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Abstract: Air pollution has been a long-term problem, especially in urban areas, that eventually
accelerates the formation of acid rain (AR), but recently it has emerged as a serious environmental
issue worldwide owing to industrial and economic growth, and it is also considered a major abiotic
stress to agriculture. Evidence showed that AR exerts harmful effects in plants, especially on growth,
photosynthetic activities, antioxidant activities and molecular changes. Effectiveness of several
bio-regulators has been tested so far to arbitrate various physiological, biochemical and molecular
processes in plants under different diverse sorts of environmental stresses. In the current review,
we showed that silicon (tetravalent metalloid and semi-conductor), glutathione (free thiol tripeptide)
and melatonin (an indoleamine low molecular weight molecule) act as influential growth regulators,
bio-stimulators and antioxidants, which improve plant growth potential, photosynthesis spontaneity,
redox-balance and the antioxidant defense system through quenching of reactive oxygen species
(ROS) directly and/or indirectly under AR stress conditions. However, earlier research findings,
together with current progresses, would facilitate the future research advancements as well as the
adoption of new approaches in attenuating the consequence of AR stress on crops, and might have
prospective repercussions in escalating crop farming where AR is a restraining factor.

Keywords: acid rain; oxidative stress; antioxidant activity; silicon; glutathione; melatonin

1. Introduction

Societies have been using numerous natural means for their existence since the begin-
ning of civilization. By using many of the earth’s energy sources, people have made their
lives easier. Contrarily, it has created pollution due to the released hazardous materials to
the environment. Fossil fuel combustion from vehicles, industrial flourish and urbanization
have increased the concentration of fumy and particulate impurities in the atmosphere,
which causes air pollution [1]. Acid rain (AR) occurs due to intensive air pollution and
it has become a common phenomenon worldwide, especially in Europe, East Asia and
North America [2]. In China, AR has been documented as one of the major environmental
pollution factors in recent years owing to the increasing commercial development [3,4].
The dissemination of AR was found to be increased in China since the 1970s and the occur-
rence of AR has predominantly been reported in Southern China. It was reported that only
11 provinces of South China experienced the loss of ecological benefits of more than US$2.4
billion annually because of AR [5]. Therefore, the soil of a vast area in these parts has been
found to be acidified and thereby major ecosystems are also in a vulnerable condition [4].
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Robert Angus Smith was a pharmacist of Manchester, England, who observed high
levels of acidity in rain water over industrial zones of England in the year of 1852 and
discovered the phenomenon of AR [6]. In contrast, he observed lower acidity levels in rain
water of slightly polluted areas, particularly near the coast [7]. Until the 1950s, his work
was not able to arrest public attention. But, when biologists reported a drastic drop in
the fish population of the southern Norway lakes as well as harmful effects on vegetation
due to acidic rain water, scientists began to focus on the details of AR, like the way of its
formation, nature and possible intensity of occurrence, and its impact on the earth [7].

Currently, AR is considered as a potential threat to the agriculture sector. Scientists
piloted their researches through simulated acid rains (SAR) that may change the growth,
development, physiological and molecular activities of plants, as well as a decline in the
output [8]. AR impedes the basic plant growth indicators like plant height, leaf number,
diameter of stem and shoot and root fresh biomass, implying that SAR stress in plants
causes reduced plant growth and development [9–11]. In addition, AR hampers the photo-
synthetic activity of plants and thus, decreases the photosynthetic rate. Besides, the level
of alteration in plant photosynthetic activities because of AR condition varied among
plant species and with the level of stress [12,13]. Basically, AR deposition affects the ultra-
structure of chloroplast and leaf plasma membrane, which result in lower photosynthetic
activity and degradation of chlorophyll [14]. Ultimately, AR stress causes the accumu-
lation of reactive oxygen species (ROS) and melondialdehyde (MDA) contents in plant
cells [8,12,13]. It was observed in different crops that the antioxidant defense system was
strengthened in response to moderate AR stress conditions to scavenge ROS and reduce
oxidative injury, but the ROS detoxifying ability decline in severe stress conditions might
be due to the changes in metabolic status or their biosynthesis [8]. Furthermore, AR causes
the alternation in the differentially expressed genes and transcriptional factors [15]. In the
past decades, the mechanisms of plant response to AR stress were very briefly elucidated
in tomato and research on AR stress mitigation processes were not done in tomato.

It has been studied that different bioactive compounds such as silicon, glutathione and
melatonin can improve the abiotic stress tolerance, including AR stress in plants [16–18].
Silicon is the second richest element in the soil and acts as a useful component for higher
plants [19]. It has been established that silicon can improve plant tolerance against different
abiotic stresses including salinity, drought, metal toxicity, etc., and biotic stresses including
pathogens and insects [19–23].

