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Abstract

This study aimed to assess the utility of optic nerve head (ONH) en-face images, captured

with scanning laser ophthalmoscopy (SLO) during standard optical coherence tomography

(OCT) imaging of the posterior segment, and demonstrate the potential of deep learning (DL)

ensemble method that operates in a low data regime to differentiate glaucoma patients from

healthy controls. The two groups of subjects were initially categorized based on a range of

clinical tests including measurements of intraocular pressure, visual fields, OCT derived reti-

nal nerve fiber layer (RNFL) thickness and dilated stereoscopic examination of ONH. 227 SLO

images of 227 subjects (105 glaucoma patients and 122 controls) were used. A new task-

specific convolutional neural network architecture was developed for SLO image-based clas-

sification. To benchmark the results of the proposed method, a range of classifiers were

tested including five machine learning methods to classify glaucoma based on RNFL thick-

ness—a well-known biomarker in glaucoma diagnostics, ensemble classifier based on

inception v3 architecture, and classifiers based on features extracted from the image. The

study shows that cross-validation DL ensemble based on SLO images achieved a good dis-

crimination performance with up to 0.962 of balanced accuracy, outperforming all of the

other tested classifiers.

Introduction

As the world’s population ages, glaucoma is becoming a leading cause of irreversible vision

loss and blindness, with primary open-angle glaucoma (POAG) being the most prevalent form

of it [1]. Until it reaches an advanced stage, glaucoma is an asymptomatic disease, so methods

of early diagnosis are of high importance [2]. Glaucoma diagnosis and management heavily

rely on advanced imaging techniques, which typically image the optic nerve head (ONH) and

surrounding tissue [3]. The appearance of the ONH is usually assessed with a fundus camera,
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but scanning laser ophthalmoscopy (SLO) en-face imaging can also be utilized for differentiating

glaucoma patients from normal subjects with high accuracy. For example, Haleem et al. [4]

classified glaucoma patients based on geometric and non-geometric properties of different

regions of the SLO image, whereas Wollstein et al. [5] used the parameters of optics disk derived

from SLO images to differentiate early glaucoma patients from healthy individuals. Machine

learning techniques have firmly entered the field of ophthalmology [6–9] and the number of

studies showing their potential in glaucoma diagnosing is steadily growing [10–12]. These

algorithms have also been used to differentiate early glaucoma patients from controls [13, 14].

However, most of those techniques focused on classifying glaucoma are based on information

from visual field measurements, fundus camera images, or measurements of retinal nerve fiber

layer (RNFL) thickness. The use of SLO images, which are usually captured during the optical
coherence tomography (OCT) acquisition, for glaucoma classification using deep learning (DL)

methods has not received, until recently, as much attention [15, 16].

DL methods are usually associated with large data volumes [17], where the overall perfor-

mance of a classification system is highly dependent on the size of training data. However, for

many applications within ophthalmology, data may be scarce. There exist methods to deal

with the problem of insufficient sample size [18, 19], which include transfer learning [20], data

augmentation [21], and model architecture modifications such as dropout [22]. Additionally,

ensemble methods have been widely used to stabilize and improve the final model perfor-

mance in the biomedical classification task [23]. The classifiers based on ensemble learning

consist in the integration of multiple base classifiers, i.e., classifiers whose predictions had an

impact on the final result. The goal is to create a model that will outperform all base classifiers

included in its composition, whereas the effectiveness of such a model depends both on the

diversity of its base classifiers [24] and on the proper choice of integration rule.

This study aimed to assess the utility of retinal SLO images to support glaucoma diagnosis

and to design a cross-validation ensemble of DL models that would accurately differentiate

glaucoma patients from healthy controls in a low data regime.

Methods

Subjects and clinical measurements

The study was approved by the Bioethical Committee of the WroclawMedical University (KB–

332/2015) and adhered to the tenets of the Declaration of Helsinki. Informed written consent

to participate in the study was obtained from all subjects.

