
Improving adenoviral vectors and strategies for prostate
cancer gene therapy
Rodrigo Esaki Tamura, Igor Vieira de Luna, Marlous Gomes Lana, Bryan E. Strauss*
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Gene therapy has been evaluated for the treatment of prostate cancer and includes the application of adeno-
viral vectors encoding a suicide gene or oncolytic adenoviruses that may be armed with a functional transgene.
In parallel, versions of adenoviral vector expressing the p53 gene (Ad-p53) have been tested as treatments for
head and neck squamous cell carcinoma and non-small cell lung cancer. Although Ad-p53 gene therapy has
yielded some interesting results when applied to prostate cancer, it has not been widely explored, perhaps due
to current limitations of the approach. To achieve better functionality, improvements in the gene transfer
system and the therapeutic regimen may be required. We have developed adenoviral vectors whose transgene
expression is controlled by a p53-responsive promoter, which creates a positive feedback mechanism when used
to drive the expression of p53. Together with improvements that permit efficient transduction, this new
approach was more effective than the use of traditional versions of Ad-p53 in killing prostate cancer cell lines
and inhibiting tumor progression. Even so, gene therapy is not expected to replace traditional chemotherapy
but should complement the standard of care. In fact, chemotherapy has been shown to assist in viral transduc-
tion and transgene expression. The cooperation between gene therapy and chemotherapy is expected to
effectively kill tumor cells while permitting the use of reduced chemotherapy drug concentrations and, thus,
lowering side effects. Therefore, the combination of gene therapy and chemotherapy may prove essential for
the success of both approaches.
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Prostate cancer
In the United States, prostate carcinoma is the most frequent

cancer among men, accounting for 19% of cancers in 2017.
Though incidence rates vary by region and are higher in
developed countries, an estimated 1.1 million men were
diagnosed with prostate cancer in 2012, making it the second
most common cancer in men worldwide. The highest rates
are in Australia, North America, and Northern and Western
Europe, which are regions where testing for prostate-specific
antigen (PSA) has become commonplace. In South America,
the rate is 60.1 per 100,000 (age-standardized rate). In a
global estimate, prostate cancer is the fifth leading cause of
death from cancer in men. The prediction for 2020 is 1,392,727
new cases worldwide (1,2).
If detected early while locally confined, prostate cancer is

largely curable by radical prostatectomy or radiotherapy (3).
However, initial diagnosis of up to 15% of patients include

metastatic lesions, and recurrence after conventional radical
therapy occurs in up to 40% of patients (4,5). Typically, androgen
deprivation therapy (ADT) is given to patients with recurrent
disease and is often effective, though most of these patients
will relapse after 2-3 years due to the development of
castration-resistant prostate cancer (CRPC) (6). The most
important driver of resistance is the androgen receptor (AR),
whose hyperactivity may arise through multiple mechanisms,
such as AR amplification and hypersensitivity, AR muta-
tion leading to promiscuity, androgen-independent AR acti-
vation and intratumoral alternative androgen production (7).
Docetaxel, a cytotoxic antimicrotubule agent that binds to the
b-tubulin subunit of microtubulin, is the first line treatment
for CRPC. Although docetaxel may be effective, only approxi-
mately 48% of patients responded to combined docetaxel and
prednisone treatment, with a median survival of 2.5 months
over the control group (8). Other current chemotherapies
include abiraterone and enzalutamide (second-generation
antiandrogens), which are used as second-line treatments for
CRPC, and cabazitaxel (second-generation tubulin-binding
taxane) has proven to be beneficial even as a third-line treat-
ment (9,10). Even with these advances, the 5-year survival
rate of CRPC is only 31% (11); therefore, continued study of
alternative therapies is warranted.

