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Metabolic reprogramming plays a critical role in colorectal cancer (CRC). It

contributes to CRC by shaping metabolic phenotypes and causing uncontrolled

proliferation of CRC cells. Glucose metabolic reprogramming is common in

carcinogenesis and cancer progression. Growing evidence has implicated the

modifying effects of non-coding RNAs (ncRNAs) in glucose metabolic

reprogramming and chemoresistance in CRC. In this review, we have

summarized currently published studies investigating the role of ncRNAs in

glucose metabolic alterations and chemoresistance in CRC. Elucidating the

interplay between ncRNAs and glucose metabolic reprogramming provides

insight into exploring novel biomarkers for the diagnosis and prognosis

prediction of CRC.

KEYWORDS
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Abbreviations: CRC, colorectal cancer; ncRNAs, non-coding RNAs; PPP, pentose phosphate pathway;

circRNA, circular RNA; lncRNA, long noncoding RNA; miRNA, microRNA; GLUT1, glucose transporter

1; HIF-1a, hypoxia-induced factor-1a; GYS1,glycogen synthase; PDHX, pyruvate dehydrogenase protein X

component; 3’UTR,3’ untranslated region; PKM, pyruvate kinase isozyme; HK1, hexokinase 1; HK2,

hexokinase 2; SDHB, succinate dehydrogenase-B; PRKAA2, AMP-Activated Protein Kinase; GLUT1,

glucose transporter 1; PDK2, pyruvate dehydrogenase kinase isoform 2; LDHA, Lactate dehydrogenase A;

EVs, extracellular vesicles; HIPK3, homeodomain-interacting protein kinase; ceRNA, competitive

endogenous RNA; TAB3, transforming growth factor b-activated kinase-binding protein 3; YY1, Yin

Yang 1; UBE2Q1, ubiquitin-conjugating enzyme E2Q family member 1; ATP, adenosine triphosphate;

OLA1, glycolysis by recruiting Obg-like ATPase 1; AMPK, adenosine monophosphate-

activated protein kinase; TAM, tumor-associated macrophage; ACTG1, g-Actin Gene; FOXM1,

forkhead box M1.
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Introduction

Colorectal cancer (CRC) is one of the most common digestive

cancers, with increasing incidence and mortality in young adults in

particular (1, 2). CRC is the secondly most common cancer

worldwide with the incidence and mortality of 12% and 7%,

respectively. Identifying novel biomarkers for the early diagnosis

and treatment of CRC is very important. Targeted therapy for CRC

has been promoted with progress in the high-throughput

sequencing technology. Glucose metabolic reprogramming is a

hallmark of cancer, which plays a critical role during

carcinogenesis (3). The glucose metabolic pathways primarily

include aerobic glycolysis, gluconeogenesis, and pentose

phosphate pathway (PPP). Aerobic glycolysis is called Warburg

effect, which is common in most aggressive cancer cells. It has been

well documented that abnormal aerobic glycolysis is closely related

to cancer growth and survival (4). Besides, disorders of glucose

metabolic reprogramming in immune cells can lead to

microenvironment imbalance and affect anti-tumor immunity (5).

Research in metabolomics has suggested those key molecules

underlying the metabolic mechanisms would serve as optimal

approaches for CRC diagnosis and prognosis prediction. Blocking

the glucose metabolic reprogramming in immune cells can help to

defend against cancer.

A growing number of studies have implicated that noncoding

RNAs (ncRNAs) are involved in tumor initiation and progression,

primarily including circular RNA (circRNA), long noncoding RNA

(lncRNA) and microRNA (miRNA) (6, 7). The ncRNAs regulatory

networks are essential for tumorigenesis, tumor invasion and

metastasis. Some ncRNAs act as oncogenic drivers, while some

other ncRNAs function as tumor suppressors. They can regulate

numerous molecular targets through RNA-RNA or RNA-protein

interactions. Increasing evidence has supported that ncRNAs

participate in the glucose metabolic reprogramming of cancer by

targeting metabolism-associated with genes, such as glucose

transporter 1 (GLUT1), hypoxia-induced factor-1a (HIF-1a), and

glycogen synthase 1 (GYS1). Some ncRNAs may also influence the

chemoresistance to CRC. Accumulated studies have investigated

the crucial role of ncRNAs in regulating glucose metabolism and

chemoresistance in CRC in the past few years (8–10). The

identification of ncRNA-based glucose metabolism regulatory

networks is currently emerging as a promising approach in the

field of early screening and targeted therapy of CRC. In this review,

we aim to elucidate the molecular targets regulated by ncRNAs that

might be involved in the glucose metabolic reprogramming and

chemoresistance of CRC.
Regulation of glucose metabolic
reprogramming by miRNAs

It has been well documented that abnormal glucose

metabolism is one of the leading causes for CRC development
Frontiers in Oncology 02
(11). Usually, normal tissues acquire energy through the aerobic

oxidative phosphorylation but undergo anaerobic glycolysis

under hypoxia. However, the main way for acquiring energy

of cancer cells is aerobic glycolysis even under the condition of

adequate oxygen. Aerobic glycolysis is typical in the metabolic

reprogramming of CRC. Abnormal glucose metabolism in CRC

cells is primarily attributed to the mitochondrial dysfunction,

abundant activation of key enzymes involved in glycolysis,

altered isozyme profiles and dysregulated glucose metabolic

signaling pathways (12, 13).