All subjects provided their medical history and underwent a comprehensive ophthalmic

examination. In particular, Goldmann applanation tonometry, slit lamp examination, and

dilated stereoscopic examination of the optic disc were performed for all subjects. Visual field
(VF) parameters including mean deviation (MD) and pattern standard deviation (PSD) were mea-

sured using standard automated perimetry (Humphrey Field Analyzer II 750; 24–2 Swedish
interactive threshold algorithm; Carl Zeiss Meditec, Inc., Dublin, CA). Additionally, spectral

domain SD-OCT (Spectralis, Heidelberg Engineering GmbH, Heidelberg, Germany) were

acquired, using a circular scanning protocol around the optic nerve head to measure the aver-

age RNFL thickness as well as its mean value in six different ONH sectors, that is temporal-supe-

rior (TS), temporal (T), temporal-inferior (TI), nasal-superior (NS), nasal (N) and nasal-inferior

(NI). The OCT instrument acquires an additional en-face SLO image simultaneously during the

acquisition of the OCT-scan. Those images are used here for classification.

Subjects were excluded if they had a history of ocular surgery within 12 months before the

onset of the study. Patients younger than 40 years old, with intraocular disease (e.g., macular

degeneration, diabetic retinopathy, retinal vein occlusion) or neurological disorders affecting
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visual fields were also excluded from the study. Eyes with spherical equivalent of<−6.0 Diop-

ters (D) or>+ 3.0 D, and cylinder correction of< − 3.0 D or >+ 3.0 D were also excluded.

When both eyes met the inclusion criteria, the eye used for the study was randomly selected.

All the glaucoma patients in this study were clinically categorized as POAG type. POAG was

defined as the persistence presence of glaucomatous optic nerve damage assessed using dilated

stereoscopic examination of ONH (i.e., concentric enlargement of the optic disc, rim thinning,

or notching) with associated visual field defects in the presence of an open-angle. A normal

visual field was defined as the absence of glaucomatous and neurologic field defects. Table 1

contains the group statistics of the clinical examination used to differentiate the two consid-

ered groups of subjects. The classification was performed by an experienced ophthalmologist

(P.K.-B.).

Dataset

A total of 227 SD-OCT SLO images of 227 participants were used in this study. The participants

were selected from consecutive patients who presented at the time of the study at the Outpa-

tient and Glaucoma Clinic at the Department of Ophthalmology, Wroclaw Medical Univer-

sity. The dataset included 122 SLO images of healthy control subjects and 105 images of

glaucoma patients (see S1 Dataset). Additionally, the measurements of RNFL thickness were

considered for comparison. The groups of glaucoma patients and healthy controls represent a

valid sample from the general population. This has been ensured by examining the clinical

parameters (see Table 1) that a trained ophthalmologist used for assigning a subject to a partic-

ular group. Therefore, it is assumed that the corresponding SLO images from those subjects are

also representative of the general population.

Techniques

The dataset in this study contains en-face OCT SLO images. For the image classification task, a

Convolutional Neural Network (CNN) was used, because CNN-based DL algorithms have proven

in recent years to provide state-of-the-art performance for medical image classification tasks

Table 1. Mean values and standard deviations of the clinical parameters for the two considered groups of subjects

together with the result of the Student’s t-test (p-values).

CONTROL GLAUCOMA PATIENTS p
N 122 105 —

Age [years] 65 ± 9 68 ± 9 0.014

IOP [mmHg] 17 ± 3 16 ± 3 0.083

VF MD [dB] −0.38 ± 1.03 −9.78 ± 8.21 <0.001

VF PSD [dB] 1.63 ± 0.41 6.85 ± 4.09 <0.001

RNFLAv [μm] 97 ± 8 62 ± 12 <0.001

RNFL TS [μm] 136 ± 15 78 ± 22 <0.001

RNFL T [μm] 70 ± 10 50 ± 14 <0.001

RNFL TI [μm] 143 ± 18 73 ± 29 <0.001

RNFL NS [μm] 106 ± 22 68 ± 18 <0.001

RNFL N [μm] 73 ± 12 54 ± 15 <0.001

RNFL NI [μm] 109 ± 20 70 ± 22 <0.001

N—size of the group; IOP—intraocular pressure; VF—visual field; MD—mean deviation; PSD—pattern standard

deviation; RNFL—retinal nerve fiber layer; Av—average; TS—temporal-superior; T—temporal; TI—temporal-inferior; NS

—nasal-superior; N—nasal; NI—nasal-inferior.

https://doi.org/10.1371/journal.pone.0252339.t001
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[25]. In ophthalmic applications, this model has already been applied to several image analysis

applications, including retinal layer segmentation [26, 27], cone photoreceptor detection [28]

and attention-based glaucoma detection [29]. DL algorithms generally require a relatively large

amount of data to yield good classification results, which in the case of this study was infeasi-

ble. Thus, this limitation was considered during the initial stages of development.

