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Electron tunneling through 
double magnetic barriers in Weyl 
semimetals
Xunwu Hu & Fang Cheng

We theoretically investigate the transport in a magnetic/normal/magetic hybrid structure on the surface 
of a Weyl semimetal. We find a directional-dependent tunneling which is sensitive to the magnetic 
field configuration and the electric gate voltage. The momentum filtering behavior becomes more 
significant for two-delta-function-shaped magnetic barriers. There are many Fabry-Pérot resonances in 
the transmission determined by the distance between the two magnetic barriers. The combined effects 
of the magnetic field and the electrostatic potential can enhance the difference in the transmission 
between the parallel and antiparallel magnetization configurations, and consequently lead to a giant 
magnetoresistance.

Topological Weyl semimetals have sparked tremendous recent interest in condensed matter physics1,2. These 
materials host low energy excitations with massless, linear dispersions around nodes, termed the Weyl points, 
as the three-dimensional (3D) analogue of graphene. One of the most distinctive features of the system is the 
coexistence of the topological surface states and the bulk massless Fermion states. 3D Dirac semimetals have been 
realized in Na3Bi3,4, Cd3As2

5–9 and ZrTe5
10,11. The recent theoretical predictions12–14 and experimental discover-

ies15–17 of Weyl semimetals open up an exciting new solid state playground for exploring the physics of anomalous 
quantum field theories. Moreover, due to the high mobility and chiral nature of electrons in Weyl semimetals, 
they are expected to be ideal candidates for transport and tunneling applications. Several transport applications 
such as charge transport18,19, magnetotransport20,21, extremely large magnetoresistance and ultrahigh mobility22 
have been predicted and observed recently.

In this work, we study electron tunneling through two types of magnetic double barriers where we considered 
square-shaped and delta-function-shaped magnetic fields. The square-shaped magnetic fields can be created by 
depositing superconducting strips above the Weyl semimetal in the presence of a magnetic field, neglecting the 
shrinking effect at the edges23. The upper limit of the magnetic barrier strength induced by a uniform magnetic 
field on superconductor pattern is restricted by the critical magnetization of the superconductor material, which 
is in excess of 30 T, as shown in Nb3Sn24. The delta-function-shaped magnetic field is a simplified model for the 
magnetic field profile created by depositing ferromagnetic metallic strips on the surface of a Weyl semimetal with 
the magnetization parallel to the surface. The ferromagnetic strips are electrically isolated from the Weyl semi-
metal through, e.g., a thin oxide layer25,26. The upper limit of the magnetic field strength induced by ferromag-
netic stripes directly depends on the saturation magnetization of the ferromagnetic material. For instance, the 
saturation magnetization of magnetic barrier around 3.75 T has been experimentally achieved, and the transport 
properties under the influence of the resulting magnetic barrier have been investigated in two-dimensional elec-
tron gas structures27. It is experimentally shown that in 3D Dirac semimetals, the Fermi level as well as potential 
barrier height, can be tuned by applying a bias to a gated region or by alkali metal doping28,29.

We investigate theoretically the transmission and conductance for parallel and antiparallel magnetic field 
configurations. We find that the transmission of electrons through the double barrier structures depends sensi-
tively on the incident angles, the Fermi energy, the magnetic fields, and the electric gate voltages. The tunneling 
processes exhibit momentum filtering behavior caused by the inhomogeneous magnetic field. The tunneling 
magnetoresistance in such systems can be tuned significantly by changing the magnetic field and the height of 
the electric potential.

The paper is organized as follows. In Sec. II we present the theory of electron tunneling through magnetic and 
electric double barrier structures. In Sec. III, we show the numerical results and present our discussions. Finally, 
we give a brief conclusion in Sec. IV.
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Methods
We consider a double magnetic barrier with square-shaped or delta-function-shaped magnetic field on the sur-
face of a Weyl semimetal, as shown in Fig. 1. The square-shaped magnetic fields can be created by depositing 
superconducting strips above the Weyl semimetal in the presence of a magnetic field, neglecting the shrinking  
effect at the edges. While the delta-function-shaped magnetic field is a simplified model for the magnetic field 

Figure 1.  The schematic representation of the double magnetic barrier structure on the top surface of a Weyl 
semimetal. The red arrow represents incident wavevector of the Weyl Fermions with angle γ and ϕ.