Accumulated studies have demonstrated that miRNAs play

important roles in CRC by transcriptionally regulating specific

mRNAs (14). They are single-stranded noncoding small RNAs

with about 22 nucleotides. MiRNAs confer their biological effects by

specifically complementary recognition of the miRNA response

elements to the 3’ untranslated region (3’UTR) of mRNAs. Many

miRNAs have been implicated in regulating cancer metabolic

reprogramming. With advance in high-throughput technology,

some miRNAs have been demonstrated to confer effects on the

metabolic interactions between CRC cells and gut microbiota,

suggesting the critical role of miRNAs in mediating tumor-

microbiota metabolic interplays (15). To the best of our

knowledge, butyrate produced by the gut microbiota provides

approximately 70% of energy needs for the colonic epithelial cells.

Aberrant expression of miRNAs can influence glucose metabolism

mediated by butyrate in cancer cells through the gut-brain axis (16–

18). Nonetheless, little is known of the potential interactions

between miRNAs and gut microbiota in CRC glucose metabolic

reprogramming. Current progress in the role of miRNAs in the

glucose metabolism of CRC has been summarized in Table 1. The

association between miRNAs and gut microbiota-mediated glucose

metabolism in CRC has also been elucidated in the

following context.
Glucose metabolism-associated miRNAs
dysregulated in CRC

There are many glucose metabolism-associated miRNAs

dysregulated in CRC, such as miR-4999-5p, miR-181d, and miR-

24 (19–21) (Table 1). Increased expression of miR-4999-5p has

been demonstrated in CRC, which can also modulate the glucose

metabolic reprogramming of CRC cells by targeting the critical

molecule of mTOR signaling pathway, namely, AMP-Activated

Protein Kinase (PRKAA2) (19). It promotes glycolysis in CRC cells

(19). MiR-26a overexpression can increase the production of

pyruvate but decrease the generation of acetyl coenzyme A by

suppressing pyruvate dehydrogenase protein X component

(PDHX) in HCT116 cells, which suggests the critical of miR-26a

in reprograming glucose metabolism in CRC (22). Jin F and the

colleagues have illustrated that HIF-1a-induced miR-23a∼27a∼24
cluster promoted the progression of CRC by reprogramming

glucose metabolism from oxidative phosphorylation to glycolysis
frontiersin.org
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(20). MiRNAs of miR-124, miR-137 and miR-340 have been

documented to regulate Warburg effect by alternatively splicing

pyruvate kinase isozyme (PKM) gene and controlling the ratio of

PKM1/PKM2 in CRC cells (29). Another study by Qiu Z et al. have

reported that miR-124 reduced PPP by regulating phosphoribosyl

pyrophosphate synthetase 1 (PRPS1) and ribose-5-phosphate

isomerase-A (RPIA) in CRC (33). Taken together, these findings

have suggested the pivotal role of miRNAs in regulating glucose

metabolism in CRC. MiRNAs exert biological effects on the glucose

metabolism of CRC cells by regulating different genes. It must be

mentioned that the targeted genes participating in the glucose
Frontiers in Oncology 03
metabolic reprogramming of CRC are diverse and complicated.

The same miRNA may have different targets, while some different

miRNAs may simultaneously target the same gene.
MiRNAs and key enzymes/transporters
in glycolysis

There are a couple of key enzymes and transporters

regulating cancer cells glycolysis, such as GLUT1, PKM2,

pyruvate dehydrogenase kinase isoform 2 (PDK2), and Lactate
TABLE 1 MiRNAs involved in CRC glucose metabolism.

MiRNA Expression
(Up/Down)

Target Effect Reference

miR-4999-5p Up PRKAA2 Predicting CRC survival outcome; Promoting glycolysis and CRC growth Zhang QW, et al.
(19)

miR-26a NA PDHX Promoting pyruvate accumulation and reducing acetyl coenzyme A
production

Chen B, et al. (22)

miR-143 Down NA Inhibiting CRC cells proliferation and glucose uptake Zhao J, et al. (23)

miR-149-3p NA PDK2 Increasing 5-FU-induced CRC cells apoptosis and inhibiting glucose
metabolism

Liang Y, et al. (24)

miR-24 Up VHL Switching metabolism from oxidative phosphorylation to glycolysis in CRC Jin F, et al. (20)

miR-181d Up CRY2 and
FBXL3

Stabilizing c-myc and promoting the glucose consumption and the
production of lactate in CRC