Further, it was decided to design a task-specific CNN architecture with reduced complexity,

with the aim of having fewer parameters required to train the model. The proposed neural net-

work architecture is shown in Fig 1, with a cropped SLO image of size 156×238 × 1 pixels being

its input. Cropping corresponded to the instrument’s overlayed rectangular area and was per-

formed to focus on the optic nerve head. The architecture consists of three major blocks, each

of them containing 3, 2 and 2 convolution layers respectively, preceded by average pooling

layer and followed by a maximum pooling layer. Following these blocks, there are two fully

connected layers containing 128 and 2 units respectively. Between those layers, there is a drop-

out with a 0.60 rate, which aims to reduce the likelihood of overfitting. The last layer provides

the result of the model, that is, the probability of an image belonging to a given class (healthy

control and glaucoma subject). After every convolutional layer a batch normalization was per-

formed using a Rectified Linear Unit (ReLU) activation function. For the first fully connected

layer ReLU was utilized as activation function. To estimate the probability that a given image

belongs to one of the two classes, the softmax function was used for the last and final layer,

which provides the class with a higher probability selected as a model prediction.

For training purposes, the Adaptive Moment Estimation (Adam) optimizer [30] and binary
cross entropy as the loss function were utilized. The models were trained up to 250 epochs.

During training, the model with the best validation accuracy was saved and used later for test-

ing. That occurred, in general, well before the 250th epoch. The learning rate was set to 0.001.

The Glorot uniform initializer [31] was used for kernel and weights initialization, while the ini-

tial bias was set to zero. The software environment that was used for experimental evaluation

consists of Keras 2.2.5 [32] with Tensorflow backend [33], Scikit-learn 0.20.3 [34] in Python

3.7.3.

To benchmark the proposed method performance with those of other networks, a modified

inception v3 architecture [35] was also implemented. The original network, pre-trained on

Imagenet, was used for the experiment, and the fully connected layers were removed, replacing

them with two smaller fully connected layers of sizes 128 and 2, respectively. The training pro-

cedure, which includes the whole model, was identical to that of the custom architecture. The

modification was introduced to improve the performance of the preliminary experiments on

the original architecture.

Additionally to the DL methods a range of machine learning techniques were tested. This

helps to assess the proposed whole-picture approach using DL, and its effectiveness in automat-

ically extracting features for image classification versus the traditional machine learning that

requires manual feature extraction methods. After extracting the features such as parameters

obtained from Principal Component Analysis (PCA) and gray-level co-occurrence matrix

(GLCM), a Support Vector Machine (SVM) was used as a classifier.

Given that information on structural data (thickness) is commonly used to support glau-

coma diagnosis, additional classifiers based on RNFL thickness values measured in six different

sectors were trained. Hence, this analysis provides an extra layer of comparison for the pro-

posed model. For this purpose, five supervised learning methods including Multilayer Percep-
tron (MLP), k-Nearest Neighbors classifier (KNN), SVM, Classification and Regression Trees (CART)

and Gaussian Naive Bayes (GNB) were utilized.

The code used in the experiments is located on the Github platform and all the data used is

available upon request (https://github.com/dsulot/slo_classification).
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Fig 1. An overview of the classifier architecture. F indicates the number of filters and ReLu indicates the rectified

linear unit.

https://doi.org/10.1371/journal.pone.0252339.g001
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Preprocessing of images

An original scan from OCT Spectralis contains both the SLO image of size 496 by 496 pixels,

which provides the en-face 30˚-view of ONH, and the cross-sectional OCT scans, which were not

used for this study. A region of interest (ROI) centered on the ONH and of size of 156 × 238 × 1

pixels was used for analysis. An example of such SLO image is shown in Fig 1. The image grey

scale intensity within the ROI was normalized between 0 and 1.

Design of experiments

Because of limited data, it was decided to use data augmentation techniques for training pur-

poses. Image transformations facilitate creating more training samples, prevent model overfit-

ting and improve final accuracy. On observation of the image content, it was decided to use

the following transformations: 1) horizontal/vertical flip, 2) shift (± 0.15 fraction of the total

width/height), and 3) image rotation (± 50-degree range for random rotations). The parame-

ters for each of these transformations were selected experimentally.