Figure 2.  (a) The contour plot of the transmission probability through a parallel square-shaped magnetic 
double barrier as a function of the incident angle ϕ and γ, for incident energy EF = 40 meV and a fixed barrier 
width d = 26 nm, distance L = 3d, and magnetic field B = 1 T. (b) The same as panel (a) but for the distance 
L = 9d. (c) Transmission probability as a function of the incident energy EF for a fixed incident angle ϕ = −π/6, 
different incident angle γ and distances between the two magnetic barriers.
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profile created by depositing ferromagnetic metallic strips on the surface of a Weyl semimetal with the magnetiza-
tion parallel to the surface. In all cases, the created relevant magnetic fields are directed perpendicular to the sur-
face of the Weyl semimetal. The low energy Dirac Hamiltonian of the Weyl fermion can be described as follows

H v e Vp A)( ( ) , (1)F σ= ⋅ + +

where vF is the Fermi velocity, and σ represents Pauli matrices, V is the height of the electrostatic barrier. 
B(x) = (0, 0, B). A = (0, Ay, 0) is the vector potential generated by the magnetic metal strips. To investigate the 
transport properties in the bulk system, we consider Weyl electrons near one node and neglect the contribution 
of surface states (and hence Fermi arcs) and intervalley scattering to the conduction. Note that the Zeeman term 
affects the transmission slightly at low magnetic field. Here, we have neglected the Zeeman splitting since the 
band shift is very small and only observable under a very high magnetic field of ≈25 T, as shown experimentally 
in the Weyl semimetal TaP30. The Hamiltonian shown in Eq. 1 describes the dynamics of low energy electrons 

Structure

Ay

Region 1 Region 2 Region 3 Region 4 Region 5

Square-shaped 
magnetic barriers

parallel configuration 0 Bx Bd B(x − L) 2Bd

antiparallel configuration 0 Bx Bd B(2d + L − x) 0

Delta-shaped 
magnetic barriers

parallel configuration 0 Bd 0 Bd 0

antiparallel configuration 0 Bd 0 −Bd 0

Table 1.  The magnitude of the vector potential Ay in different magnetic barrier configurations.

Figure 3.  The same as Fig. 2 but for the antiparallel configuration.
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near one node in Weyl semimetals. Therefore the validity of this approximation is restricted by an energy range 
depends on the full band structure of the material hosting such a Weyl nodes with linear energy dispersion. For 
simplicity, we introduce dimensionless units: lB = [ħ/eB0]1/2, E0 = ħvF/lB, r → lBr, k → k/lB, B(x) → B0B(x), E → E0E, 
the Hamiltonian becomes

=






+ − +

+ + −




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Figure 4.  Transmission probability through a parallel square-shaped magnetic double barrier as a function of 
the incident angle ϕ and γ, for incident energy V3 = 40 meV, incident energy EF = 24 meV. (b) The same as panel 
(a) but for the antiparallel configuration. (c) Transmission probability as a function of the incident energy EF for 
different incident angle with a potential barrier V3 = 40 meV. (d) The same as panel (a) but for the antiparallel 
configuration. The distance is L = 9d = 234 nm.
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where the three components of wavevector can be written as kx = kF cos γ cos ϕ, ky = kF cos γ sin ϕ, kz = kF sin γ 
with the Fermi wavevector k k k kF x y z

2 2 2= + + . By solving the above Hamiltonian, the components of the wave 
vector satisfy the relationship: ( )E V k k A k( ) x y y z

2 2 2 2− = + + + .
In order to understand the effect of the magnetic field configurations on the electron tunneling, we consider 

two different magnetic field profiles, i.e., square-shaped and delta-function-shaped magnetic fields. For a 

Figure 5.  (a) The contour plot of the transmission probability through a parallel delta-function-shaped 
magnetic double barrier as a function of the incident angle ϕ and γ, incident energy EF = 40 meV and barrier 
width d = 26 nm, distance L = 9d. (b) The same as panel (a) but for the barrier width d = 9d.

Figure 6.  The same as Fig. 5 but for antiparallel configuration.
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square-shaped magnetic barrier, the magnetic field is Bz(x) = B[(θ(x − d) − θ(x))/2 + γ(θ(x − 2d − L) − θ(x − d − 
L))/2] with γ = ±1 representing the magnetization configuration, and the vector potential is a linear function in 
the barrier regions. To construct the wave function in each region we utilize the symmetries of the system. The 
momentum py and pz along the interface are good quantum numbers because of the translational invariance along 
the y and z direction. Therefore the wave function can be separated Φ = Ψ +x y x e( , ) ( ) ik y ik zy z , where ky and kz are 
the wave numbers along the y and z direction, respectively. In the free region 1, the vector potential is a constant, 
the corresponding energy E± = ±kF, and the wave function is