Similarly, glutathione is considered one of the major non-protein thiol bioactive water-
soluble compounds (Phytochelatin) in plant cells and plays diverse biochemical roles in
plants to adapt to abiotic stresses through ROS scavenging directly and/or activating
different antioxidant compounds [24,25]. The phytochelatin also plays a vital role in pro-
tecting cellular functions through different mechanisms and metal/metalloid homeostasis
by performing their chelation and/or detoxification [26]. In addition, glutathione plays
a vital role in growth, development, photosynthetic activity, expression of differential
genes and activation of protein by means of its diverse properties under abiotic stress
conditions [17,24,25,27].

On the other hand, melatonin (N-acetyl-5-methoxytryptamine) is a low molecular
weight natural molecule which is present in living organisms, spreading from mammals to
bacteria [28]. It is well-reported that melatonin has important positive functions in animal
and plant physiology as well as in various human processes [29–32]. The pleiotropic
biological activities of melatonin in living organisms are arbitrated by membrane receptors
and nuclear receptors [33,34]. Moreover, melatonin receptors work independently [35],
and their bioactive metabolites affect the interactions of melatonin with ROS [36].

As it is amphiphilic in nature, melatonin can easily infiltrate the cell membrane
and dispense to the cytosol, the nucleus and mitochondria [37]. In fact, melatonin plays
a crucial role in the non-receptor-mediated activities such as quenching ROS, and enhancing
antioxidant capacity, protecting living cells from oxidative injury [38–40]. Consequently,
the formation and absorption of ROS are the elementary processes related to cellular
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biology and physiopathology. Thereby, it is anticipated that the principal role of melatonin
in living organisms is to strengthen the antioxidant system and act as a front-line defense
against any adverse environment [41].

In the current review, emphasis has been given on the systematic and deep exploration
of the recent advances in research of AR stress mitigation in plants by the supplementation
of different bioactive compounds like silicon, glutathione and melatonin. Notably, the mech-
anisms of bioactive compound-mediated AR stress tolerance in plants have gradually been
exposed. Therefore, the effects of AR on the photosynthesis potential, metabolic mecha-
nism of ROS accumulation and mechanism of AR stress tolerance-related gene expression
in plants have been summarized. However, based on the previous and current research
outputs, the detailed impact of exogenous silicon, glutathione and melatonin on plant
metabolic processes underlying the AR stress tolerance mechanism has been elucidated,
which would be perceptive and supportive for the future research in AR stress amelioration
using the studied bioactive compounds as well as might pave the way for attempting new
compounds in different plants.

2. Impacts of Acid Rain on the Photosynthesis Potential in Plants

Photosynthesis is a fundamental physio-morphological process to sustain plant life
activities, including growth and development, and this process helps in the synthesis of
organic composites by the usage of light energy in plants [17,42]. Photosynthetic pigments
like chlorophyll and carotenoids are vital for photosynthesis, which is essential for the
growth and development of plants, and these are the penetrating signs to observe the
harmful impacts of different environmental hazards on germination, seedling growth,
leaf structure, health and function [43–45]. Chlorophyll converts carbon-dioxide and water
into biochemical energy like carbohydrates and oxygen by using light energy [46]. Basically,
the chlorophyll content in plants indicates the effectiveness of photosynthesis, and the
increased ROS accumulation in plants under environmental stress conditions triggers a
significant decline of chlorophyll content in plant leaves because of its fragile nature [47].
Contrarily, carotenoids act as a safeguard for the photosynthetic apparatus by quenching
ROS through the xanthophyll cycle under biotic and abiotic stress conditions [48].

Currently, it has been observed in several experiments that chlorophyll concentration
as well as photosynthesis in tomato plant are severely affected by environmental stresses,
including high temperature, low temperature, salinity, alkalinity, drought, metal toxicity
and others [49–54]. AR is also considered a major abiotic hazard due to its hostile influence
on bio-energetic advancement of photosynthesis [55,56]. Previous research reported that
the chlorophyll content significantly declined due to AR in tomatoes [57] and the trend
of declination was associated with the extent of AR stress and plant species [58]. The au-
thors observed that the lessening of chlorophyll a and chlorophyll b content was higher at
pH 2.5 of AR compared to pH 3.5 of AR in leaves of two different types of tomato cultivar,
namely Micro-Tom as a determinate type and Red Rain as an indeterminate type. Moreover,
the degradation of chlorophyll concentration is a distinctive indicator of leaf senescence,
which causes yellowing of leaves in tomato plant [58]. It has been stated that chlorophyll
loss is accompanied with the upregulation of chlorophyll degradation genes, for example
SGR1 and PAO [59,60]. On the other hand, carotenoid contents in tomato leaves decrease
markedly under AR stress and the decrease level depends on pH level of AR water [58].
The results indicate that AR, having a higher acidity level, causes a higher amount of light
absorbance, which releases maximum heat, resulting in lower usage of light energy and
damage to photosynthesis pigments [44]. Therefore, the growth, development and sur-
vival of plants depend on functional photosynthesis apparatus, which are fundamentally
hampered by AR stress.