Gene therapy for prostate cancer
Gene therapy using adenoviral vectors has been evaluated

in 17 clinical trials for the treatment of prostate cancer (clinical
trials.gov). Here, we will address some of these approaches,DOI: 10.6061/clinics/2018/e476s
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emphasizing the modifications made to the vector. The use
of a prostate-specific promoter to drive viral expression or
control oncolytic viral replication assures specificity through
transcriptional control. Alternatively, modifications in the
fiber protein are expected to alter vector tropism at the level
of transduction.
Most of the prostate-specific promoters are derived from

the PSA and prostate-specific membrane antigen (PSMA)
enhancers (12,13). A chimera composed of the PSA enhancer
and the probasin (PB) promoter showed 20% less activity
than the cytomegalovirus (CMV) promoter but high prostate
cancer cell specificity (14). Promoters of tyrosinase (15), human
glandular kallikrein (hKLK2) (16), PB and the mouse mam-
mary tumor virus long terminal repeat (MMTV LTR) (17) have
also been tested for their usefulness in treating prostate cancer.
The serotype 5 adenovirus (Ad5) initially makes contact

with its cellular receptor (coxsackievirus and adenovirus
receptor, CAR) through the fiber protein; thus, its modifica-
tion can direct viral tropism. For example, compared to an
unmodified Ad5 vector, a shortened chimeric Ad5/35 hybrid
fiber protein had an increased transgene insert size as well as
increased transduction efficiency in different prostate cancer
cell lines (18). A fiber knob chimera of Ad5/3 facilitated
transduction in a CAR-independent manner (19). Incorpora-
tion of the Arg-Gly-Asp (RGD) tripeptide motif into the fiber
protein increased transduction, even in CAR-negative pro-
state cancer cell lines (20,21). Additionally, tissue-specific
expression was enhanced in high-capacity adenoviral vectors
compared to first-generation adenoviral vectors (15). To avoid
destruction of the virus particles by the immune system, use of
other adenovirus serotypes (Ad6), shielding of the virus particle
with PEG and use of mesenchymal stem cells (MSCs) and
dendritic cells as carriers have been tested (22-24).
Conditionally replicating viruses were tested in phase I/II

clinical trials. These adenoviral vectors encode the E1 gene
under control of a tissue-specific promoter, thus limiting viral
replication. In a phase I clinical trial with 20 patients, dif-
ferent doses of the CG7060 virus (Cell Genesys, South San
Francisco, CA), which contains the PSA enhancer, were well
tolerated, and there was a correlation between viral dose and
effect: the patients with the greatest reduction in PSA levels
received the highest dose (25). Another vector, CG7870 (Cell
Genesys), has the E1 gene under control of the rat PB pro-
moter and the E1B gene under control of the PSA promoter,
providing two degrees of specificity. The CG7870 vector
was administered in 23 patients with CRPC, and 5 patients
showed a 25-49% decrease in PSA levels (26). The combina-
tion of CG7870 with taxanes resulted in a synergistic res-
ponse in vitro (27). Another promoter used is a chimera
composed of the PSA and PSMA enhancers, as well as the
T-cell receptor g-chain alternate reading frame protein pro-
moter, Ad[I/PPT-E1A]. While not yet tested clinically, the
Ad[I/PPT-E1A] oncolytic vector showed prostate-specific
activity in both a hormone-dependent and hormone-independent
manner, suggesting its usefulness even in patients treated
with androgen withdrawal (28). Avaccination protocol using
an adenoviral vector expressing PSA was used in a phase I
clinical trial and was shown to be safe and to increase survival
in CRPC patients (29). Phase II clinical trials are underway (30).
Oncolytic adenoviral vectors have also been armed with

functional transgenes. A prostate-restricted replicative ade-
novirus (PRRA) using a prostate-specific enhancer (PSES)
to control the expression of E1A, E1B and E4 was armed
with the FasL gene. This conditionally replicating adenoviral

vector induced apoptosis of PSA/PMSA-positive cells and
was less toxic compared to an AdCMVFasL vector, which
killed all mice in 16 hours due to multivisceral failure (31).
PRRAs have been armed with other transgenes such as a
fusion of the endostatin and angiostatin genes (18), reduced
expression in immortalized cells (REIC) (32), glioma patho-
genesis-related protein 1 (GLIPR1) (33) and a fusion protein
of PSA and CD40L (34).