To check the stability of the proposed model and the model based on modified inception v3

architecture, k-fold cross-validation was utilized. The experiment was performed and con-

ducted twice for different k values: 5 and 10. Within folds, to increase classification accuracy

and stability, the ensemble of classifiers was created. The cross-validation ensemble was created

from k − 1 classifiers trained on objects from train fold split into training and validation parts.

Because each of the models was trained on a slightly different dataset (i.e., a different part of

the training set was used to train and validate), they were able to establish different features to

classify the images. An example scheme of a 5-fold cross-validation ensemble is presented in Fig

2. The cross-validation protocol was also used for the other methods, including the RNFL thick-

ness classifier and the classifier learned on the features extracted from images.

Finally, the effect of two types of classifier combination techniques with and without

weighting was tested, including majority voting and support accumulation [36]. In a weighted

Fig 2. The k-fold cross-validation ensemble operation diagram for k = 5.

https://doi.org/10.1371/journal.pone.0252339.g002
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approach, each classifier is weighted according to its performance that is calculated based on

the validation dataset. The balanced accuracy score was used to evaluate the performance of the

model and was defined as the mean between sensitivity and specificity [37].Additionally, for

all results, Wilcoxon test [38] was performed to assess whether the obtained results are statisti-

cally significantly different from each other.

Experimental evaluation

RNFL thickness-based classifiers

The results of glaucoma classification based on the RNFL thickness are considered because they

represent one of the essential biomarkers in clinical diagnosis, whereas the information

extracted from the SLO images has a supplementary character, which is currently not utilized in

the clinical practice. The scores obtained from the five considered standard classifiers based on

RNFL thickness are presented in Table 2. It is evident that, in this case, MLP achieved the worst

results, while the rest of the classifiers achieved similar balanced accuracy around 0.88. All of

the considered methods are characterized by a relatively high standard deviation.

Assessing the efficacy of image features

In recent years, DL methods have become the standard for image classification, yet machine

learning methods (features extracted from image + classifiers) have shown to also provide a

good image classification performance. Therefore, it was decided to check the performance

achieved by the traditional machine learning algorithm. Table 3 shows the results of SVM classi-

fier trained using image features and trained on the whole image. Four techniques were con-

sidered: based on the vector created by averaging the image over columns and rows, the

Table 2. Mean values and standard deviations of balanced accuracy across the five considered machine learning algorithms based on RNFL thickness. The number

below the balanced accuracy metric, if any, indicates which model number obtained better and statistically significantly different results (Wilcoxon test, α = 0.05).

k MLP KNN SVC DTC GNB

1 2 3 4 5

5 0.721 ± 0.063 0.886 ± 0.065 0.880 ± 0.073 0.861 ± 0.058 0.886 ± 0.065

— 1 1 1 1

10 0.749 ± 0.104 0.881 ± 0.086 0.894 ± 0.093 0.913 ± 0.075 0.888 ± 0.083

— 1 1 1 1

MLP—multilayer perceptron, KNN—k-nearest neighbors classifier, SVM—support vector machine,

CART—Classification and regression trees, GNB—Gaussian naive Bayes

https://doi.org/10.1371/journal.pone.0252339.t002

Table 3. Mean values and standard deviations of balanced accuracy across the five considered techniques: Classifier based on whole image as a vector, classifier

based on GLCM parameters, classifier based on averaged image over columns and rows, classifier based on PCA results from an image, and classifier based on the com-

bination of the PCA results and the GLCM parameters. The number below the balanced accuracy metric, if any, indicates which model number obtained better and statisti-

cally significantly different results (Wilcoxon test, α = 0.05).

k WHOLE IMAGE AVERAGED IMAGE GLCM PCA GLCM WITH PCA

1 2 3 4 5

5 0.770 ± 0.047 0.734 ± 0.088 0.694 ± 0.108 0.768 ± 0.047 0.786 ± 0.043

— — — — —

10 0.777 ± 0.083 0.755 ± 0.098 0.695 ± 0.119 0.760 ± 0.067 0.770 ± 0.074

— — — — —

https://doi.org/10.1371/journal.pone.0252339.t003
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parameters calculated from GLCM, the results from PCA, and the combination of GLCM and PCA.