Figure 7.  Transmission probability through a parallel delta-function-shaped magnetic double barrier as a 
function of the incident angle ϕ and γ with incident energy EF = 24 meV and distance L = 9d = 234 nm for 
potential barrier V3 = 40 meV. (b) The same as panel (a) but for potential barrier V2 = V4 = V = 40 meV. (c) 
Transmission probability as a function of the potential barrier V3 for a different incident angle with incident 
energy EF = 24 meV and distance L = 9d = 234 nm. The black solid line, red dashed line, green dotted, and blue 
dot-dashed line correspond to ϕ = 0 and γ = 0, ϕ = 0 and γ = π/12, ϕ = −π/6 and γ = 0, ϕ = −π/6 and γ = π/12, 
respectively. (d) The same as panel (c) but for the potential barrier V2 = V4 = V.
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In the barrier region 2, the vector potential is given by A = (0, Bx, 0) and the wave function can be expressed in 
terms of the parabolic cylinder functions Dv,

∑Ψ =


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with the complex coefficients c± and v E V k( )F z
2 2= − − . In regions 3, 4, and 5, the corresponding wave func-

tions can be obtained by repeating a similar procedure. For a delta-shaped magnetic barrier, the magnetic field is 

Figure 8.  The same as Fig. 7 but for antiparallel configuration.
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perpendicular to the surface and given by Bz(x) = B[(δ(x) − δ(x − d))/2 + γ(δ(x − d − L) − δ(x − 2d − L))/2] and 
the vector potential is constant in the barrier regions. The electron wave function for the delta-shaped magnetic 
barrier is similar to that of the square-shaped magnetic barriers obtained above, but with the different vector 
potential Ay. We have shown the values of the vector potential Ay in the different regions for the different mag-
netic barrier configurations in Table 1. Using the scattering-matrix technique, we obtain the transmission proba-
bility. In this work, we adopt the magnetic unit B0 = 1T, the energy unit E0 = 16 meV, and the length unit 
lB = 26 nm.

Results and Discussions
Transmission through double square-shaped magnetic barriers.  First we consider the tunneling 
process through double square-shaped magnetic barriers with parallel configuration. Figure 2 shows angular 
(ϕ, γ) dependence of transmission probability in the case of EF = 40 meV, a magnetic field B = 1 T, the width 
d = 26 nm. The perfect transmission rings are deflected and distorted in the presence of the magnetic field, as 
shown in Fig. 2(a,b). From the contour plot of the transmission as function of the incident angles ϕ and γ, one 
can see clearly the transmitted window of electron tunneling through the magnetic barriers. We find that the 
transmission become asymmetric with respect to the incident angles ϕ and γ, which is induced by the inhomoge-
neous magnetic field. It is interesting to notice that tunneling is forbidden for certain incident angles (ϕ, γ), i.e., 
a wave-vector filtering behavior is found. The total reflection for the parallel configuration stems from the eva-
nescent modes in the outgoing region 5. The boundary of the total reflection region T = 0 can be approximately 
given by the relationship EF cos γ(1 − sin ϕ) = 2Bd. For a fixed incident energy, the transmission declines sharply 

Figure 9.  The magnetoresistance ratio MR as a function of the incident energy EF in the presence of a double 
square-shaped magnetic/electric barrier, for d = 26 nm, L = 3d, B = 1 T, V2 = V4 = 0, V3 = 0. (b) The same as 
panel (a) but for B = 3 T. (c–f) The dependence on the incident energy of the MR in the presence of a double 
delta-function-shaped barrier, for d = 26 nm, L = 3d, (c) B = 1 T, V3 = 0; (d) B = 1 T, V3 = 32 meV; (e) B = 3 T, 
V3 = 0; (f) B = 3 T, V3 = 32 meV.
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and vanishes when the incident angle ϕ (γ) exceeds a critical value ϕc = arcsin (1 − Ay/(EF cos γ)) (γc = arccos (Ay/
(EF(1 – sin ϕ))). This is because the wavevector in the right-side of the barrier become imaginary denoting the 
appearance of evanescent modes. Figure 2(c) shows the transmission as a function of different distances L. For 
a single barrier structure (i.e., L = 0) with γ = 0, there is no oscillating behavior because no quasibound states 
exist between the two barriers. However, here we found oscillating behavior for L = 0 and γ = π/6, because there 
is quasibound states between the two barriers induced by the reflection in the z direction. When L ≠ 0 and γ ≠ 0, 
there is Fabry-Pérot modes formed between the two barriers due to the multiple reflections between the two 
interfaces in the y and z directions, thus the oscillation becomes more pronounced as the distance between the 
two barriers L increases.

