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Background: The nanotechnologies have been applied for dental restorative materials
manufacturing such as glass ionomer cement, composites, tooth regeneration, and
endodontic sealers. The study aimed to investigate the chemical bond of conventional
glass ionomer cement and to evaluate the addition of different concentrations of silver
nanoparticles (AgNPs) on the quality of the chemical bond of glass ionomer cement to
primary dentin.

Methods: Silver nanoparticle (AgNP) powder was added in concentrations of 0.2, 0.4, and
0.6% to the conventional powder of GIC Fuji II. Then, the powder was added to the liquid and
mixed with the recommended powder/liquid ratio of 3.6:1 g. The Fourier-transform infrared
spectra (FTIR) of teeth with 0.2%, 0.4%, and 0.6% w/w of silver nanoparticles in GIC fills and
the control toothwere obtained. The conventional glass ionomerwas used as a control group.
The control and the plain silver tooth were subjected to FTIR analysis using an ATR–FTIR
spectrophotometer (ThermoFisher Scientific, Waltham, MA, United States) with zinc selenide
(ZnSe) ATR crystal (attenuated total reflection) and OPUS v7.5 software. All spectra were
recorded in the range of 500–3,500 cm−1 in the transmission mode with an ATR module.

Results: The AgNPs added at 0.2, 0.4, and 0.6% concentration to GIC provided some
information in the context of bond interaction with the dentin. Various bond peaks were
seen for calcium, carbonate, phosphate, and amide. In our study, only the amide and
phosphate were generated. The amide peaks were almost similar to the control, 0.2%,
0.4%, and 0.6%, with the peaks in the range of 1250–1650 cm−1. There was a clear shift in
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the phosphate peak from the control, 0.2, and 0.4%, which was about 1050 cm−1,
whereas for 0.6%, there was a clear shift from 1050 cm−1 to 880 cm−1.

Conclusion: GIC supplemented with AgNPs showed that a concentration above 0.4% of
AgNPs altered the bond quality in dentin interaction. In conclusion, adding AgNPs at a
minimal level improves the mechanical properties and maintains the same bond quality
as GIC.

Keywords: bong strength, silver nanoparticles, bonding, glass ionomer, primary teeth

INTRODUCTION

The glass ionomer cement (GIC) was first discovered by Wilson
and Kent (1972). It has been widely used for restorations, liners
and bases, pit and fissure sealants, luting materials, core buildups,
and orthodontic bracket adhesives (Cibim et al., 2017). GIC’s
shortcomings are little fracture toughness, little wear resistance,
and formal dissolution on water sorption that might lead to the
growth of secondary caries, bacteria, and in the end, failure of the
restoration (Garcia-Contreras et al., 2015). Furthermore, GICs
have good biocompatibility, a low thermal expansion coefficient,
and fluoride-releasing properties (Garcia-Contreras et al., 2015).

The secondary caries was reported as being the primary reason
for the failure of GICs because the fluoride release was not enough
to inhibit bacterial growth (Xie et al., 2011). The primary cause
for caries and cariopathogenic biofilm development can be
adhesion to the tooth surface by specific oral bacteria (Garcia
et al., 2016). It can occur after a minimally invasive technique that
would leave caries-affected tissues behind, thus resulting in
elevation of the probability of residual bacteria on the
prepared teeth cavities (Doozandeh et al., 2015). Furthermore,
bacteria might invade tooth restoration interfaces throughout
service when microleakage occurs in that region (Jowkar et al.,
2019). Accordingly, a restoration may be affected by secondary
caries that results from the growth of bacterial colonies, notably
Streptococcus mutans, beneath the restorations (Kasraei et al.,
2014).

For minimizing secondary caries failure, additional filler was
introduced to improve the antibacterial and mechanical
proprieties of the GICs without any interference with their
bond strength and fluoride-releasing properties (Xu and
Burgess, 2003; Garcia-Contreras et al., 2015). Nanotechnology
is the science of producing functional structures and materials
that range from 0.1 to 100 nm utilizing different physical and
chemical processes. The developments of nanocomposites was
the first attempt in the restorative dentistry field to use
nanoparticles (NPs). This attempt has enabled scientists to
develop nanoparticle-enriched GICs (Mitra et al., 2003). The
nanotechnologies were applied for dental restorative materials
manufacturing such as glass ionomer cement (i.e., nano-
ionomers), composites (i.e., nanocomposites), tooth
regeneration, and endodontic sealers (Mitra et al., 2011). The
vital contribution from nanodental materials can be considered to
be identifying oral health-related disorders via enhanced
management and diagnosis of dental problems via
bionanomaterials (Maman et al., 2018). Silver can be used in

elementary and ionized forms such as nanoparticles or silver
zeolites (Monteiro et al., 2012; Padovani et al., 2015; Köroğlu et
al., 2016; Crystal and Niederman, 2019). A silver alloy powder
was formerly added to a restorative glass ionomer cement to make
a metal reinforced GIC, which is more complex and more
substantial. A silver powder was sintered to glass at high
temperatures to obtain cermet cement. It has been claimed
that such silver-sintered powder could improve abrasion
resistance and durability (Simmons, 1983; McLean et al., 1994).