After preliminary experiments, contrast and dissimilarity were used for further analysis from

the available parameters calculated based on GLCM. For the PCA method, 99% of the explained

variance was used (the image was initially flattened into a vector).The results indicate that this

approach could obtain a balance accuracy metric up to 0.786 with the use of combined param-

eters from GLCM and PCA, which overall is inferior to the metrics from the RNFL thickness classi-

fier. Within the considered techniques, there are no statistically significant differences in the

results.

Assessing the potential of well-known, pre-trained architecture

In this experiment, it was decided to check not only the effect of well-known, pre-trained CNN

architecture but also further its connection to ensemble learning. The results from a 5 and

10-fold cross-validation ensemble using the modified inception v3 architecture, as well as the

results from the single inception v3 model, are presented in Table 4. The preliminary experi-

ments have shown that a fine-tuned model on SLO images for 10 epochs provided poor perfor-

mance (0.492 ± 0.017 for a single model). Because of that, all models were fine-tuned for 250

epochs, like the models with custom architectures. As anticipated, the experiments indicate

that ensemble learning improves the classification quality for each type of combination tech-

nique, providing statistically significant better metrics in the results. The obtained results show

that for the modified, well-known architecture with transfer and ensemble learning, the model

can classify glaucoma with a balanced accuracy of 0.945 based on SLO images only.

SLO-based classifier

Table 5 presents the overall classification performance of the considered DL methods for SLO

images using the custom CNN architecture. The mean value and the standard deviation of

Table 4. Mean values and standard deviations of balanced accuracy across different DL approaches based on SLO images using modified inception v3 architecture.

The number below the balanced accuracy metric, if any, indicates which model number obtained better and statistically significantly different results (Wilcoxon test, α =

0.05).

SINGLE CNN MODEL ENSEMBLE METHODS

k MAJORITY VOTING SUPPORT ACCUMULATION

REGULAR WEIGHTED REGULAR WEIGHTED

1 2 3 4 5

5 0.909 ± 0.044 0.945 ± 0.042 0.926 ± 0.055 0.930 ± 0.050 0.930 ± 0.050

— — — — —

10 0.877 ± 0.058 0.920 ± 0.050 0.920 ± 0.050 0.920 ± 0.050 0.920 ± 0.050

— 1 1 1 1

https://doi.org/10.1371/journal.pone.0252339.t004

Table 5. Mean values and standard deviations of balanced accuracy across different DL approaches based on SLO images using task-specific architecture. The number

below the balanced accuracy metric, if any, indicates which model number obtained better and statistically significantly different results (Wilcoxon test, α = 0.05).

SINGLE CNN MODEL ENSEMBLE METHODS

k MAJORITY VOTING SUPPORT ACCUMULATION

REGULAR WEIGHTED REGULAR WEIGHTED

1 2 3 4 5

5 0.905 ± 0.023 0.962 ± 0.016 0.930 ± 0.028 0.931 ± 0.015 0.931 ± 0.015

— 1, 4, 5 — — —

10 0.893 ± 0.076 0.930 ± 0.070 0.930 ± 0.070 0.930 ± 0.070 0.930 ± 0.070

— — — — —

https://doi.org/10.1371/journal.pone.0252339.t005
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balanced accuracy are given for the individual single CNN models (to contrast those against the

proposed ensemble model) as well as for classifier ensemble with different combination tech-

niques. In each case, the classifier ensemble achieved better results than those of the single

model. The ensemble classifier combined by majority voting achieved statistically significantly

better results than those of the individual model and ensemble classifiers based on support

accumulation. Overall, the results of classifier ensemble using a 5-fold cross-validation reached

only a marginally superior balanced accuracy than that using a 10-fold one. However, the

5-fold cross-validation showed a better (smaller) standard deviation.

Assessing the accuracy metrics, it is evident that information contained in the relatively

low-resolution SLO images can be successfully used for supporting glaucoma diagnosis. The DL

methods reached accuracy of 0.962. The weighted ensemble models achieved almost identical

results to those by regular models indicating that using this approach has no particular advan-

tage, at least for the considered set of SLO images. Additionally, Table 6 shows the mean values

of the performance characteristics calculated across the folds obtained from the confusion

matrix for all presented models together with the resulting sensitivity and specificity. It is evi-

dent that all ensemble models achieve high performance levels.