Next we discuss the transmission through double square-shaped magnetic barriers with antiparallel configu-
ration. The transmission (see Fig. 3(a,b)) becomes very different from that of the parallel configuration. The total 
reflection for the antiparallel configuration stems from the evanescent modes in the middle region 3. The bound-
ary of the tunneling forbidden region can be approximately given by the relationship EF cos γ(1 − sin ϕ) = Bd. 
Electrons can tunnel through the double barrier structure with the antiparallel configuration even when the 
electron wave vector kx is imaginary, i.e., evanescent modes, in the middle region between the two barriers. It is 
in that the vector potentials are the same on each side of the double barrier, i.e., the antiparallel configuration, the 
outgoing wave is always in the propagating modes. Figure 3(c) shows the transmission as a function of the inci-
dent energy at different distances between two barriers. Notice that there are more pronounced resonant peaks 
caused by the Fabry-Pérot modes formed between the two barriers with increasing distance L than that for the 
parallel configuration case.

It is interesting to see the effect of the electrostatic potential on the perfect transmission and total reflection. In 
Fig. 4, we plot the transmission probability as a function of the incident angles (ϕ, γ) and incident energy EF in case 
of V3 = 40 meV applied in region 3. Figure 4(a,c) for double square-shaped magnetic barriers with parallel configu-
ration, while Fig. 4(b,d) for double square-shaped magnetic barriers with antiparallel configuration, respectively. It 
is interesting to notice that for a fixed ϕ, the tunneling is forbidden for a wider region when the incident angle γ 
increases. In contrast, for a fixed γ, the tunneling is forbidden for a narrower region when the incident angle ϕ 
increases. (see Fig. 4(c,d)) According to the relation γ γ ϕ= − − +k E V E A( ) cos ( cos sin )x F F y

2 2 2 , the wave 
vector kx tends to be imaginary as the incident angle γ increases or ϕ decreases. The total reflection for the parallel 
and antiparallel configuration in the presence of V3 stems from the evanescent modes in the middle region 3 and 
outgoing region 5. When ϕ ≠ 0 and γ ≠ 0, the tunneling is forbidden for the energy satisfying 

( )E V E A E( ) cos sin sin 0F F y F
2 2 2 2γ ϕ γ− − + − ≤ . In the simplest case ϕ = 0 and γ = 0, the tunneling is forbid-

den for the energy EF < V + Ay. Therefore, the transmission probability T = 0 when EF < 56 meV, as shown the black 
solid line in Fig. 4(c). The incident angles γ and ϕ strongly affect the perfect transmission region, and therefore 
provide us with a possible way to control the transmission. We find that there are many transmission peaks at the 
low-energy regime induced by the electrostatic potential for antiparallel configuration (see Fig. 4(b,d)) since the 
low-energy transmission-forbidden region arises from the evanescent modes in the middle region 3. When the 
electrostatic potential V3 is large enough, the evanescent modes in region 3 are turned into the transmission modes. 
Such behavior offers us a possible way to construct an electric switching device.

Transmission through double delta-function-shaped barriers.  Now we consider tunneling through 
the delta-function-shaped magnetic barriers both for parallel and antiparallel configurations. For parallel config-
uration, the transmission spectra is symmetry about angle γ, as shown in Fig. 5. The Hamiltonian possesses a 
symmetry associated with the operation 




TRz yσ , where T is the time-reversal operator, Rz

  is the reflection operator 
about the z axis between the two barriers, and 


σy is one of the Pauli matrices. This symmetry implies the invari-

ance of the transmission with respect to the replacement kz → −kz. The transmission exhibits obvious Fabry-Pérot 
resonant behavior for large positive incident angles which is very different from that for the square-shaped mag-
netic barrier case, where tunneling is totally forbidden for large positive incident angles see Fig. 2. As the barrier 
length d increases, the evanescent modes in the barriers reduce the transmission probability more significantly, 
and thus the resonant peaks in the region with large positive incident angles will disappear as shown in Fig. 5(b).

When we reverse the magnetization direction of the second ferromagnetic strip, the magnetization configura-
tion is easily switched to the antiparallel configuration, as shown in Fig. 6. For this configuration, the vector 
potential is antisymmetric about the center of the whole structure. For antiparallel configuration, the transmis-
sion spectra is symmetry about angles γ and ϕ, which is different from that for parallel configuration. The 
Hamiltonian possesses symmetries associated with the operation TR yσ




  and σ




TRz y, where R  is the reflection oper-

ator about the center between the two barriers. The two symmetries imply the invariance of the transmission with 
respect to the replacement ky → −ky and kz → −kz. The parallel and antiparallel configurations strongly affect the 
perfect transmission region, and therefore provides us with a possible way to control the transmission by simply 
reversing the magnetization configuration of the ferromagnetic strips.