Silver nanoparticle incorporation into GIC powder could
reduce biofilm formations that would not significantly affect the
mechanical and physical properties. In one study, silver
nanoparticles were not firmly bonded to the matrix. They did
not significantly improve the mechanical properties, which could
be due to their nanosize, which allowed dispersion between and
around polymer chains (Köroğlu et al., 2016; El-Wassefy et al.,
2018; Crystal and Niederman, 2019). Incorporating silver
nanoparticles into glass ionomer cements significantly enhanced
the material’s wear resistance. The main improvement after adding
silver nanoparticles was abrasion resistance and radio-opacity to
the glass ionomer cement (McKinney et al., 1988; Xie et al., 2000).
Fourier-transform infrared spectroscopy (FTIR) qualitative
analysis can provide wave modes of molecules, assessed via the
sample optical absorptions bands, which can be thought of as the
fingerprints of specific molecules that provide accurate data on
chemical changes inside a material. The latter being evaluated has
suggested potential changes in absorption bands and/or new bands
(Yamakami et al., 2018). Thus, there is evidence from previous
studies about the advantages of adding silver nanoparticles
(AgNPs), which show increased mechanical and antibacterial
properties. Still, there are no studies on the quality of the bond
interaction of silver nanoparticles (AgNPs) with dentin. The study
aimed to investigate the chemical bond of conventional glass
ionomer, evaluate the addition of silver nanoparticles (AgNPs)
to traditional glass ionomer cement (GIC), and assess the effect
of different concentrations of silver nanoparticles (AgNPs) on
the quality of the chemical bond of glass ionomer cement to
primary dentin.

METHODOLOGY

Materials
GC Fuji II [powder 15 g: 95% by weight alumino-fluoro-silicate
glass with 5% polyacrylic acid powder, liquid 8 g (6.4 ml): 50
percent distilled water, 40 percent polyacrylic acid, and 10 percent

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 8166522

Abed et al. Silver Nanoparticles and Glass Ionomer Cement

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


polybasic carboxylic acid (GC, Tokyo, Japan)] and silver
nanoparticles (AgNPs) (<100 µm in size) from Sigma Aldrich
(St. Louis, MO, United States, Lot # MKBN3581V).

Ethical Approval
The proposal was registered with the research center of Riyadh
ElmUniversity (FPGRP/43835007/334), and ethical approval was
obtained from the Institutional Review Board of the institution.

Preparation of Samples
In this in vitro study, a conventional GIC (GC Fuji II, GC
Corporation, Tokyo, Japan) (f) and silver nanoparticle
powders (AgNPs) <100 nm particle size (Sigma-Aldrich, St.
Louis, MO, United States) (Figure 1) were purchased. The
SNP powder was weighed carefully using a weighing machine
with an accuracy of ±0.0001 g Precisa (360A, Livingston, U.K)
(Figure 1), and three concentrations were obtained: 0.2, 0.4, and
0.6% (w/w). The GIC specimens were divided into four groups for
each test: GIC without silver nanoparticles (AgNPs) (n = 10), GIC
with 0.2% silver nanoparticles (AgNPs) (n = 10), GIC with 0.4%
silver nanoparticles (AgNPs) (n = 10), and GIC with 0.6% AgNPs
(n = 10) (Figure 3). The materials were mixed with a powder/
liquid P/L ratio of 2.6.1 g and were prepared following the
manufacturer’s instructions.

