higher
risk of disease among Sudanese individuals with the glutathione S-transferase M1 null
genotype who consumed aflatoxin-contaminated peanut butter compared to those without
this genetic variant [233]. Ongoing research continues to elucidate the mechanisms through
which genetic makeup determines the absorption, metabolism, and excretion of nutrients,
as well as how specific nutrients modulate gene expression. For instance, previous authors
highlighted how genetic factors influence blood lipid profiles and cardiovascular risk,
offering valuable insights for personalized dietary prevention strategies. This highlights
that understanding these gene–diet interactions is key to advancing precision nutrition and
developing targeted interventions for chronic disease prevention [234].

In this regard, a recent study investigated the effects of a dietary intervention based
on resveratrol, green tea extract, α-tocopherol, vitamin C, n−3 (omega-3) polyunsaturated
fatty acids, and tomato extract. It was discovered that a diet against modulated inflam-
matory processes and oxidative stress markers may be a potential targeted strategy in
managing inflammation-related conditions [235]. Concretely, the study demonstrates that a
combination of compounds with antioxidant properties can favorably modulate markers of
inflammation and oxidative stress [236]. For instance, a meta-analysis examining the effects
of antioxidant therapy on chronic kidney disease (CKD) progression found that despite
heterogeneity among studies, antioxidant therapy appeared to reduce CKD progression.
Specifically, compounds like pentoxifylline and bardoxolone methyl demonstrated robust
and statistically significant protective effects, highlighting the potential of personalized
antioxidant interventions in managing CKD [237]. In another example, a randomized
clinical trial investigated the impact of mixed apple and bergamot juice (MAB juice) sup-
plementation on oxidative stress and inflammation. Over a two-week period, 24 subjects
received MAB juice supplementation, resulting in positive effects on body composition,
biochemical profiles, and the expression of oxidative and inflammatory genes. The study
underscores the potential of personalized dietary interventions rich in antioxidants to
modulate gene expression and improve health outcomes [238].

For instance, a study explored the potential of dihydromyricetin (DHY), a flavonoid
with potent antioxidative properties, in managing diabetic cardiomyopathy. The research
demonstrated that DHY significantly enhanced cardiac function and reduced myocardial
injury by activating Sirtuin 3 (SIRT3), a mitochondrial protein involved in cellular stress
responses, thereby offering a promising therapeutic avenue for cardiovascular complica-
tions associated with diabetes [239]. In another example, a systematic review assessed the
efficacy of antioxidant therapy in enhancing the quality of life of patients with chronic pan-
creatitis (CP). The findings suggested that antioxidant therapy holds potential in symptom
management; however, the results were mixed, indicating the necessity of more rigor-
ous, larger-scale studies to confirm its effectiveness and establish standardized treatment
protocols [240]. Furthermore, research into the nutrigenetics of antioxidant enzymes has
highlighted how genetic variations can influence individual responses to oxidative stress
and viral infections [241].

Understanding these genetic differences is crucial for developing personalized antioxi-
dant strategies that effectively modulate oxidative stress and enhance immune responses.
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These studies collectively emphasize the importance of personalized antioxidant strategies
in managing and potentially mitigating various health conditions by considering individual
genetic and biochemical profiles.

14. Plant-Derived Antioxidants in Young Adults, Older Adults, and
Pregnant Women with Diabetes

Beyond general mechanisms and pharmacokinetics, antioxidant interventions must
also be adapted to the unique physiological conditions of special populations, such as
pregnant women, older adults, and individuals with comorbidities. As known, the burden
of diabetes is increasing globally across all age groups, with oxidative stress playing
a central role in its pathogenesis and complications. Plant-derived antioxidants have
emerged as promising nutritional tools to counteract oxidative damage and improve
glycemic control.