First-generation adenoviral vectors armed with a suicide
gene were safe and well tolerated in phase I clinical trials for
patients with local recurrent or metastatic prostate cancer.
Only one patient who received the highest viral dose suf-
fered grade 4 thrombocytopenia and grade 3 hepatotoxicity;
some patients showed evidence of reduced PSA levels. Suicide
gene therapy has also been combined with conditionally
replicating adenoviruses in prostate cancer patients with
locally recurrent disease, newly diagnosed and locally aggres-
sive disease or metastatic disease. Even though it was shown
to be safe and an initial PSA decline was observed, patients
relapsed (35-39). Long-term follow up of the patients with
local recurrence who were treated with a combination of sui-
cide gene therapy and radiotherapy showed that the patients
benefited in terms of the PSA doubling time (PSADT) (40).
Introducing suicide therapy into a second-generation adeno-
virus in combination with intensity-modulated radiotherapy
(IMRT) in patients with newly diagnosed prostate cancer
resulted in low toxicity and a reduction in the percentage of
patients who were positive for adenocarcinoma (41). Ultra-
sound-directed intraprostatic injection of an adenoviral
vector expressing thymidine kinase (Ad-TK) was well tolerated
and none of the 10 patients with adenocarcinoma developed
metastases (42). Strategies involving suicide gene therapy in
prostate cancer are ongoing (clinicaltrials.gov).

’ ADENOVIRUS-P53 IN PROSTATE CANCER

P53 in prostate cancer
The p53 protein is an important tumor suppressor involved

in a variety of cellular responses to stress. P53 degradation is
mediated by murine double minute 2 (MDM2), and disrup-
tion of the p53/MDM2 complex frees p53 to promote the
transcription of specific target genes that, in turn, direct
cellular responses such as apoptosis (43,44). In prostate
cancer, p53 alterations occur in approximately 5% of cases,
while this number rises to 65% in metastatic disease (45,46).
The detection of p53 in prostate cancer was analyzed in more
than 50 studies showing that immunohistochemical staining
of p53 increases in high-grade carcinomas, advanced stage
cancer and carcinomas of peripheral zone origin (47). How-
ever, there are fewer studies mapping the alterations in p53
in prostate cancer, and such studies show divergent fre-
quencies ranging from 3-40% in p53 gene mutation and 10-60%
deletions or loss of heterozygosity (48-50). A more recent
study that combines tissue microarray (TMA) and DNA
analysis found that different types of p53 alterations char-
acterize subgroups of prostate cancer with distinctively
different prognoses; strong p53 immunostaining is rare but
represents an independent and worse prognostic event in
prostate cancer (47).

Ad-p53 clinical trials
Viral vectors expressing p53 have been in development for

the last 25 years, and even though retroviral vectors were the
first to be tested in patients, adenoviral vectors have been
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more broadly used, and different versions have been employed
to express the tumor suppressor p53 (51-54). Three slightly
different first-generation adenoviral vectors reached clin-
ical trials; all with deletions in the E1 gene and expression
of the p53 gene under control of constitutive promoters
(CMVor Rous sarcoma virus [RSV]). These Ad-p53 vectors
known as Advexin (Introgen Therapeutics, Multivir, Inc,
both of Houston, TX), SCH58500 (Merck & Co; Schering-
Plough, Kenilworth, NJ) and Gendicine (Shenzhen SiBiono
GeneTech, Guangdong, China) have been tested for treat-
ing different types of cancers, including non-small cell lung
cancer (NSCLC), head and neck squamous cell carcinoma
(HNSCC), colorectal, bladder and several other cancers
(51,55-63). Even with the publication of promising clinical
results, only Gendicine has been approved for commercia-
lization and is currently being used in China for the treat-
ment of head and neck cancer. A phase I clinical trial using
Advexin for prostate cancer showed that the vector is safe,
with no grade 3 or 4 side effects, and that the vector induced
the expression of p53 and apoptosis of the tumor cells (64).
Even so, no further trials testing Advexin for the treatment of
prostate cancer were performed.

Improvement of Ad-p53 for prostate cancer
In the 1990s, Ad-p53 was tested in prostate carcinoma cell

lines and xenograft mouse models, showing varied results.
Some groups have demonstrated that Ad-p53 can induce
apoptosis and reduce tumor volume (65-67), while another
group did not observe any advantage of Ad-p53 compared
to the control, revealing instead that Ad-p21 was more effec-
tive for reducing tumor volume and increasing survival (68).
Most of these studies were conducted 20 years ago, and it
seems that these investigators have discontinued such efforts.