Preparation of Group(s)
The extracted teeth were collected from an operating room and
dental clinic. The teeth were carefully examined to ensure the
absence of debris. For 1 month, the teeth were stored in a 0.1%
thymol solution with 0.9% isotonic sodium chloride (5°C) until the
beginning of the experiment. We used a diamond separating disc
(Edenta ISONo. 806.104.355.514.220, Switzerland; 15.000 rotations/
min) at a slow-speed handpiece with continuous water cooling,
perpendicular to the tooth’s long axis, and sectioned approximately
2.0 mm of the tissue along with the cusps without exposing the pulp
(Porenczuk et al., 2016). The 40 teeth were categorized into four
groups with an equal distribution that includes group 1 (apply GIC
on dentin as the control group), group 2 (apply GIC with silver
nanoparticles (AgNPs) (0.2%) on dentin), group 3 (apply GIC with
silver nanoparticles (AgNPs) (0.4%) on dentin), and group 4 (apply
GIC with silver nanoparticles (AgNPs) (0.6%) on dentin). For the
preparation of the control group, the ratio of powder and liquid was
taken as per the manufacturers’ instructions, and they were mixed
on a glossy paper pad. Subsequently, all the samples were prepared
for FTIR.

Analysis of the Mechanical Interaction
Fourier-transform infrared spectroscopy (FTIR) (Figure 1)
provides the vibrational modes of the molecules, evaluated by

FIGURE 1 | (A)GC Fuji II powder and liquid; (B) silver nanoparticle (AgNP) powder used for making samples; (C)mixed GIC powder and silver nanoparticle (AgNP)
powder with different concentrations 0.2, 0.4, and 0.6%; (D) electronic weighing scale used for measuring the weight of the GIC powder and other substance(s); (E)
Fourier-transform infrared spectroscopy (FTIR).
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the optical absorption bands of the sample, which are considered
the fingerprints of specific molecules, enabling precise
information about chemical changes in the material, the latter
being assessed based on the possible changes in absorption bands
and/or the appearance of new bands (Larkin, 2011). Teeth with
0.2%, 0,4%, and 0.6% w/w of silver nanoparticles and GIC, the
control tooth, and plain silver were subjected to FTIR analysis
using an ATR–FTIR spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, United States) with zinc selenide
(ZnSe) ATR crystals (attenuated total reflection) and OPUS
v7.5 software. All spectra were recorded in the range of
500–3,500 cm−1 in the transmission mode with an ATR
module. The FTIR vibration range mode wavenumber was
from 500 to 3500 cm−1. The FTIR analysis of GIC showed a
similar interaction with the dentin compared to the GIC, with 0.2
and 0.4% AgNPs. These vibrational groups were part of the cross-
linking reaction and aging time. In addition, the FTIR spectra
showed the vibration of Ag in molecular water associated at the
range of 3300 cm−1. The vibration band then shifted to 880 cm−1.
This band was related to the bonding structure present in the GIC
sample with 0.6%. The other band existing at ~1,550 cm-1

referred to the formation of the asymmetric COOH band
from the PAA.

Statistical Analysis
Only descriptive analysis was carried out, and statistical analysis was
not performed in this study due to the qualitative characteristics of
the data resulting from FTIR (Yamakami et al., 2018).

RESULTS

The results of the bioactive evaluation of silver nanoparticle
cement, carried out by Fourier-transform infrared
spectroscopy, are shown in Figure 2. The GIC had various
peaks, of which v1, v2, v3, v4, and v5 with 1068 cm−1,
1365 cm−1, 1456 cm−1, 1637 cm−1, and 1740 cm−1, respectively,

were significant. The results of the bioactive evaluation of glass
ionomer cement, carried out by Fourier-transform infrared
spectroscopy, are shown in Figure 3. The GIC had various
peaks, of which v1, v2, v3, v4, and v5 with 1050cm−1,
1,365 cm−1, 1,412 cm−1, 1490 cm−1, and 1556 cm−1,
respectively, were significant. The GIC with silver
nanoparticles (AgNPs) 0.2% had various peaks, of which v1,
v2, v3, v4, and v5 with 1,048 cm−1, 1,368 cm−1, 1,410 cm−1,
1492 cm−1, and 1561 cm−1, respectively, were significant. The
results of the bioactive evaluation of glass ionomer cement and
silver nanoparticles (AgNPs) 0.2% with dentin, carried out by
Fourier-transform infrared spectroscopy, are shown in Figure 4.