Guo X, et al. (21)

miR-488 Down PFKFB3 Inhibiting the chemoresistance and glycolysis of CRC Deng X, et al. (25)

miR-125b-5p NA NA Inhibiting lactate generation and chemoresistance to oxaliplatin and 5-
fluorouracil in CRC cells

Park GB et al. (26)

miR-339-5p NA hnRNPA1 and
PTBP1

Inhibiting CRC cells glycolysis and growth by downregulating PKM2 Wu H, et al. (27)

miR-328 NA GLUT1 Regulating the Warburg effect by targeting GLUT1 in CRC cells Santasusagna S et al.
(28)

miR-124, miR-137 and
miR-340

NA PKM Switching PKM1/PKM2 ratio and regulating glycolysis rate of CRC cells Sun Y, et al. (29)

miR-142-5p Up SDHB Facilitating aerobic glycolysis of CRC cells via targeting SDHB Liu S, et al. (30)

miR-374a Down LDHA Refining aerobic glycolysis via targeting LHHA Wang J, et al. (31)

miR-143 NA HK2 Down-regulating HK2 and affecting glucose metabolism Gregersen LH, et al.
(32)

miR-124 Down PRPS1 and RPIA Inhibiting lactate production and PPP Qiu Z, et la (33).

miR-98 Down HK2 Functioning as a tumor suppressor and inhibiting Warburg effect Zhu W, et al. (34)

miR-206 Down hnRNPA1 Suppressing PKM2 expression and attenuating Warburg effect of CRC cells Fu R, et al. (35)

miR-500a-3p Down CDK6 Inhibiting aerobic glycolysis and CRC progression Liu Y, et al. (36)

miR-122 NA PKM2 Inhibiting aerobic glycolysis in 5-FU-resistant CRC cells He J, et al. (37)

miR-34a NA LDHA Mediating inhibition of glucose metabolism in 5-FU-resistant CRC cells Li X, et al. (38)

miR-135b NA SPOCK1 Promoting the Warburg effect in CRC Babaei-Jadidi R,
et al. (39)

miR-4458 Down HK2 Refining the glycolysis and lactate
Production in CRC cells

Qin Y, et al. (40)

miR-27a Up FBXW7 Forcing the aerobic glycolytic metabolism in CRC Barisciano G, et al.
(41)

let-7a Up SNAP23 Promoting EV secretion of CRCs and enhancing mitochondrial oxidative
phosphorylation

Liu Y, et al. (42)

miR-101 NA EZH2 and OGT MiR-101-O-GlcNAc/EZH2 regulatory feedback circuit regulating CRC
metabolic reprogramming

Jiang M, et al. (43)

miR-101-3p Up HIPK3 Promoting aerobic glycolysis by targeting HIPK3 in CRC Tao L, et al. (44)
NA, not available.
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dehydrogenase A (LDHA). A number of miRNAs are implicated

in targeting the key enzymes or transporters involved in cancer

cells glycolysis (Table 1 and Figure 1). Zhao J et al. have reported

that miR-143 downregulated the expression of GLUT1 and

inhibited glucose uptake in CRC cells (23). Besides, miR-328 is

also involved in regulating the Warburg effect by targeting

GLUT1 in CRC cells (28). PKM2 is another key enzyme

involved in glycolysis. MiR-339-5p has been well documented

to restrain CRC cells glycolysis and growth by downregulating

PKM2 (27). Similarly, the study by Fu R and the colleagues have

found that hnRNPA1 was a direct target of miR-206, which

suppressed PKM2 expression and attenuated Warburg effect of

CRC cells (35). Moreover, the upregulation of miR-142-5p

inhibits the intake of oxygen but facilitates aerobic glycolysis

of CRC cells by targeting the key enzyme of succinate

dehydrogenase-B(SDHB) (30). Elevated glucose consumption

and lactate generation is found in miR-142-5p-treated CRC cells

(30). LDHA is identified as the targeted gene of miR-374a, which

refines the aerobic glycolysis of CRC cells (31). Apart from the

above-mentioned key enzymes and transporters in glycolysis,

hexokinase 2 (HK2) is a critical rate-limiting enzyme for

glycolysis. It has been demonstrated to be the direct target of

miR-143, miR-4458, and miR-98 in CRC cells (32, 34).