14.1. Plant-Derived Antioxidants in Young Adults with Diabetes

In young adults with type 1 or type 2 diabetes, dietary antioxidants may positively
influence glycemic control and reduce oxidative stress. Polyphenols—bioactive com-
pounds found in fruits, vegetables, and whole grains—act as potent antioxidants and
exhibit anti-inflammatory properties, helping to prevent chronic conditions associated with
diabetes [242]. Furthermore, studies have shown that antioxidant-rich diets are inversely
associated with oxidative-stress-induced conditions, such as insulin resistance, a key factor
in the development of type 2 diabetes [243]. Regarding this, Gutierrez et al. developed
a study involving sedentary, obese young women (average age of 22.7 years) to assess
the effects of consuming 5 g of encapsulated Cassia cinnamon bark daily. The results
indicated a significant 10.1% reduction in blood glucose levels and improved glucose toler-
ance compared to a placebo group, highlighting cinnamon’s potential in managing blood
sugar levels in young adults with diabetes [244]. However, there was no improvement
in insulin resistance in young, sedentary, obese women. Another study focused on the
impact of 12-week ubiquinone (coenzyme Q10) supplementation in well-trained college
athletes. Ho et al. pointed out that higher ubiquinone status was associated with improved
antioxidant capacity and glycemic control, highlighting its potential role in managing blood
sugar levels among physically active individuals [245].

Another study focused on resveratrol administration pointed out that 800 mg/day for
two months to patients with type 2 diabetes mellitus (T2DM) resulted in an 8% reduction
in malondialdehyde (MDA) levels and an 18.54% decrease in carbonyl protein, markers
of oxidative stress. Additionally, total thiol levels increased by 12%, nitric oxide synthase
(NOS) by 3%, and catalase by 12%, indicating enhanced antioxidant defenses [246]. Also,
in patients with a history of 3.5 years, daily supplementation of 3 g of L-citrulline for two
months resulted in a 16% reduction in fasting blood glucose levels and a 25% decrease
in MDA levels. Moreover, there were significant increases in serum levels of nitric oxide
(27%), superoxide dismutase (2%), and glutathione peroxidase (2.2%), suggesting improved
oxidative stress markers [246]. Montonen et al. also specified that a higher dietary intake of
vitamin E was significantly associated with a reduced risk of developing type 2 diabetes.
Specifically, the relative risk (RR) of type 2 diabetes between the highest and lowest quartiles
of vitamin E intake was 0.69, indicating a potential protective effect of this antioxidant
vitamin [247].

Nevertheless, not all studies have yielded positive outcomes. A systematic review
of medicinal plants used for diabetes treatment found that among the studies reviewed,
only the trial involving bitter melon did not show any significant change in blood glucose
levels after intervention. This underscores the importance of rigorous clinical evaluation to
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validate the efficacy of plant-derived antioxidants in diabetes management [248]. However,
findings highlight the potential of plant-derived antioxidants in managing diabetes among
young adults, while also emphasizing the need for further research to confirm their efficacy
and safety.

14.2. Plant-Derived Antioxidants in Older Adults with Diabetes

Aging is associated with increased oxidative stress and reduced endogenous antioxi-
dant capacity, exacerbating diabetic complications in older adults. Diets high in antioxidant-
rich foods, such as nuts, have demonstrated notable health benefits [249,250]. For example,
walnut consumption has been linked to improved cognitive performance in young adults,
while pistachios, rich in antioxidants, may enhance eye health [251]. Additionally, Asp et al.
demonstrated that safflower oil, abundant in unsaturated fatty acids and antioxidants, may
improve blood glucose control, particularly in postmenopausal women with diabetes [252].
A randomized clinical trial evaluated the effects of resveratrol (RV) supplementation on
oxidative stress markers and sirtuin 1 levels in older adults with type 2 diabetes. Ninety-
seven participants received either 1000 mg/day or 500 mg/day of RV, or a placebo, over six
months. The study found that RV supplementation positively influenced oxidative stress
markers and sirtuin 1 levels, suggesting benefits for older adults managing diabetes [253].
Appiah et al.’s research investigated the impact of Bridelia ferruginea tea on antioxidant
status in individuals with type 2 diabetes. The findings revealed that participants who
consumed the tea exhibited significantly higher antioxidant levels compared to those
who did not, indicating its potential to enhance antioxidant defenses in older adults with
diabetes [254].