The results of the bioactive evaluation of glass ionomer cement
with silver nanoparticles (AgNPs) 0.4% with dentin, carried out
by Fourier-transform infrared spectroscopy, are shown in
Figure 5. The GIC with silver nanoparticles (AgNPs) 0.4%
had various peaks, of which v1, v2, v3, v4, v5 with 1,045 cm−1,
1,360 cm−1, 1,418 cm−1, 1,485 cm−1, and 1,548 cm−1, respectively,
were significant. The GIC with silver nanoparticles (AgNPs) 0.6%
had various peaks, of which v1, v2, v3, v4, and v5 with 8,080 cm−1,
1,365 cm−1, 1,408 cm−1, 1,493 cm−1, and 1,565 cm−1, respectively,
were significant. The results of the bioactive evaluation of glass
ionomer cement with silver nanoparticles (AgNPs) 0.6% with
dentin, carried out by Fourier-transform infrared spectroscopy,
are shown in Figure 6. The results of the bioactive evaluation of
dentin performed by Fourier-transform infrared spectroscopy are
shown in Table 1. The dentin had various peaks, of which v1, v2,
v3, and v4, with 1040 cm−1, 1242 cm−1, 1546 cm−1, and
1655 cm−1, respectively, were significant.

DISCUSSION

The present study has been carried out to investigate the effect of
the bonding interaction of AgNP incorporation into GIC onto the
dentin surface. Three concentrations (0.2, 0.4, and 0.6%) were
added, with the control being the GIC. This study showed a

FIGURE 2 | Bioactive evaluation of silver nanoparticles.
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greater variation of the transmission bands after the increased
addition of silver nanoparticles, indicating a change in bond
interaction with the dentin. Pure GIC has the disadvantage of less
wear resistance, and it cannot withstand the masticatory forces.
The common reason for the low resistance of GIC to fracture is
the presence of voids in the cement matrix, which are formed by
the inclusion of air during cement mixing. These voids may act as
stress raisers and concentrators and eventually weaken the
mechanical properties of the set cement (Kent, 1973; Elsaka
et al., 2011; Liu et al., 2014). Many practitioners use this
restoration due to the major advantage of its fluoride-releasing
property (Xu and Burgess, 2003). The manufacturers also release
many combinations to improve the mechanical properties
without losing the fluoride release.

Recent studies suggest that the voids tend to be filled with
nanoparticles incorporated into GIC (Elsaka et al., 2011;
Gjorgievska et al., 2015). In this process of experimentation, a
limited number of studies were carried out incorporating SNP
with GIC (Paiva et al., 2018; Jowkar et al., 2019). Jowkar and co-
workers (2019) used the addition of 0.1 and 0.2% of AgNPs to
GIC in their study and concluded that the higher concentration of
0.2% showed a significant improvement in mechanical properties
(surface hardness, flexural strength, compressive strength, and
micro-shear bond strength to dentin). Paiva and co-workers
(2018) concluded that a higher concentration of silver (0.5%
by mass) in the matrix of nano-Ag-GIC allowed viable net setting
time and increased the compressive strength of the experimental
cement by 32%. The addition of AgNPs increased the mechanical

FIGURE 3 | Bioactive evaluation of glass ionomer cement (GIC) with dentin.

FIGURE 4 | Bioactive evaluation of glass ionomer cement (GIC) and silver nanoparticles (AgNPs) 0.2% sample with dentin.
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properties of the GIC and improved the antibacterial property in
arresting the caries (Padovani et al., 2015; Raggio et al., 2016;
Paiva et al., 2018; Nuvvula and Mallineni, 2019).

The small sizes of the silver nanoparticles incorporated into
GIC and the improved packing of particles within the matrix of
the set cement may explain the improvement of the flexural and
compressive strengths of the AgNP-containing GIC.
Incorporating AgNPs into GIC may also result in a broader
particle size distribution range. Therefore, these small silver
nanoparticles can occupy the empty spaces between the larger
glass particles and provide an additional bonding site for the
polyacrylic polymer (Moshaverinia et al., 2008; Moshaverinia
et al., 2010). Considering all these factors, we completed novel
research on how various concentrations of AgNPs would change
the interaction of GIC and AgNPs with the dentin. Several studies
(Paiva et al., 2018; Jowkar et al., 2019) have shown that any

concentration less than 0.5% AgNPs with GIC improved the
mechanical properties. Hence, our study added more than 0.5%
AgNPs, that is, 0.6% AgNPs as one of the groups along with 0.2
and 0.4%.

The present study aimed to examine the quality of the bonding
interaction without changing the ideal bond quality achieved with
GIC. However, the study focused on the exchanges that occurred
when the cement was brought into contact with dentin. It is
essential to differentiate between short-term and long-term
interactions. Short-term interactions occur when the freshly
prepared glass ionomer cement is brought into contact with
dentin. They correspond to the rapid inter-diffusions between
the dentin elements and the glass ionomer cement when the
cement is not entirely set. These inter-diffusions enable the GIC
to adhere to dentin. This ceases once the cement has been
developed completely. Long-term interactions correspond to

FIGURE 5 | Bioactive evaluation of glass ionomer cement (GIC) and silver nanoparticles (AgNPs) 0.4% sample with dentin.