Suppression of miR-143 contributes to the shift towards

aerobic glycolysis in CRC via targeting HK2 (32). MiR-4458 is

demonstrated to prevent from glycolysis and lactate production

by directly regulating HK2, which thus inhibits the progression

of CRC (40). Accordingly, those aberrantly expressed miRNAs

and targeted molecules involved in glycolysis would serve as

helpful targets for CRC.
Frontiers in Oncology 04
In the last decade, some exosomes-delivering miRNAs have

been well documented to participate in regulating glucose

metabolism in CRC by targeting key metabolic genes of HIF-

1a and PGK1, such as exosomal miR-6869-5p, miR-8075, miR-

5787, and miR-548c-5p (45). Let-7a is demonstrated to be

enriched in extracellular vesicles (EVs) derived from CRC cells

(42). The EVs-derived let-7a can promote the mitochondrial

oxidative phosphorylation via downregulating SNAP23 in CRC

cells (42). Tao L et al. have reported that exosomal miR-101-3p

acts as an oncomiR in CRC, which promoted glycolysis and

influenced metabolic homeostasis by targeting homeodomain-

interacting protein kinase (HIPK3) in CRC cells (44). However,

how those miRNAs being encapsulated in EVs and transferred

to cancer cells remains largely unknown. More future studies are

encouraged to elucidate the underlying molecular mechanism of

EVs-delivering miRNAs in regulating glucose metabolic

reprogramming in CRC.
Altering effects of miRNAs on
chemoresistance and glycolysis in CRC

Most interestingly, certain miRNAs are involved in

regulating the chemoresistance and glucose metabolism in

CRC. MiR-149-3p has been found to promote 5-Fluorouracil

(5-FU)-induced CRC cells apoptosis and inhibit the glucose

metabolism by targeting PDK2 (24). MiR-488 is obviously

decreased in metastatic/recurrent CRC, which can also refine

the chemoresistance and glycolysis of CRC by targeting a key

enzyme involved in g lucose metabol i sm, namely ,
FIGURE 1

NcRNAs regulate key enzymes/transporters involved in glucose metabolism of CRC through complicated signaling pathways.
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phosphofructokinase-2/fructose-2,6-bisphosphatase 3

(PFKFB3) (25). The study by Park GB et al. has shown the

evidence that miR-125b-5p could significantly inhibit lactate

generation and the chemoresistance of CRC cells to oxaliplatin

and 5-fluorouracil (26). PKM2 is a critical enzyme for glycolysis,

which has been elaborated to be targeted by miR-122 involved in

regulating glucose metabolism of CRC cells (37). Furthermore,

miR-122 can inhibit glycolysis and serve as a useful therapeutic

strategy overcoming 5-FU chemoresistance in CRC (37). Apart

from miR-122, miR-34a is also implicated in regulating the

sensitivity to 5-FU in CRC by refining glycolysis, suggesting the

critical role of miRNAs during interactions between

chemoresistance and glycolysis (38). Taken together, some

miRNAs can function as therapeutic targets in patients with

chemoresistant CRC, including miR-149-3p, miR-122 and miR-

34a. Nevertheless, the possible regulatory mechanism in

mediating chemoresistance and glucose metabolism balance in

CRC needs to be investigated in the future.
Regulation of glucose metabolic
reprogramming by lncRNAs

Glucose metabolism-associated
LncRNAs dysregulated in CRC

Currently identified lncRNAs associated with glucose

metabolism in CRC have been summarized in Table 2. As

shown in Figure 1, some lncRNAs exert effects through RNA-

protein or RNA-polypeptide interactions, while some lncRNAs

regulate targeted genes via lncRNA-miRNA-mRNA competitive

endogenous RNA (ceRNA) regulatory networks (46–50). A

recent study has supported that lncRNA ZEB2-AS1 promoted

glycolysis and regulated the expression of transforming growth

factor b-activated kinase-binding protein 3 (TAB3) by adsorbing

miR-188 (51). A LINC00265/miR-216b-5p/TRIM44 axis has

been assured in promoting glycolysis and lactate production in

CRC (52). LncRNA RAD51-AS1 is documented to bind with

miR-29b and facilitate the expression of c-3p/NDRG2, which

thus inhibits the glycolysis of CRC cells (53). Tang J et al. have

found that lncRNA GLCC1 could enhance aerobic glycolysis by

stabilizing transcriptional factor c-Myc and interacting with

HSP90 chaperon (8). Similar effect of lncRNA LINRIS on

aerobic glycolysis in CRC cells has been illustrated in the study

by Wang Y et al. (54). LINRIS is identified to be upregulated in

CRC tissues and plays an oncogenic role in CRC by promoting

aerobic glycolysis via LINRIS-IGF2BP2-MYC axis (54).

However, another study has suggested lncRNA MEG3 refined

the aerobic glycolysis by depredating c-Myc in CRC cells (55).

The transcription factor Yin Yang 1 (YY1) is demonstrated to

regulate the expression of lncRNA MIR31HG, which can also

forms a positive feedback via upregulating YY1 and sponging
Frontiers in Oncology 05
miR-361-3p (56). MIR31HG promotes the growth, glycolysis

and lung metastasis of CRC cells (56). A recent study has

suggested that transcription factor HIF-1a could increase the

expression of lncRNA PTTG3P and contribute to glycolysis and

M2 macrophage polarization in CRC (57). Accordingly,

lncRNAs may serve as regulators for tumor-associated

transcriptional factors of c-Myc and YY1, which can also

facilitate the expression of certain lncRNAs via transcriptional

activation loop.