Chlorophyll fluorescence is certainly affected by abiotic stresses and commonly used
as a sensitive indicator to observe the photosynthetic status of plants [61]. The measurement
of chlorophyll fluorescence is considered as a rapid, prominent and reliable technique to
evaluate photosynthetic activities in any stressed plant [43,62]. The measurements of the
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primary photosystem II (PSII) are observed as the value of the Fo (minimal fluorescence
level when plastoquinone electron acceptor pool, Qa, is fully oxidized) and the ratio of Fv
and Fm (maximum quantum efficiency of photosystem-II), which are primarily sensitive
to environmental stress conditions [10,58]. AR in tomato seedlings increases Fo value and
decreases Fv/Fm ratio, which indicate that AR stress can knock down the photochemical
efficiency of PSII photosynthetic apparatus [57,58]. Similarly, AR decreased the efficiency
of photosystem II in different crops, like maize and amaranth seedlings [43]. The possible
reason was that the high acidity level of AR water can damage the photosynthetic pigments
and injure the assimilation tissues.

In addition, photosynthetic pigments in plants may be degraded under AR stress
because of the disruption of chloroplasts and lowering of water potential in the cells,
which further lead to closure of stomata and lower CO2 assimilation, subsequently re-
sulting in introverted cell division [17,63]. In Figure 1, the ultrastructure of a mesophyll
cell and chloroplast in the midrib of tomato leaves, observed by transmission electron
microscopy (TEM), showed asymmetrical size and shape of chloroplasts, starch grana and a
recognizable cell wall without the perfect shape of a cell under the AR stress condition [57].
Likewise, the distorted lamellar structure of chloroplasts and the dwindling chloroplasts
collapsed with imperfect thylakoid structure were found in tomato leaf ultrastructure after
AR treatment [57]. The perfect starch grana, thylakoids and lamellar structure in leaves
directed to development of photosynthetic pigments and enhancement of light energy
absorptions and transformation of light energy capacity [16]. AR stress condition with
lower pH level disrupts the chloroplast structure and thylakoids, and sometimes the starch
grana disappears, which might block the photosynthetic transport in leaves and ultimately
inhibits photosynthesis in plants [9,16].
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Figure 1. Ultra-structures of mesophyll cells of the middle part of midrib of the tomato leaf through transmission electron
microscopy (TEM). (A,B) figures show TEM structure of whole leaf mesophyll cell of control and acid rain (AR)-stressed
(AR-ST) tomato leaf, respectively. (C,D) figures show a relatively low magnified view of mesophyll cell of control (Con) and
AR-stressed (AR-ST) tomato leaf, respectively. CP, Chloroplast; CW, Cell wall; Thy, Thylakoids; Sg, Starch grana [57].
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3. Reactive Oxygen Species (ROS) Stress and Its Metabolic Mechanism

Plants are immobile in nature, but when any plant faces any adverse environmental
condition, they can transform their own physiological status to adapt to an unfavorable
environment. In any plant exposed to a harsh growing condition, a rapid and significant
disparity ascends within the plant cells to survive. Plants in any stress condition result in
the production of huge extents of ROS in mitochondria, chloroplasts and peroxisomes [64].
ROS accumulation can cause abnormalities to these organelles [65], by oxidizing proteins,
lipids and nucleic acids [66]. Hydrogen peroxide (H2O2) acts as one of the utmost active,
deadly and damaging ROS. Hydrogen peroxide performs dual role in plants. H2O2 at low
concentrations acts as a signaling molecule, boosting tolerance to any stresses, whereas,
at high concentrations, it leads to plant cell death due to oxidative damage [67]. It has been
reported that a high concentration of H2O2 in the plant cells often causes oxidative stress,
which finally breaks the antioxidant level, resulting in leaf senescence and sometimes
death [44,61]. It has universally been stated that AR with high concentration of acidity
markedly accelerates the accumulation of ROS by generating more H2O2 [8,17]. Similarly,
AR stress causes enhanced production of H2O2 in leaves of plants, which is linked to the
acidity extent of AR water [57,58].

On the other hand, due to accumulation of excess ROS and resultant redox imbalance,
lipids peroxidation, the damaging process occurs inevitably in every living cell. Some-
times, membrane damage is considered as a sole index to evaluate the extent of lipid
destruction under various environmental stresses. It was established that during lipid
peroxidation, products are formed from polyunsaturated precursors, including small hy-
drocarbon fragments like ketones and MDA [68]. MDA acts as a distinctive constituent of
reactive carbonyl species produced as a result of lipid peroxidation, and it is considered as
a bio-indicator of free radical-catalyzed peroxidation [69,70]. This MDA forms colored thio-
barbituric acid-reactive substances (TBARS) by reacting with thiobarbituric acid (TBA) [71].
Lipid peroxidation (MDA) occurs in both cellular and organelle membranes when the
threshold limit of ROS is exceeded. As a result, the produced MDA not only exerts a
direct effect on normal cellular function, but also aggravates the oxidative injury through
the function of lipid-derived radicals [72]. AR stress can encourage membrane injury,
and increase permeability of membrane and the buildup of free radicals in plants [61].
Several experiments have been performed, observing the alteration of MDA concentration
under AR stress conditions in leaves of different plants, including Arabidopsis [73], soy-
bean [74], rice [75] and Horsfieldia hainanensis [76]. Likewise, it was reported that tomato
seedlings exposed to AR considerably increased the accumulation of MDA [57,58].