Additionally, Garcia Martínez and collaborators showed in a randomized controlled
trial the impact of resveratrol supplementation on oxidative stress markers and sirtuin 1
levels in older adults with type 2 diabetes. Concretely, ninety-seven participants received
either 1000 mg/day or 500 mg/day of resveratrol, or a placebo, over six months. The study
found that resveratrol supplementation positively influenced oxidative stress markers and
sirtuin 1 levels, suggesting benefits for older adults managing diabetes [253]. Furthermore,
a study on dietary antioxidant intake and risk of type 2 diabetes observed that higher intake
of antioxidants, such as vitamin E and β-cryptoxanthin, was associated with a reduced
risk of developing type 2 diabetes, highlighting the importance of antioxidant-rich diets in
older adults [247,255].

Taken together, these findings support the potential of plant-derived antioxidants as a
complementary strategy to enhance metabolic control, reduce oxidative stress, and mitigate
diabetes-related complications in the aging population.

14.3. Plant-Derived Antioxidants in Pregnant Women with Diabetes

Gestational diabetes (GDM) is a common pregnancy complication with health risks for
both mother and child. Emerging evidence suggests that antioxidant-rich diets during early
pregnancy are associated with a lower risk of developing GDM [256]. A recent study carried
out by Heshmati and collaborators found that higher dietary total antioxidant capacity
(DTAC) in early gestation significantly reduced GDM risk, highlighting the protective role
of dietary antioxidants [257]. Moreover, increased intake of vegetables, fibers, and fruits has
been shown to lower inflammation by boosting antioxidant levels, thereby improving in-
sulin sensitivity and overall metabolic control [258]. Additionally, a meta-analysis explored
the association between polyphenol consumption and the risk of GDM and preeclampsia
(PE). While the overall findings were inconclusive, the study noted that total polyphenol
intake was associated with a lower likelihood of developing GDM, indicating the potential
of personalized polyphenol-rich dietary interventions in GDM prevention [259]. Moreover,
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research has identified several health benefits of bioactive phytochemicals, including antiox-
idant and anti-inflammatory activities, as well as normalizing glucose metabolism. Dietary
fruits, such as acai, goji berries, blueberries, and strawberries, have high levels of antioxi-
dants, fibers, vitamins, minerals, and phytochemicals, which have been associated with
decreased risk of diabetes [260]. Furthermore, a meta-analysis examining polyphenol-rich
food consumption during pregnancy found that while overall polyphenol intake did not
show a significant association with GDM risk, higher total polyphenol intake was linked to
a lower likelihood of developing GDM [253]. This suggests that specific polyphenol-rich
foods may offer protective benefits against GDM. Additionally, Chen at al. in their study
highlighted that adherence to a healthful plant-based diet before pregnancy is associated
with a lower risk of GDM. This underscores the potential of plant-based dietary patterns
in reducing GDM risk [261]. Collectively, these studies highlight the potential benefits
of incorporating antioxidant-rich, plant-based foods into the diets of pregnant women to
mitigate the risk of GDM (Figure 2).

Figure 2. Plant-derived antioxidants in young adults, older adults, and pregnant women
with diabetes.

15. Challenges in Bioavailability and Stability
Despite their promising biological properties, the clinical effectiveness of plant-derived

antioxidants in the management of T2DM remains significantly limited by poor bioavail-
ability, low solubility, instability in physiological environments, and extensive metabolism
in the gastrointestinal tract and the liver [259]. These limitations reduce the proportion of
active compounds reaching target tissues at therapeutic concentrations and compromise
their potential to exert glycemic or antioxidative effects in vivo [260]. Flavonoids, such as
quercetin and catechins, as well as polyphenols, like curcumin and resveratrol, illustrate
this challenge. Although they display potent antioxidant, anti-inflammatory, and insulin-
sensitizing actions in vitro and in animal models, their oral bioavailability in humans is
typically less than 2% due to rapid metabolism, poor intestinal absorption, and first-pass
hepatic clearance [261,262]. Curcumin, in particular, undergoes rapid glucuronidation
and sulfation, which severely limit its systemic availability [263]. Quercetin is similarly
subject to extensive conjugation, with only trace amounts of the aglycone form detectable
in circulation after ingestion [264].