To the best of our knowledge, N6-methyladenine (m6A)

modulators contribute to CRC. It has been shown that some

lncRNAs can be regulated by m6Amodulators. However, little is

known about the mechanism of m6A reader in regulating

glycolysis in CRC. IMP2, namely IGF2BP2, is a m6A reader.

LncRNA ZFAS1 is found to augment the hydrolysis of adenosine

triphosphate (ATP) and glycolysis by recruiting Obg-like

ATPase 1 (OLA1) in CRC, which can be stabilized by IMP2 in

an m6A-dependent manner (47). More studies are warranted to

explore the precise effects of certain lncRNAs on altering m6A

and glycolysis of CRC cells.

Most interestingly, the recent studly by Hong J et al. has

implicated that lncRNA ENO1-IT1 was involved in promoting

Fusobacterium nucleatum (F. nucleatum)-mediated glycolysis

and oncogenesis via targeting histone modification-associated

gene enolase1-intronic transcript 1 (ENO1) in CRC (58),

suggesting a complicated interaction between microbiome and

glycometabolic lncRNA. Targeting ENO1-IT1 may be useful for

CRC patients with increased F. nucleatum in gut. More future

studies are warranted to elucidate the potential association

between gut microbiota and glucose-associated ncRNAs in

regulating glucose metabolic reprogramming in CRC.
LncRNAs and key enzymes/transporters
in CRC glycolysis

LncRNA RAD51-AS1 has been shown to hamper glucose

consumption and lactate production by inhibiting the key

glycolysis enzyme HK2 and GLUT1 in CRC cells (53).

Similar findings have been demonstrated in other studies

published previously (59–61). LncRNA UCA1 is found to

promote glycolysis via upregulating HK2 and LDHA in CRC

cells (59). LncRNA HULC has been demonstrated to bind

LDHA and PKM2 and thus promote aerobic glycolysis (74).

Yan T, et al. (60) have reported that lncSLCC1 was upregulated

in CRC and promoted glycolysis by transcriptionally activating

HK2 (60). Another well documented lncRNA interacting with

HK2 is lncRNA FGD5-AS1, which has been illustrated to

promote glycolysis through the miR-330-3p-HK2 signaling

network (67). Moreover, a lncRNA DANCR-miR-125b-5p-

HK2 axis has been well established in colon cancer cells,

which can promote aerobic glycolysis (75). Additionally,
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TABLE 2 LncRNAs involved in CRC glucose metabolism.

LncRNA Expression
(Up/Down)

Targeted
miRNA

Targeted
mRNA

Effect Reference

RAD51-AS1 Down miR-29b c-3p/NDRG2 Inhibiting cell proliferation, migration, invasion and glycolysis; promoting CRC
progression via miR-29b/c-3p/NDRG2 signaling axis

Li C, et al.
(53)

lncARSR Up miR-34a-5p HK1 Sponging miR-34a-5p and promoting HK1-related aerobic glycolysis in vitro and in
vivo in CRC

Li S, et al.
(62)

MCF2L-AS1 Up miR-874-3p FOXM1 Enhancing the glucose consumption and lactate production via upregulating GLUT1
and LDHA

Zhang Z,
et al. (63)

ZEB2-AS1 Up miR-188 TAB3 Promoting aerobic glycolysis via miR-188/TAB3 axis Li Y, et al.
(51)

HCG11 Up miR-144-3p PDK4 Promoting glucose metabolism and 5-FU sensitization through miR-144-3p-PDK4-
glucose metabolism pathway in CRC

Cui Z, et al.
(64)

GLCC1 Up NA c-Myc Enhancing aerobic glycolysis by stabilizing c-Myc Tang J, et al.
(8)

MIR17HG Up miR-138-5p HK1 Promoting CRC liver metastasis and glycolysis through p38/Elk-1 signaling pathway Zhao S,
et al. (65)

LINC00525 Up miR-338-3p UBE2Q1 Promoting hypoxia-induced glycolysis by activating HIF-1a in CRC Meng F,
et al. (46)

ZFAS1 Up NA OLA1 Accelerating ATP hydrolysis and the Warburg effect in an m6A-dependent manner Lu S, et al.
(47)

lnc-RP11-
536 K7.3

Up NA USP7 Promoting glycolysis, angiogenesis, and chemo-resistance via SOX2/USP7/HIF-1a
axis in CRC

Li Q, et al.
(66)

PTTG3P Up NA YAP1 Facilitating glycolysis and CRC proliferation and progression via regulating YAP1 Zheng Y,
et al. (48)

FGD5-AS1 NA miR-330-3p HK2 Enhancing glycolysis through the miR-330-3p-HK2 axis and promoting 5-Fu
resistance in CRC