Therefore, diverse bio-regulators are stimulated in the amendment to the adverse envi-
ronment to boost the predominant competences of bioremediation. Notably, plants activate
their antioxidant defense system to save themselves from the injurious impacts of ROS
in AR stress conditions, alike to other harsh environments [12,13]. In addition, both the
enzymatic and non-enzymatic antioxidant compounds act as an antioxidant system to bal-
ance ROS and cell membrane stability in stress conditions [77]. The superoxide dismutase
(SOD) is plentiful in most of the aerobic organisms and all subcellular compartments, and is
considered as a very effective intracellular enzymatic antioxidant which is susceptible to
ROS-intervened oxidative stress in different environmental stress [44,61]. Tomato plant
exposed to AR stress changes the activity of SOD. Moderate AR with pH 3.5 or more may
increase the activity of SOD in tomato seedlings, but severe AR conditions having pH 2.5
might break the SOD activity power in tomato plants [57,58]. Similarly, ascorbate peroxide
(APx) is assumed to perform a crucial role in protecting cells in higher plants and other
organisms through quenching ROS under adverse environments. APx is involved in ROS
detoxification in water–water and ascorbate–glutathione cycles, and also in making use of
ascorbate as the electron donor [78]. It was observed that the expression of APx changed
markedly under AR stress conditions in leaves of tomato plants, where the rate of alter-
ation differed with the acidity levels of AR water [57,58]. APx can be differentiated from
peroxidase (POD) in plants in terms of variances in sequences and physiological activities.
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POD transforms to indole-3-acetic acid (IAA) and plays a role in lignin biosynthesis and in
defense against different stresses via overriding hydrogen peroxide. Peroxidase desires
aromatic electron donors, for example guaiacol and pyragallol, which typically oxidize
ascorbate at about 1% the rate of guaiacol [79]. The peroxidase activity in plants noticeably
depends on plant species and stress condition. Several researchers observed that POD
activity in plants significantly increased with AR treatment compared to normal condi-
tion [8,12]. Similar to other plants, AR treatment increased POD activity in tomato plants,
and the rate of POD activity enhancement depends on plant species and acidity level in
AR water [57,58]. In addition, catalase (CAT) is tetrameric heme comprising antioxidant
enzymes having the capacity to convert H2O2 into H2O and O2. CAT plays a vital role in
detoxifying ROS under any abiotic stress conditions [68]. Like other antioxidant enzymes,
CAT activity was also found to be increased in tomato seedlings under AR stress conditions
depending on the species and level of pH in AR water [57,58].

On the other hand, there are some important non-enzymatic enzymes, e.g., phenolic,
flavonoid and proline, that act as ROS scavengers in plants under different environmental
stress conditions. Those non-enzymatic antioxidants perform a significant role in the cell
structure and function, maintaining the redox status of cells [80]. Like other abiotic stresses,
AR stress in plants increases the accumulation of phenolic, flavonoid and proline, and these
phenolic, flavonoid and proline help in indirect ROS scavenging, intracellular redox-
homeostasis rebuilding and advancement of cellular signaling [44,56,81]. It was observed
that the non-enzymatic activity including phenolic, flavonoids and proline increased in
tomato seedlings under AR stress [57,58]. But, it was also observed that these enzymatic and
non-enzymatic activities could not compensate for the damages caused by severe AR stress
in tomato plants [58]. From the above discussion, it can be summarized that enzymatic
and non-enzymatic antioxidant activities might help in balancing ROS accumulation and
detoxification in plants when the plants are exposed to mild AR stress conditions, but the
detoxification capacity can be broken in severe AR stress conditions (Figure 2).
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4. Mechanism of Acid Rain in Related Gene Expression in Plants