FIGURE 6 | Bioactive evaluation of glass ionomer cement (GIC) and silver nanoparticles (AgNPs) 0.6% sample with dentin.
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the slow diffusion of some elements of the glass ionomer cement
through dentin. They can be caused by water in the buccal
environment (Sennou et al., 1999).

This quality of binding of any restorative material to dentin is
achieved through various methods such as FTIR (Paiva et al.,
2018; Yamakami et al., 2018; Jowkar et al., 2019), Raman
spectroscopy (Larkin, 2011; Yamakami et al., 2018), infrared
spectroscopy (Larkin, 2011), and X-ray photoelectron
spectroscopy (Sennou et al., 1999). Devaraj and co-workers
(2013) reported that the FTIR spectra of silver nanoparticles
exhibited prominent peaks at 2,927 cm−1, 1,631 cm−1, and
1,383 cm−1. Similar peaks were evident in the present study
with little variation, showing various peaks, such as v1, v2, v3,
v4, and v5 with 1,068 cm−1, 1365 cm−1, 1456 cm−1, 1637 cm−1,
and 1740 cm−1, respectively. FTIR of the dentin surface showed
several amide peaks (amide I, amide II, and amide III) in the
range between 1,250 and 1,650 cm−1, and the phosphate intensity
ranged slightly over 1,000 cm−1 (Table 1). These results are
similar to Spencer et al. (2005); Cao et al. (2014). Lin and co-
workers (2001) reported two different absorption bands at
2,200 cm−1 and 2015 cm−1 in the spectrum. Lopes and co-
workers (2018) suggested a reaction in the organic matrix or
between the organic matrix and minerals, resulting in a
different peak.

The phosphate bonds were more peculiar with four vibrational
modes: v1, v2, v3, and v4. All these modes were infrared
radiography active and observed in dentin. In the present study,
a single intense v3 band was observed at about 1046 cm-1. The v3
band overlapped with the v1 band, the first one of greater intensity
(Nelson and Featherstone, 1982). The phosphate v1 band was
present at 960 cm−1. The phosphate v4 band was observed at in
660 cm1 and 520 cm1 and was a sharp, well-defined band (Rehman
and Bonfield, 1997). Last, a soft phosphate v2 band was observed in
the region of 470 cm−1 (Bachmann et al., 2003). In the present
study, AgNPs were added at 0.2, 0.4, and 0.6% concentration to
GIC and provided evidence for the context of bond interaction
with the dentin. There was a clear shift evident in the phosphate
peak for control, 0.2%, and 0.4%, which was around 1050 cm−1,
while for 0.6%, there was a clear shift from 1050 cm−1 to 880 cm−1,
which was evident in the present study. Various bond peaks were
seen for calcium, carbonate, phosphate, and amide. In our study,
only the amide and phosphate groups significantly generated
peaks. The amide peaks were similar to the control, 0.2%, 0.4%,
and 0.6%, ranging from 1250 to 1650 cm−1. This shows that there
was a change in the interaction of bonding. We found a change
in bond quality when AgNPs increased to 0.6% in the
present study.

Limitations
The statistical analysis was not carried out in the present study,
based on the study and descriptive analysis carried out by
Yamakami et al. (2018), and this is also considered one of the
potential limitations. It was an in vitro study, and we cannot
assess what would happen in a clinical setting. Second, we used
GIC GC Fuji II in the study, and variations may occur using other
types of GIC. FTIR does not offer the high spatial resolution
capabilities of different techniques such as micro-Raman
spectroscopy (approx. 1 μm). However, FTIR has the
advantage that IR spectra, with an acceptable signal/noise
ratio, can be collected from areas measuring several hundred
square micrometers in a matter of minutes.

Recommendations
We warrant further research to examine the addition of other
substances to GIC and their effect on the bond strength of this
material. In vitro studies already have good evidence, but we
suggest in vivo studies to improve the quality of the restorations in
a clinical condition.

CONCLUSION

The descriptive analysis in the present study showed that any
concentration beyond 0.4% of AgNPs altered the bond quality
with dentin interaction. In conclusion, adding AgNPs to a
minimum improves the mechanical properties and maintains
the same bond quality as GIC.
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TABLE 1 | Wave numbers of dentin by Fourier-transform infrared spectroscopy.

Tissue Amide I Amide II Amide III Phosphate

Dentin 1,655 1,546 1,242 1,040
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