Gao S, et al.
(67)

MIR31HG Up miR-361-3p YY1 Promoting glycolysis and metastasis of CRC via MIR31HG-miR-361-3p-YY1 axis Guo T, et al.
(56)

COL4A2-
AS1

Up miR-20b-5p HIF-1a Promoting aerobic glycolysis of CRC cells via miR-20b-5p/HIF-1a axis Yu Z, et al.
(68)

UCA1 Up NA HK2 and
LDHA

Contributing to Taxol resistance and promoting aerobic glycolysis in CRC Shi H, et al.
(59)

lncSLCC1 Up NA HK2 Promoting aerobic glycolysis and CRC growth Yan T, et al.
(60)

XIST Up miR-137 PKM2/PKM1 Elevating PKM2/PKM1 ratio and promoting 5-FU/cisplatin-resistance and glycolysis
in CRC

Zheng H,
et al. (69)

ENO1-IT1 NA NA ENO1 Promoting F. nucleatum-mediated glycolysis and oncogenesis via ENO1 pathway in
CRC

Hong J,
et al. (58)

MIAT Up miR-488-3p IGF1R Inhibiting CRC glycolysis via sponging miR-488-3p Liu Y, et al.
(49)

SPRY4-IT1 Up NA PDK1 Promoting aerobic glycolysis and CRC growth Liu S, et al.
(70)

KCNQ1OT1 Up NA HK2 Promoting colorectal carcinogenesis and glycolysis by targeting HK2 Chen C,
et al. (61)

SNHG6 Up NA PKM2/PKM1 Elevating PKM2/PKM1 ratio and promoting glycolysis in CRC Lan Z, et al.
(71)

MEG3 Down NA c-Myc Inhibiting glycolysis, glycolytic capacity, and lactate production in CRC cells Zuo S, et al.
(55)

HNF1A-
AS1

Up miR-124 MYO6 Enhancing glycolysis via miR-124/MYO6 axis in CRC Guo X, et al.
(50)

LINRIS Up NA IGF2BP2 Promoting glycolysis via LINRIS-IGF2BP2-MYC axis in CRC Wang Y,
et al. (54)

LINC00265 Up miR-216b-5p TRIM44 Increasing glucose uptake, pyruvate and lactate production in CRC Sun S, et al.
(52)

MAFG-AS1 Up miR-147b NDUFA4 Promoting glycolysis via targeting miR-147b/NDUFA4 Cui S, et al.
(72)

(Continued)
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MCF2L-AS1 is found to be enriched in tissues of CRC, which

enhances the glycolysis of CRC cells viaMCF2L-AS1/miR-874-

3p/FOXM1 ceRNA axis and upregulates GLUT1 and LDHA

(63). It has been elaborated that lncARSR can sponge miR-34a-

5p and promote hexokinase 1(HK1)-mediated glycolysis in

CRC (62). Besides, high level of lncARSR predicts poor survival

of CRC (62). Similarly, the study by Zhao S, et al. has shown the

evidence that lncRNAMIR17HG facilitated HK1 expression by

acting as a ceRNA for miR-138-5p (65). MIR17HG promotes

glycolysis and the liver metastasis of CRC (65). Furthermore,

LncRNA SPRY4-IT1 has been demonstrated to enhance CRC

cell growth and glycolysis by promoting phosphoinositide-

dependent kinase 1 (PDK1) expression (70). Similar altering

effect of lncRNA MAFG-AS1 has been illustrated to promote

PDK1 expression in CRC (72). Taken together, lncRNAs

participate in CRC glycolysis primarily by regulating the key

glycolysis-associated enzymes of HK1, HK2, PDK1, and crucial

transporter GLUT1 (Figure 1). Elucidating the underlying

mechanism and targets of lncRNAs in regulating glycolysis is

helpful for exploring more effective strategies for the diagnosis

and treatment of CRC.
HIF-1a

HIF-1a is a key transcriptional factor for hypoxia-induced

glycolysis in cancer, which is differentially regulated by diverse

lncRNAs. LINC00525 is documented to activate HIF-1a,
increase the expression of ubiquitin-conjugating enzyme E2Q

family member 1 (UBE2Q1), and enhance hypoxia-enhanced

glycolysis through miR-338-3p/UBE2Q1/b-catenin axis in CRC

(46). Similarly, lnc-RP11-536 K7.3 plays an oncogenic role in

CRC by promoting the angiogenesis, glycolysis, and chemo-

resistance in CRC through the SOX2/USP7/HIF-1a signaling

pathway (66). The study by Yu Z et al. has reported that miR-

20b-5p was bound with lncRNA COL4A2-AS1, which facilitated

the glycolysis of CRC cells by activating HIF-1a (68).