The physiological and biochemical activities, including photosynthesis, generation of
ROS, enzymatic and non-enzymatic antioxidant defense, alternation of plant secondary
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metabolites and stress responsive transcriptional factors in plants, under any abiotic stress
conditions, including acid rain stress, can be confirmed by their gene expression pat-
tern [15,18,82–84]. It was observed that a series of genes are engaged in the photosyn-
thesis system of Arabidopsis thaliana, for example, At2g01590 and At4g27880 genes are
known as photosynthetic electron transport chain-related genes, and At2g34430, At2g05070,
At3g08940, At3g27690, At1g15820, At5g54270 and At1g03130 are known as the PSI and PSII
constituent protein-related genes that show suppression or expression of downregulation
due to AR stress [15]. In contrast, it was observed that the expression of RuBP, known as
ribulose-1,5-bis-phosphate, and RuBisCO, known as carboxylase/oxygenase, were evi-
dently dropped in Arabidopsis thaliana by AR stress [85]. The proteomic study also stated
that the expression of carbonic anhydrase gene transformed markedly, indicating that the
photosynthesis is vulnerable to some extent against AR [85]. ROS formation in plant cells
due to AR stress can be witnessed by the accumulation of superoxide anion (O−2) and
H2O2, which triggers membrane damage through producing MDA. Plants try to recover
the ROS-induced membrane damage by altering their antioxidant components. Therefore,
different enzymatic and non-enzymatic antioxidant activities in plants under environ-
mental stress conditions can be well-observed by the expression pattern of their related
genes, for example, CAT1 for catalase, Mn-SOD, Fe-SOD and Cu/Zn-SOD for superoxide
dismutase, POD1 for peroxidase, APx genes for L-ascorbate peroxidase, GST genes for
glutathione S transferase and AA genes for ascorbic acid were observed to be changed
under AR condition [8,12,17]. Furthermore, in earlier studies, some genes were reported
to be induced by AR stress conditions in plants, which were directly involved in the
ROS-scavenging pathway, such as At1g08830 and At4g25100, documented as superox-
ide dismutase genes, At4g11600 and At2g25080, recognized as glutathione peroxidase
genes, At3g49120, known as a class III peroxidase gene, At5g03630, identified as a mon-
odehydroascorbate reductase gene, At4g35090, isolated as a peroxisomal catalase gene,
and At5g16400, At1g07700 and At1g08570, accepted as thio-redoxins genes [15].

A transcriptome study in tomato seedlings showed that 182 differentially expressed
genes (DEGs) were upregulated but 1046 DEGs were downregulated under AR stress con-
dition [18]. Gene ontology (GO) analysis of this study showed that 28.86% of DEGs were
involved in biological process, 46.34% of DEGs were involved in cellular process and 24.81%
DEGs were involved in molecular function in AR-stressed tomato seedlings in comparison
to controlled tomato seedlings. In addition, a significant number of DEGs, 174, were found
to be associated with biosynthesis pathways of secondary metabolites, including phenyl-
propanoid, flavonoid, stilbenoid, diarylheptanoid and gingerol, phenylalanine metabolism,
starch and sucrose metabolism, amino sugar and nucleotide sugar metabolism, cutin,
suberine and wax biosynthesis, metabolic pathways, limonene and pinene degradation,
ubiquinone and other terpenoid-quinone biosynthesis, flavone and flavonol biosynthesis,
anthocyanin biosynthesis, brassinosteroid biosynthesis, zeatin biosynthesis, arginine and
proline metabolism, cysteine and methionine metabolism and carotenoid biosynthesis with
respect to AR stress versus control plants through KEGG (Kyoto Encyclopedia of Genes
and Genomes) analysis, and among them, only 25 genes were upregulated and the other
149 genes were downregulated [18].

On the other hand, expression of transcriptional factor (TF) family genes is involved
in different mechanisms in response to environmental stresses in plants. It has been
well-established in several comparative transcriptome analyses that over 30 TF family
genes, including MYB, WRKY, ERF and bZIP, were found under different environmental
stresses [86,87]. The TF genes like MYB, WRKY, ERF and bZIP act as fundamental reg-
ulators in abiotic stress signal transduction as well as complex in biosynthesis of plant
secondary metabolites in response to harsh environments [88–90]. Liu et al. [15] observed
that AR treatment induced MYB transcription factor, zinc finger proteins, WRKY tran-
scription factors and calcium signal pathway-related genes in plants. In another study,
Debnath et al. [18] showed that 151 TF genes which were associated with 31 types of tran-
script factor family protein were expressed in comparison with control and AR-stressed
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tomato seedlings, and among the TF-allied DEGs, different stress responsive genes such as
ERF, MYB, WRKY, NAC, bHLH, TCP, G2-like and C2H2 family protein-related genes were
markedly expressed. These findings suggested that genes associated with biosynthesis of
secondary metabolites and transcriptional factors are significantly induced by AR stress
conditions in tomato plants.

5. Impact of Silicon in Plants under Acid Rain Stress Conditions

Silicon is well-known as a useful element which can improve the biotic and abiotic
stress tolerance in plants [91]. The silicon content in plants varied in between cultivars and
species plant growth stages [92]. It is well-established that silicon can advance the chloro-
phyll content and photosynthesis rate through adjusting oxidative damage in different
environmental stresses, like high temperature, salinity, drought and heavy metal [93–98].
In addition, Ju et al. [16] observed that the application of exogenous silicon in plants
improved the chloroplast ultrastructure, chlorophyll content and rate of photosynthesis,
as well as plant growth under moderate to severe AR stress. The integration of silicon in
plants under AR stress conditions can improve stomatal conductance and lessen the inter-
cellular CO2 concentration, which results in the stimulation of photosynthesis and growth
in plants [99]. AR stress tolerance in plants depends on the concentration of silicon and
the level of pH in AR water [16]. Likewise, the application of silicon in tomato seedlings
could increase the photosynthesis pigment, including chlorophyll and carotenoids, as well
as improve the growth under abiotic and biotic stress conditions [100,101]. Moreover,
the chlorophyll fluorescence parameters such as Fv/Fm rate (maximum photochemical
efficiency of PSII), ETR (photosynthetic electron transport rate) and qp (photochemical
quenching coefficient) were increased by silicon supplementation in tomato seedlings un-
der stress conditions [16,100]. It was also observed that the application of silicon in tomato
seedlings under stress conditions upregulated the expressions of photosynthesis-related
genes such as PsbP, PsbQ, PsbW, Psb28, PetE and PetF [100]. Furthermore, silicon can allevi-
ate stress in plants by increasing the activity of ROS-scavenging antioxidant compounds
such as SOD, CAT, POD, phenylalanine ammonialyase (PAL) and polyphenol oxidase
(PPO) in plants [22,23,102]. These results demonstrate that exogenous silicon might im-
prove the AR stress tolerance by stimulating the physiological and biochemical activities in
tomato plants.