Furthermore, dietary interactions may exacerbate these bioavailability issues. Polyphe-
nols can form insoluble complexes with dietary proteins or fiber, reducing their intestinal
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uptake. Environmental and processing factors, such as pH, light, oxygen exposure, and
temperature, also compromise compound stability, both during food preparation and gas-
trointestinal digestion [265]. Another layer of complexity is introduced by interindividual
variability in gut microbiota composition. Gut microbes play a crucial role in metabolizing
polyphenols into smaller and often more bioactive derivatives—for instance, ellagitannins
into urolithins or daidzein into equol. However, not all individuals possess the microbial
species required for these conversions, leading to variable therapeutic responses [266]. This
metabolic interdependence between host and microbiota underscores the importance of
personalized approaches when considering polyphenol-based interventions for T2DM.

To address these limitations, various formulation strategies have been developed to
enhance the stability and bioefficacy of antioxidant compounds. Nanoparticle carriers,
liposomes, phospholipid complexes (e.g., phytosomes), and co-administration with bioen-
hancers, such as piperine, have shown promise in preclinical and clinical settings [267,268].
These technologies aim to protect sensitive compounds from degradation, improve in-
testinal permeability, prolong systemic circulation time, and facilitate targeted delivery to
tissues of interest. For example, piperine has been demonstrated to increase curcumin’s
bioavailability by up to 2000% by inhibiting hepatic and intestinal glucuronidation [269].
Despite these advances, clinical evidence remains limited and inconsistent. Few studies
have systematically evaluated the pharmacokinetics of improved formulations in diabetic
populations, and standardization of protocols remains a challenge. Additionally, regulatory
hurdles and manufacturing scalability present barriers to the widespread adoption of these
advanced delivery systems.

Overcoming the challenges of poor bioavailability and instability is critical for realiz-
ing the full therapeutic potential of plant antioxidants in T2DM. Without addressing these
pharmacokinetic and physicochemical limitations, even compounds with strong in vitro
efficacy are unlikely to translate into clinically meaningful outcomes. Future research
should prioritize robust pharmacokinetic modeling, including absorption, distribution,
metabolism, and excretion studies, to better understand the behavior of these compounds in
the human body. Additionally, stratification of patient subgroups based on gut microbiota
composition and metabolic phenotype could identify responders and non-responders, en-
abling precision-targeted interventions. The development of scalable, standardized delivery
systems, such as nanoemulsions, polymeric micelles, or bioadhesive hydrogels, represents
a promising strategy to improve intestinal absorption and metabolic stability while en-
suring reproducibility and regulatory compliance. These systems must also demonstrate
safety, biocompatibility, and cost-effectiveness for eventual translation into nutraceutical
or pharmaceutical applications. Moreover, integrating nutrigenomics and metabolomics
with clinical phenotyping can deepen our understanding of how genetic variations and
metabolic status modulate antioxidant efficacy. This systems biology approach may allow
for the formulation of personalized nutrition strategies that align antioxidant selection and
dosing with individual genetic and microbial profiles, thereby optimizing therapeutic out-
comes in T2DM. Ultimately, a multidisciplinary framework combining molecular nutrition,
pharmaceutical technology, microbiome science, and clinical pharmacology will be essential
to bridge the current gap between mechanistic insights and real-world effectiveness of
plant-derived antioxidants in metabolic disease management.

16. Future Directions in Functional Foods and Therapeutics
The future of T2DM management increasingly points toward the use of functional

foods and therapeutic formulations enriched with plant-derived antioxidants. These inter-
ventions aim not only to provide nutritional value but to actively modulate key metabolic
dysfunctions associated with hyperglycemia, insulin resistance, and chronic oxidative
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stress [270]. A key area of innovation involves the integration of advanced delivery sys-
tems to overcome the poor bioavailability of polyphenols. Nanoencapsulation, liposomal
carriers, and biopolymer-based matrices have demonstrated improved gastrointestinal
stability and absorption of antioxidants like curcumin, resveratrol, and epigallocatechin
gallate [271,272]. For example, nanoemulsified curcumin has been shown to increase
plasma levels and enhance glucose uptake in diabetic models [273].