Next we discuss the transmission through a combined electric and delta-function-shaped magnetic double barrier. 
For parallel configuration, the transmission spectra is symmetry about angle γ in the presence of the potential barrier 
V2, V3, V4 (see Fig. 7). Interestingly, one can see that the transmission decreases even to zero as the incident angle 
increases. This is because evanescent modes appear when the incident energy approaches the height of the electric 
barrier, which suppresses the transmission in such incident angle interval. For delta-function-shaped magnetic double 
barrier with parallel configuration, Ay = 0 in the region 3 and 5, therefore the tunneling is forbidden satisfying 

γ ϕ γ+ ≥ −E V Ecos sin sin ( ) /F F
2 2 2 2 2. When apply the potential barrier in the region 3, i. e., V = V3, the transmission 

vanishes when the incident angle ϕ exceeds a critical value ϕ γ= − −E E V Earccos( ( ) )/( cos )c F F F
2

3
2 2 2  (see Fig. 7(a)) 

or (V E E cos sin sinF F3
2 2 2γ ϕ γ∈ − + , γ ϕ γ+ + )E E cos sin sinF F

2 2 2  (see Fig. 7(c)). Applying the potential 
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barrier in the regions 2 and 4, i. e., V = V2 = V4, the total reflection for the parallel configuration stems from the evanes-
cent modes in the middle region 2 and 4 and satisfies the relation ( )E V E A E( ) cos sin sin 0F F y F

2 2 2γ ϕ γ− − + − ≤ . 
For a fixed incident energy, there is strong momentum-filtering behavior and can be tuned by the incident angles, as 
shown in Fig. 7(d).

For antiparallel configuration, the transmission spectra is still symmetry about angle ϕ in the presence of the 
potential barrier V2, V3, V4 (see Fig. 8). We find that there are many transmission peaks at the regime γ ∈ (−90°, 
−45°) induced by the electrostatic potential (see Fig. 8(a)) since the transmission-forbidden region arises from 
the evanescent modes in the middle region 3. When the electrostatic potential V3 is large enough, the evanescent 
modes in region 3 are turned into the transmission modes. According to the relationship 

γ ϕ γ− − + − ≤( )E V E A E( ) cos sin sin 0F F y F
2 2 2 , the transmission peak can become more sharp for some 

incident angles (see Fig. 8(d)).

The magnetoresistance.  Finally, we focus on the magnetoresistance ratio MR = (GP − GAP)/GAP, where the 
subscript P (AP) denotes parallel (antiparallel) configuration. The ballistic conductance is calculated from the 
Landauer-Bütiker formalism, G G TdEdk dk

k

k

k

k
y z0

F

F

F

F∫ ∫ ∫=
−∞

∞

− −
, G0 = e2LyLz/(πh) is taken as the conductance 

unit, Ly, Lz are the sample size along the y and z direction which are much larger than L and d. In Fig. 9, the mag-
netoresistance ratio MR is plotted as a function of the Fermi energy for different heights of the electric and mag-
netic barriers. For a squareshaped double barrier, the magnetoresistance ratio MR is small over the calculated 
energy region as shown in Fig. 9(a,b). This feature is caused by the structure in the transmission discussed above. 
For a delta-function-shaped double barrier, the MRs exhibit significant oscillations and the peaks of MRs are 
corresponding to the peaks (valleys) of GP (GAP) (see Fig. 9(c)–(f)). We also find that a strong magnetic field can 
effectively increase the magnetoresistance MR. Since a large magnetic field results in large imaginary wave vectors 
for the evanescent modes in the barrier region and strongly suppress the transmission probability. Therefore, the 
conductance GAP at the valleys are close to zero and thus significantly increase MR. Note that the applied voltage 
V3 can also effectively increase the magnetoresistance MR. A giant magnetoresistance MR 200 can be achieved 
under the combined effects of the magnetic field and the applied voltage V3, as shown in Fig. 9(f). The electro-
static potential for the same magnetic barrier can shift the transmission gaps, enhance the difference of the trans-
mission between parallel and antiparallel configurations, and thus can be used to adjust the MR efficiently.

Conclusion
In summary, we study theoretically electron transport through planar magnetic barriers on the surface of a Weyl 
semimetal. We find that the electron transmission displays an interesting momentum-filtering feature, which 
can be controlled by tuning the incident angle, the Fermi energy, the magnetic field and the distance between the 
two barriers. The momentum filtering behavior becomes more significant for two-delta-function-shaped mag-
netic barriers. This behavior offers us an efficient way to control the transport and pave a way to construct Weyl 
semimetal-based electronic devices.
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