Accordingly, HIF-1a-dependent lnRNAs serve as promising

approaches for CRC treatment by controlling glucose

metabolic balance.
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PKM2

As a key enzyme in glycolysis, PKM2 has been demonstrated

to be regulated by several lncRNAs. For instance, lncRNA XIST

facilitates glycolysis of CRC cells by upregulating PKM2 through

XIST/miR-137/PKM2 axis (69). Similarly, lncRNA SNHG6

plays a critical role in the glucose metabolism of CRC, which

specifically splices PKM mRNA, increases PKM2/PKM1 ratio

and promotes the glycolysis in CRC (71). FEZF1-AS1 has been

shown to promote the pyruvate kinase activity and aerobic

glycolysis by targeting PKM2 in CRC cells (73). Taken

together, lncRNA-PKM2 axis is critical in regulating

CRC glycolysis.
Involvement of LncRNAs in regulating
CRC chemoresistance and glycolysis

Accumulating studies have suggested the critical role of

lncRNAs in chemoresistance in cancer. Some lncRNAs have

also been implicated to regulate the glucose metabolism and

chemoresistance in CRC. The study by Li Q et al. have identified

an oncogenic gene lnc-RP11-536 K7.3, which enhanced the

glycolysis and chemoresistance to oxaliplatin in CRC via

SOX2/USP7/HIF-1a s igna l ing ax is (66) . Pyruvate

dehydrogenase kinase 4 (PDK4) is a crucial enzyme for

glucose metabolism. LncRNA HCG11 has been validated to

facilitate 5-FU resistance by sponging miR-144-3p and

upregulating PDK4 in CRC (64). Similar to HCG11, lncRNA

FGD5-AS1 promotes glycolysis and 5-FU resistance of CRC cells

by acting as a ceRNA for miR-330-3p (67). Besides, lncRNA

UCA1 is documented to contribute to paclitaxel (Taxol)-

resistance and promote glycolysis by facilitating the expression

of HK2 and LDHA in CRC (59). Moreover, lncRNA XIST is

demonstrated to promoting 5-FU/cisplatin-resistance and

glycolysis in CRC by increasing the ratio of PKM2/PKM1,

while miR-137 mimics can alleviate the facilitating effect of

XIST (69). Accordingly, lncRNAs involved in regulating CRC

glycolysis and chemoresistance will serve as novel anticancer

strategies for CRC in the future.
TABLE 2 Continued

LncRNA Expression
(Up/Down)

Targeted
miRNA

Targeted
mRNA

Effect Reference

FEZF1-AS1 Up NA PKM2 Promoting pyruvate kinase activity and aerobic glycolysis in CRC Bian Z, et al.
(73)

HULC NA NA LDHA/PKM2 Promoting aerobic glycolysis Wang C,
et al. (74)

DANCR Up miR-125b-5p HK2 Enhancing aerobic glycolysis Shi H, et al.
(75)
fro
NA, not available.
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Regulation of glucose metabolic
reprogramming by circRNAs

Dysregulated circRNAs Associated with
glucose metabolic reprogramming
in CRC

Table 3 has shown the aberrantly expressed circRNAs in

CRC. Some circRNAs function as onco-circRNAs, while some

others act as cancer-suppressors. CircTADA2A has been

reported to inhibit the cell cycle, glycolysis of CRCs but

significantly promote CRC cells apoptosis (76). CircNOX4 has

been identified as an oncogenic circRNA in CRC by enhancing

the glycolysis and controlling the expression of CDC28 protein

kinase regulatory subunit 1B(CKS1B) in CRC cells through the

circNOX4/miR-485-5p/CSK1B axis (77). Knockdown of

circ_0000231 can inhibit glycolysis and the growth of CRC

cells by sponging miR-502-5p, which binds to myosin

VI (MYO6) (78). A recent published study has suggested that

circPLCE1 could also function as a ceRNA binding with miR-

485-5p and expedite epithelial mesenchymal transformation

(EMT) and glycolysis of CRC cells (79). Besides, circPLCE1 is

capable of promoting tumor-associated macrophage (TAM)

polarization towards M2 via upregulating g-Actin Gene

(ACTG1) but inhibit ing miR-485-5p in CRC (79).

Furthermore, silencing of circ-RNF121 represses the growth

and glycolysis of CRC cells, which can act as a sponge for

miR-1224-5p and target forkhead box M1 (FOXM1) (80). Most

importantly, circ-RNF121 can be packaged into exosomes and

thus contributes to intercellular communications and regulates

glycolysis in CRC (80). Apart from circ-RNF121, exosomes-
Frontiers in Oncology 08
delivering ciRS-122 is involved in promoting the glycolysis of