While comparing the results using custom architecture and the pre-trained, modified

inception v3 architecture, it can be seen that for relatively small data sets, creating a compact,

tailored architecture can be sufficient to achieve high classification accuracy and to reduce the

time of experiments by using a smaller model that is faster to train. In each case, the classifier

ensemble achieved better results with the task-specific architecture than with the modified,

pre-trained well-known inception v3.

Conclusion

In this study, the development of an ensemble of CNN models to classify en-face non-structural

SLO images into two different categories (glaucoma patients and healthy control subjects) were

proposed. Despite the relatively low data regime and, consequently, the relatively small dataset

to train the model, the results demonstrate that separation of the two considered groups could

be performed with high accuracy using cross-validation ensemble of DL models (balanced

accuracy up to 0.962).

Given the results presented in this paper, it is evident that the SLO image contains valuable

clinical information. Thus, this imaging modality combined with DL methods can support

Table 6. Mean values of the performance characteristics across different DL approaches based on SLO images using task-specific architecture.

k METHOD TN FP FN TP SEN SPE

5 SINGLE CNN MODEL 21.6 2.8 1.6 19.4 0.924 0.885

MV REGULAR 22.7 1.7 0.0 21.0 1.000 0.930

WEIGHTED 22.6 1.8 1.4 19.6 0.933 0.926

SA REGULAR 22.4 2.0 1.2 19.8 0.943 0.918

WEIGHTED 22.4 2.0 1.2 19.8 0.943 0.918

10 SINGLE CNN MODEL 11.0 1.2 1.2 9.3 0.886 0.902

MV REGULAR 11.2 1.0 0.6 9.9 0.943 0.918

WEIGHTED 11.2 1.0 0.6 9.9 0.943 0.918

SA REGULAR 11.2 1.0 0.6 9.9 0.943 0.918

WEIGHTED 11.2 1.0 0.6 9.9 0.943 0.918

TN—true negative, FP—false positive, FN—false negative, TP—true positive, SEN—sensitivity, SPE—specificity,

MV—majority voting, SA—support accumulation.

https://doi.org/10.1371/journal.pone.0252339.t006
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glaucoma diagnosis. Additionally, it is worth noting that for our dataset the classifiers based

on RNFL thickness show an inferior performance. The thickness data is extracted from a single

circular B-scan around the ONH that may not be detailed enough to capture the structural

changes in this cohort of glaucoma subjects. While comparing the traditional machine learn-

ing methods with the DL techniques, it is evident that ML method, as expected, showed an infe-

rior performance to that of the proposed DL method. Regrading the DL solution, the findings

demonstrate it was beneficial to develop a customized network architecture for this problem.

The combination of SLO (non-structural) and OCT derived thickness data (structural) in a

multi-modal DL approach should be considered in the future to further improve classification

accuracy.

Given the limited dataset size, it is expected that by increasing it in future studies, the classi-

fication performance may be further improved. One of the limitations of working in a small

data regime is a potential overfitting. Every effort has been made to prevent this, among other

things, by using dropout layers and augmentation as well as by applying cross-validation

which primarily shows that the results are repeatable at a similar level regardless of the test and

training parts. The results for 5 and 10-fold cross-validation do not substantially vary. Addi-

tionally, generative adversarial methods to generate synthetic SLO images can be used for more

complex data augmentation purposes and improvement of model performance [39]. They will

be explored in the future. It is worth noting that the SLO images used in this study are captured

as part of a standard OCT scan. These en-face images are commonly used to check for measure-

ment alignment within the retina or to track thickness changes in the follow-up studies.

Although the SLO image is embedded in OCT, it is not normally used by clinicians for patient

screening. However, several studies have shown the potential of SLO imaging for glaucoma

diagnosis, particularly for differentiating glaucoma patients from normal subjects [4, 5]. This

study supports such developments with matching or increasing classification accuracy. Adding

that the use of a smaller, task-specific architecture can be beneficial for classifying small data

sets.

Finally, this study shows that DL methods based on an ensemble of classifiers can provide

balanced accuracy to discriminate ONH SLO images of healthy and glaucoma patients, even in

the low data regime. Given that this imaging modality is normally captured along with OCT

images, it can be relatively easily utilized for supporting glaucoma detection. Hence, ONH SLO

images have the clinical utility to support glaucoma detection and management.
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