6. Effect of Glutathione in Plants under Acid Rain Stress

Glutathione is a low molecular thiol tripeptide compound universally distributed in
all the subcellular organelles of plants and plays a crucial role in life processes by removing
cytotoxic hydro-peroxides and free radicals, maintaining the thiol level in proteins exchang-
ing thiodusulfide and amino acid transportation across the cell membranes [24,103]. Glu-
tathione has a remarkable role in plant growth, development and response to stresses [103].
It triggers cellular defense against ROS in plants under abiotic stress conditions due to its
redox and nucleophilic properties [24,80]. The high concentration of glutathione in the
cells regulates a buffering system to maintain redox-balance [104]. Glutathione can quench
free radicals directly or by accompanying ascorbic acid in the ascorbate–glutathione cycle
which helps in defending cell components from stress-induced oxidative damage [25].
It has been established that supplementation of glutathione improves the plants’ tolerance
to stress, such as tolerance in rice to salinity [105], tolerance in tomato to cadmium [104],
tolerance in wheat to lead [24] and tolerance in fenugreek to AR [17].

The application of glutathione markedly improves different growth parameters such as
plant height and fresh and dry biomass of root and shoot under AR stress through minimiz-
ing ROS accumulation and improving the activities of antioxidant enzymes that eventually
reduce oxidative stress [17]. It has been reported that most of the plants could activate their
antioxidant system up to a certain level against abiotic stress conditions [106,107]. However,
the supplementation of glutathione in AR-stressed plants causes further intensification in
the antioxidant activities, possibly owing to the signaling role of applied molecules, and this
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was confirmed through the transcript profiling of CAT, Mn-SOD, Fe-SOD and Cu/Zn-SOD
genes [17]. In addition, glutathione-induced enhancement in abiotic stress tolerance in
plants was closely associated with the upregulation of numerous transcriptional factors,
including ERF (ethylene responsive transcriptional factor), MYB transcriptional factor and
other stress response genes [104]. Therefore, it can be suggested that exogenous glutathione
acts as an important bio-stimulator in avoiding oxidative damages by activating their
defensive genes, which results in the improvement of stress tolerance in the plants against
harsh environments [17,24,104].

7. Role of Melatonin in Plants under Acid Rain Stress

Melatonin is naturally available in all types of plants and its biosynthesis leads to
the significant mechanisms in plants for the survival against different stresses [47,108,109].
Melatonin directly contributes to the plant defense through scavenging free radicals and
thus mitigates abiotic and biotic stresses [38,40]. Melatonin also indirectly enhances plant
tolerance through recovering leaf ultrastructure, improving the photosynthesis system and
regulating plant growth regulators [110]. In this context, exogenous melatonin showed
amazing mechanisms to cope with the adverse environments by facilitating plant growth
regulation, decelerating leaf senescence, improving photosynthesis and increasing ROS
quenching antioxidant systems in plants [111,112]. However, melatonin-mediated physio-
logical and molecular activities in plants prove that melatonin is an efficient molecule to
stimulate plant growth, particularly where environmental stresses are the limiting factors
for crop production.

Similarly, as observed in Reference [57], the foliar application of exogenous melatonin
considerably increased antioxidant activities, reduced ROS and lipid peroxidation and
thereby improved the growth, photosynthesis and leaf ultrastructure, indicating AR stress
tolerance in tomato plants. An earlier study showed that less damage to chloroplast and
comparatively thicker leaf tissues were observed in melatonin-treated plants with respect
to the stressed plants [111]. In addition, the mitigation of chlorophyll degradation and
improvement in photosynthesis of plants was observed by the application of exogenous
melatonin under abiotic stress [113,114]. Numerous previous studies also revealed that
exogenous melatonin has complex and influential effects on scavenging ROS, activat-
ing antioxidant enzymes and non-enzymes under various harsh conditions [50,115–118].
Debnath et al. [57] found 100 µM melatonin treatment as the most effective dose among
different used doses in AR-stressed tomato plants.