In parallel, the synergistic combination of antioxidants with dietary fibers, probiotics,
or omega-3 fatty acids in food matrices is being explored. These combinations may potenti-
ate metabolic effects by acting on multiple targets and by promoting the gut microbiota’s
ability to biotransform polyphenols into bioactive metabolites [274]. Indeed, functional
foods combining anthocyanins with prebiotic fibers have shown enhanced effects on insulin
sensitivity and microbiota diversity in individuals with impaired glucose metabolism [275].
The emergence of precision nutrition and personalized therapeutic approaches is also
shaping future strategies. Interindividual differences in gut microbiota composition, ge-
netic polymorphisms (e.g., in SIRT1, Nrf2, or GST genes), and metabolic profiles influence
responsiveness to antioxidant interventions [276]. Several clinical studies have demon-
strated that individuals with specific gut microbiota enterotypes respond more favorably
to polyphenol-rich diets in terms of glycemic and lipid control [277].

Furthermore, regulatory harmonization and clinical validation will be necessary to
legitimize functional foods as therapeutic tools. Currently, most polyphenol-enriched prod-
ucts fall under nutraceutical or food supplement categories, limiting their approved health
claims. Rigorous randomized controlled trials, standardized biomarkers (e.g., HbA1c,
HOMA-IR, 8-isoprostanes), and robust manufacturing protocols are needed to support clin-
ical applications [278]. Lastly, long-term cohort and intervention studies must be prioritized
to determine sustained efficacy, optimal dosing, and potential interactions with standard
pharmacological treatments. While many clinical trials report short-term improvements in
oxidative markers and insulin sensitivity, data on long-term outcomes, such as diabetes
remission, cardiovascular risk reduction, or complication prevention, remain scarce [279].

Several strategic directions are currently being explored to enhance the efficacy, ap-
plicability, and personalization of antioxidant-based functional foods in T2DM. These
include the application of nanotechnology for compound delivery, microbiota-responsive
formulations, regulatory standardization for therapeutic claims, and the integration of
nutrigenomic tools for individualized interventions. A summary of these key innovations,
their descriptions, expected benefits, and supporting references is provided in Table 2,
which offers a consolidated overview of the current roadmap guiding future development
in this field.

The evolution of functional foods and therapeutics for T2DM hinges on the conver-
gence of food technology, precision medicine, microbiome science, and regulatory support.
These interdisciplinary pillars provide the foundation for translating promising bioactive
compounds from bench to bedside. Food technology offers tools for enhancing stability,
sensory integration, and bioavailability of antioxidant compounds through advanced en-
capsulation, emulsification, and matrix engineering. Simultaneously, precision medicine
enables the stratification of individuals based on genetic, metabolic, and microbial profiles,
ensuring that interventions are tailored to those most likely to benefit. Moreover, the role of
the gut microbiota is increasingly recognized as a key mediator of polyphenol metabolism
and systemic efficacy, prompting the need to incorporate microbiome-responsive formu-
lations and prebiotic–antioxidant synergies into product design. Regulatory frameworks
must also adapt to the growing scientific evidence supporting the therapeutic utility of
functional foods, providing clear pathways for claim substantiation, quality control, and
post-market surveillance.
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Table 2. Strategic directions for functional foods and antioxidant therapeutics in T2DM.

Strategy/Innovation Description Expected Benefit Reference

Nanoencapsulation of
polyphenols

Use of liposomes, nanoemulsions, or
solid lipid nanoparticles for oral delivery

Improved bioavailability and
stability of antioxidants [271,272]

Functional food matrices with
synergistic components

Formulation of polyphenols with fibers,
omega-3, or probiotics (e.g., synbiotics)

Enhanced metabolic action and
gut microbiota modulation [274,275]

Personalized antioxidant therapy Tailoring interventions based on genetics,
gut microbiota, and metabolic phenotype

Improved individual response
and efficacy [276,277]

Regulatory standardization and
clinical validation

Harmonized biomarkers, health claims
approval, and randomized controlled
trials (RCTs)

Therapeutic legitimacy and
broader clinical integration [278]

Integration with
pharmacologic therapy

Co-administration of functional foods
with drugs like metformin

Potential for synergistic glycemic
and oxidative benefits [272]

Long-term cohort and
intervention studies

Evaluation of functional food efficacy
over months/years in
diverse populations

Insight into sustainability,
adherence, and
real-world outcomes

[279]

Precision nutrition and
nutrigenomics application

Genotype- and microbiome-driven
customization of dietary
antioxidant strategies

Optimal antioxidant selection and
dose per patient [276]