CRC cells through ciRS-122/miR-122/PKM2 ceRNA network

(81). Accordingly, circRNA is capable of acting as a sponge of

specific miRNA and thus participates in the Warburg effect by

regulating glycolysis-associated genes in CRC (Figure 1). Some

circRNAs can be delivered by exosomes and mediate glucose

metabolic reprogramming in CRC, including circ-RNF121 and

ciRS-122 (Figure 1).
CircRNAs and key enzymes/transporters
in glycolysis

The study by Zhang Z et al. has demonstrated that

circDENND4C was upregulated in CRC, which promoted the

proliferation, migration, and glycolysis of CRC cells by acting as

a ceRNA for miR-760 and regulating GLUT1 (82). Besides, 6-

phosphofructo-2-kinase/fructose-2,6-bisphosphatase isotype 3

(PFKFB3) is a pivotal enzyme for glucose metabolism. Gao Y

and the colleagues have found circSAMD4A could facilitate the

expression of PFKFB3 and promote glycolysis by sponging miR-

545-3p (83). Moreover, PKM2 is another crucial enzyme for

glycolysis in cancer. Exosomes from oxaliplatin-resistant CRC

cells can deliver ciRS-122 to oxaliplatin-sensitive cells, which

thereby upregulates PKM2 expression and promotes the

glycolysis and drug resistance of CRC cells (81). Li Q et al.

have reported that circACC1 played a critical role during the

metabolic reprogramming of CRC cells by regulating adenosine

monophosphate-activated protein kinase (AMPK) (84).

CircACC1 enhances both fatty acid b-oxidation and glycolysis

in CRC cells by activating AMPK (84). Taken together, those key
TABLE 3 CircRNAs involved in CRC glucose metabolism.

CircRNA Expression
(Up/Down)

Targeted
miRNA

Targeted
mRNA

Effect Reference

circDENND4C Up miR-760 GLUT1 Promoting the proliferation, migration, and glycolysis of CRC cells Zhang Z,
et al. (82)

circTADA2A Down miR-374a-3p KLF14 Inhibiting cell cycle, glycolysis and promoting the CRC cells apoptosis Zheng L,
et al. (76)

circNOX4 Up miR-485-5p CKS1B Serving as an oncogenic circRNA and promoting the glycolysis of CRC cells
through miR-485-5p/CKS1B signaling

Wang X,
et al. (77)

circ_0000231 Up miR-502-5p MYO6 Promoting glycolysis and MYO6 expression through sponging miR-502-5p Liu Y, et al.
(78)

circPLCE1 Up miR-485-5p ACTG1 Promoting epithelial mesenchymal
Transformation, M2 polarization and glycolysis in CRC

Yi B, et al.
(79)

circSAMD4A Up miR-545-3p PFKFB3 Contributing to 5-Fu resistance and promoting glycolysis Gao Y, et al.
(83)

circ-RNF121 Up miR-1224-5p FOXM1 Promoting CRC growth and glycolysis Jiang Z, et al.
(80)

ciRS-122 NA miR‐122 PKM2 Encapsulating in exosomes and promoting the glycolysis and
chemoresistance of CRC cells

Wang X,
et al. (81)

circACC1 Up NA AMPK Promoting the glycolysis and fatty acid b-oxidation Li Q, et al.
(84)
fro
NA, not available.
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enzymes or transporters targetedly regulated by circRNAs have

suggested novel markers for CRC diagnosis and treatment by

controlling glucose metabolism.
Effects of circRNAs on chemoresistance
in CRC by regulating glycolysis

Some dysregulated circRNAs participate in regulating

chemoresistance and glycolysis in CRC, such as circSAMD4A (83)

and ciRS-122 (81). CircSAMD4A contributes to 5-Fu resistance via

targeting miR-545-3p/PFKFB3 and regulating glycolysis of CRC

cells, while knockdown of circSAMD4A improves the sensitivity of

5-Fu (83). Exosomes-derived ciRS-122 is capable of promoting

glycolysis and making chemosensitive-CRC cells transform into

chemoresistant-CRC cells via miR-122/PKM2 axis (81).

Accumulating studies have implicated the important role of

circRNA in regulating immune metabolic reprogramming and

immune microenvironment balance in carcinogenesis (85).

CircPLCE1 has been documented to promote TAM polarization

towardsM2throughmiR-485-5p/ACTG1axis inCRC,whichplaysa

critical role in regulating CRC immune microenvironment balance

(79). All these findings have provided a promising circRNA-targeted

therapy for CRC by shaping cancer glucose metabolism, immune

microenvironment balance and cancer cells chemoresistance.
Concluding remarks and
future directions

In conclusion, ncRNA-based glucose metabol ic

reprogramming and chemoresistance have provided promising

prospects for CRC. Elucidating the interaction and possible

mechanism between ncRNAs and metabolic reprogramming

has shed some insights into understanding the pathogenesis

and drug resistance mechanisms of CRC. Novel biomarkers for

the diagnosis, chemoresistance intervention and prognosis
Frontiers in Oncology 09
prediction of CRC can be investigated in more future studies.

Most importantly, it is urgent to search for sufficient evidence

supporting the practical clinical applications of ncRNAs in CRC.
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