In addition, other experimental results [119] exhibited that SAR-treated tomato plants
had improved activities of enzymatic antioxidants in tomato as well as high amounts
of health-promoting bioactive compounds in fruits, whereas tomato production greatly
decreased. The stress-induced enzymatic antioxidants in tomato might play a significant
role to accelerate protection mechanisms by attenuating oxidative stress under different en-
vironmental stress conditions, which results in improved biochemical properties of tomato,
but is unable to hinder the detrimental effects of stress to yields [120–124]. In contrast,
the supplementation of melatonin in AR-stressed plants showed more augmentation of
the enzymatic antioxidants and different bioactive compounds in fruits, as well as a sharp
increase of the yield attributes of tomatoes [119]. Consistently, it was documented that
melatonin enhanced fruit quality during the developmental and ripening stages by reduc-
ing degradation of the cell wall and intercellular adhesion [125]. Moreover, these results
complied with the concept of other researchers who state that the application of melatonin
boosted the stress tolerance of plants by uplifting ROS-detoxifying antioxidants against
oxidative injury, improving crop yield under abiotic stress conditions [47,126]. In a recent
study, Debnath et al. [119] revealed that melatonin supplementation could mitigate the
negative impact of AR stress on tomato fruits by strengthening the antioxidant system
and also by increasing health-promoting antioxidant compounds in fruits, and eventually,
increase the yield.
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It was reported that DEGs were influenced by AR stress in tomato plants, and fo-
liar spray of melatonin in AR-stressed plants showed remarkable expression of DEGs to
improve AR stress tolerance in tomato plants [18]. Their results [18] of RNA-sequence
and qRT-PCR suggested that the regulatory genes of different secondary metabolites were
downregulated by AR treatment in relation to control vs AR-stressed tomato plant (Table 1).
Similar to these results, Liu et al. [127] observed that AR treatment changed the expression
pattern of differential genes and also the genes associated with secondary metabolites in
plants. To the contrary, the use of melatonin in AR-stressed plants caused upregulation
of secondary gene expression in control vs melatonin-treated AR-stressed plants, and AR-
stressed plants vs melatonin-treated AR-stressed plants (Table 1) [18]. In support of these
outcomes, many other experimental outputs also reported that exogenous melatonin upreg-
ulates the expression of genes linked with different metabolites and thus, enhances stress
tolerance in plants [128–130]. In addition, transcriptome analysis also reported that more
than 30 TF family genes are involved in stress signal transduction and biosynthesis of
plant secondary metabolites under abiotic stress [88–90]. According to qRT-PCR and RNA-
sequence results of the study of Debnath et al. [18], it was stated that the expression of
MYB, WRKY, ERF and bZIP were down regulated by AR treatment in relation to control
(Table 1). Liu et al. [15] also observed the down regulation of TF-related genes in Arabidopsis
under AR stress conditions. Conversely, the results of Reference [18] also revealed that
the foliar spray of melatonin in AR-stressed plants enhanced the upregulation of stress-
responsive TF-related genes to lighten SAR stress. It has been perceived that application
of melatonin adjusts the expression of TFs such as bZIP, MYB, WRKY and ERF, which ac-
celerates the expression of ROS-scavenging enzyme-encoding genes to promote abiotic
stress tolerance [131–133]. However, Debnath et al. [18] exposed the genes associated with
the activation of antioxidants, modulation of secondary metabolites and their pattern of
expression to melatonin treatment under AR stress.

Table 1. Expression of differentially expressed genes (DEGs) through RNA sequence (log2 fold change) and qRT-PCR fold
changes in tomato plant under AR stress conditions and melatonin supplementation [18].

Gene Description Function
Expression

Control vs.
AR-Stressed Plants

AR-Stressed Plants vs.
AR-Stressed Plants Treated

with Melatonin

Caffeoyl-CoA
O-methyltransferase-like

Biosynthesis of secondary
metabolites,

Phenylpropanoid
biosynthesis,

Flavonoid biosynthesis,
Stilbenoid, diarylheptanoid
and gingerol biosynthesis,
Phenylalanine metabolism,

Metabolic pathways

Downregulated Upregulated

Probable galacturonosyl
transferase-like 10-like

Biosynthesis of secondary
metabolites,

Starch and sucrose
metabolism,

Amino sugar and nucleotide
sugar metabolism

Downregulated Upregulated



Molecules 2021, 26, 862 11 of 19

Table 1. Cont.