Combination of multiple
polyphenols with
complementary targets

Multi-compound formulations targeting
inflammation, oxidative stress, and
insulin signaling

Amplified metabolic impact
through multitarget modulation [270,273]

Developing tailored, bioavailable, and clinically validated antioxidant-based products
represents a promising strategy to complement conventional diabetes management, reduce
treatment burden, and delay or prevent disease progression. Ultimately, such interventions
may fill a critical gap between dietary guidance and pharmacological therapy, offering
scalable, sustainable, and patient-centered solutions in the long-term care of T2DM. The
integration of these approaches not only enhances therapeutic precision but also aligns
with public health goals aimed at reducing the global burden of metabolic diseases through
preventive and lifestyle-based strategies.

17. Ethical Considerations and Regulatory Implications
As plant-derived antioxidant strategies progress from experimental to clinical and

public health applications, ethical and regulatory frameworks must evolve in parallel. Key
considerations include the following.

• Safety and efficacy standards: Nutraceuticals and functional-food-based interventions
must undergo rigorous testing to demonstrate not only efficacy but also long-term
safety, particularly when targeting vulnerable populations with metabolic disorders.

• Informed consent and transparency: In precision nutrition approaches involving omics
data, individuals must be fully informed about how their biological data will be used,
stored, and interpreted.

• Equitable access: There is a risk that personalized interventions (e.g., microbiome
profiling, metabolomic-guided nutrition) may be available only to higher-income
populations. Ethical implementation should ensure these innovations do not widen
health disparities.

• Data privacy and autonomy: Especially relevant in digital health tools, strict standards
must be applied to protect personal health data and guarantee user autonomy over
dietary or therapeutic recommendations.

• Regulatory harmonization: Coordination between food, medical, and digital health
regulatory bodies is essential to establish consistent approval pathways and avoid
gaps in oversight as these hybrid interventions enter the market.
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18. Conclusions
Plant-derived antioxidants offer a multifaceted approach to the prevention and man-

agement of type 2 diabetes mellitus (T2DM) by acting through mechanisms that target
oxidative stress, inflammation, and insulin resistance. This review has highlighted not
only their molecular and clinical relevance but also key translational challenges, includ-
ing bioavailability limitations, formulation technologies, and microbiome interactions.
Moreover, special populations, such as pregnant women and older adults, present unique
physiological contexts that must be considered in the design of antioxidant-based in-
terventions. The integration of personalized nutrition, advanced delivery systems, and
microbiome-targeted strategies holds promise for enhancing the therapeutic impact of these
compounds. Future research should focus on long-term clinical validation and regulatory
standardization to enable the safe and effective implementation of antioxidant therapies
in diverse populations. An interdisciplinary approach will be essential to translate the
potential of plant-derived antioxidants into practical, patient-centered tools for T2DM care.

In this context, it is essential to consider not only the efficacy of these strategies but also
their developmental maturity and realistic timelines for integration into clinical and dietary
practice. The following Table 3 summarizes the current translational status and estimated
time to practical application for several of the key innovations discussed in this review.

Table 3. Practical relevance and expected implementation horizons.

Strategy/Innovation Current Development
Stage

Estimated Time to
Broad Clinical/
Practical Use

Expected
Implementation
Horizon

Notes

Microbiome-targeted
therapies

Early-stage clinical
trials; functional food
applications

3–5 years Short- to mid-term

Includes
polyphenol–microbiota
interaction studies; high
translational potential

Precision nutrition
(nutrigenomics,
metabolomics)

Pilot programs and
academic research 5–10 years Mid- to long-term

Requires omics integration,
AI tools, and regulatory
support

Nanoencapsulation of
antioxidants

Preclinical and
emerging commercial
products

3–5 years Short- to mid-term
Focused on enhancing
bioavailability and
compound stability

Synergistic antioxidant
combinations

Product formulation
and validation in
progress

2–4 years Short-term
May reach market rapidly
via nutraceutical and food
industry channels

Digital health integration
for antioxidant-based
interventions

Conceptual and pilot
phases 5–8 years Mid-term

Dependent on digital
platforms, mobile tech, and
personalization tools
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