Gene Description Function
Expression

Control vs.
AR-Stressed Plants

AR-Stressed Plants vs.
AR-Stressed Plants Treated

with Melatonin

Cytochrome P450 94A1-like

Biosynthesis of secondary
metabolites,

Cutin, suberine and wax
biosynthesis,

Stilbenoid, diarylheptanoid
and gingerol biosynthesis,

Metabolic pathways,
Limonene and

pinene degradation

Downregulated Upregulated

Salutaridinol
7-O-acetyltransferase-like

Biosynthesis of secondary
metabolites,

Phenylpropanoid
biosynthesis,

Flavonoid biosynthesis,
Stilbenoid, diarylheptanoid
and gingerol biosynthesis

Downregulated Upregulated

4-coumarate-CoA ligase 2-like

Biosynthesis of secondary
metabolites,

Phenylpropanoid
biosynthesis,

Phenylalanine metabolism,
Metabolic pathways,

Ubiquinone and other
terpenoid-quinone

biosynthesis

Downregulated Upregulated

Anthocyanidin
3-O-glucosyltransferase-like

Biosynthesis of secondary
metabolites,

Metabolic pathways,
Flavone and flavonol

biosynthesis,
Anthocyanin biosynthesis

Downregulated Downregulated

Secologanin synthase-like
isoform 1

Biosynthesis of secondary
metabolites,

Metabolic pathways,
Brassinosteroid biosynthesis,

Zeatin biosynthesis

Downregulated Upregulated

Caffeoyl-CoA O-methyl
transferase-like isoform 2

Biosynthesis of secondary
metabolites,

Phenylpropanoid
biosynthesis,

Flavonoid biosynthesis,
Stilbenoid, diarylheptanoid
and gingerol biosynthesis,
Phenylalanine metabolism,

Metabolic pathways

Downregulated Downregulated

S-adenosylmethionine
decarboxylase proenzyme-like

Arginine and proline
metabolism,

Cysteine and methionine
metabolism,

Metabolic pathways

Downregulated Upregulated
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Table 1. Cont.

Gene Description Function
Expression

Control vs.
AR-Stressed Plants

AR-Stressed Plants vs.
AR-Stressed Plants Treated

with Melatonin

Cyanidin-3-O-glucoside 2-O-
glucuronosyltransferase-like

Flavone and flavonol
biosynthesis,

Zeatin biosynthesis
Downregulated Upregulated

Abscisic acid 8′-hydroxylase
1-like Carotenoid biosynthesis Downregulated Upregulated

MYB-related protein
Myb4-like

Stress-responsive MYB family
transcriptional factor Downregulated Upregulated

Probable WRKY transcription
factor 33-like

Stress-responsive WRKY
family transcriptional factor
Plant–pathogen interaction

Downregulated Upregulated

Ethylene-responsive
transcription factor 1-like

Stress-responsive ERF family
transcriptional factors
Plant hormone signal

transduction

Downregulated Upregulated

Uncharacterized protein
LOC101262884 isoform 1

Stress-responsive bZIP family
transcriptional factor Downregulated Upregulated

Therefore, the series of experimental results [18,57,119] reported that the use of mela-
tonin might be a potential technique for enriching plant tolerance by modulating growth,
physiological and molecular activities in AR condition. Figure 3 presents a summary
showing how exogenous melatonin influences cellular mechanism of AR stress tolerance
in plants. Melatonin can freely penetrate the cell membranes because of its amphiphilic
nature. Melatonin directly quenches ROS and also upsurges the extent of antioxidant
activity to accelerate ROS scavenging capacity, thereby defending cellular damage and
improving AR stress tolerance.
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8. Conclusions and Future Prospective

The current review was carried out to understand the responses of plants to AR stress
and elucidate the possible impact of silicon, glutathione and melatonin in mediating AR
stress tolerance. The major findings indicated that AR stress reduces the normal plant
growth and photosynthesis by stimulating ROS generation and inhibiting subsequent
pathways. While the ROS detoxification system was found to be effectively activated and
improved normal plant growth and productivity by the application of bio-stimulators un-
der such circumstances. Hence, the stimulation of natural biosynthesis and/or exogenous
supplementation of the above-mentioned bio-regulators might establish a new state of
equilibrium to contribute to the inherent plasticity of plants in order to combat and detox-
ify the stress generated by AR. Numerous articles have explored that foliar application
of silicon, glutathione and melatonin effectively considerably ameliorates the toxicity of
AR in many plant species by mitigating the growth, photosynthetic inhibitors, leaf ultra-
structural changes and antioxidant activities in plants during AR stress (Figure 4). Besides,
melatonin applications during AR stress enhanced not only the quality traits but also the
bioactive antioxidant compounds in fruits, which has enormous health benefits. Further-
more, the current review also summarized that in addition to physiological responses, the
protective roles of exogenous silicon, glutathione and melatonin to combat the AR stress
are highly involved in the regulation of transcription factors like bZIP, MYB, WRKY and
ERF in plants.
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Therefore, recent advances of the physiological and molecular activities of silicon,
glutathione and melatonin in plants have confirmed their prime roles to improve AR stress
tolerance. However, the genetic evidence and the subsequent signaling cascades in the
action of AR stress tolerance have not yet been deeply studied, and thus require further
investigations. Hopefully, additional underlying mechanisms and core pathways to explain
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the high efficiency of the argued bioactive compounds in enhancing the tolerance of plants
to AR stress will be uncovered in the near future. Hence, the adoption of new tactics in
mitigating the consequences of AR stress on crops’ growth and productivity have promise
in escalating agricultural extension, where AR is a restrictive factor.
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