For the treatment of prostate cancer with gene therapy,
improvements in the design of the viral vector as well as the
gene transfer approach may increase efficacy, especially with
respect to transduction efficiency and transgene expression.
We have developed an improved Ad-p53. Instead of using

a constitutive promoter, we have developed a p53-responsive
promoter (PG), which was initially incorporated in a retro-
viral vector. This modified expression system could surpass
the parental unmodified vector by up to seven-fold (69).
When the p53 gene was placed under control of this PG
promoter, an autoregulated positive feedback mechanism
was established, leading to more robust inhibition of tumor
cell proliferation (70). Next, we transferred this expression
system to an adenoviral vector and observed that this pro-
moter was 5-fold stronger than the CMV promoter (71).
This vector, named Ad-PGp53, provides higher levels of p53
expression than Ad-CMVp53. A schematic representation of
these two vectors is depicted in Figure 1, which are similar
to the commercial vectors tested in several clinical trials.
We showed that Ad-PGp53 was better able to induce cell death
in vitro and in vivo than Ad-CMVp53, and in situ gene therapy
resulted in reduced tumor volume and increased overall sur-
vival only with Ad-PGp53. In this same work, we observed
that the PC3 prostate carcinoma cell line was not efficiently
transduced by Ad5 (72). Therefore, we made an additional
improvement, incorporating the RGDmotif in the fiber protein,
thus creating AdRGD-PGp53, which offers both enhanced
transduction efficiency in PC3 cells and a high level of p53
expression due to the positive feedback mechanism. This vector
showed strong antitumor activity in vitro and in vivo, induc-
ing high levels of reactive oxygen species (ROS), DNA damage
and alteration of mitochondrial membrane permeability and
resulting in apoptosis (21). Even though this improved

Figure 1 - Schematic representation of non-replicating serotype 5 adenoviral vectors. Top, Ad-PGp53 featuring the p53 responsive
promoter. Leaky expression of the p53 cDNA initiates binding of p53 to the PG promoter, leading to high level p53 expression due to
the positive feedback mechanism. In this way, p53 serves to both drive expression as well as act as a tumor suppressor. Bottom, typical
Ad-p53 vector where a constitutive promoter is used to drive expression of the p53 cDNA. LITR, left inverted terminal repeat; PG, PGTxb
chimeric p53-responsive promoter; CMV, cytomegalovirus immediate early enhancer/promoter; p53, wild-type cDNA, PolyA, poly-
adenylation signal; Ad5(DE1/E3), adenoviral genome deficient in the E1 and E3 genes; RITR, right inverted terminal repeat.
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adenoviral vector has strong antitumor activity against
prostate carcinoma cell lines, even better than the versions
of Ad-p53 tested in clinical trials, additional benefit may
be seen if combined with chemotherapeutic agents.

Role of p53 in the response to prostate cancer
chemotherapeutic agents
For prostate cancer, the most commonly used chemother-

apy agents are mitoxantrone, docetaxel and cabazitaxel. One
of the first drugs used for treatment of CRPC was mitoxan-
trone, a synthetic anthracenedione derivative with immuno-
modulatory and antineoplastic activity that was approved
by the FDA in 1987 for treatment of different cancers and
in 1996 for prostate cancer. Clinical trials indicated that the
combination of mitoxantrone plus prednisone and cortico-
steroid improved quality of life without affecting survival (8).
Its mechanism of action involves cytotoxic activity through inter-
calation with DNA and inhibition of topoisomerase II (73),
resulting in inhibition of replication and transcription (74,75).
It also induces double-strand breaks, leading to activation
of p53 and its accumulation in the nucleus (76), indicating
that p53 status may be important to determine drug sensi-
tivity. Mitoxantrone resistance can be induced by alterations in
topoisomerase II or by P-glycoprotein (P-gp, MDR1, ABCB1)
overexpression, which results in reduced drug accumulation
inside the cell (77).
Docetaxel is the standard chemotherapeutic agent used to

treat patients with prostate cancer (78). Docetaxel was syn-
thesized from a precursor (10-deacetylbaccatin III) originally
isolated from the needles of the European yew, Taxus baccata (79).
It has an antimitotic effect by binding to free tubulin, promot-
ing the formation of stable microtubules, preventing depoly-
merization and therefore inhibiting mitosis and inducing
apoptosis (80). Collapse of microtubules results in the induc-
tion of p53, activation or inactivation of a variety of protein
kinases and inhibition of cyclin-dependent kinases, resulting
in cell cycle arrest in the G2/M phase. Other proapop-
totic activities of docetaxel include downregulation of Bcl-2,
upregulation of p53 and/or p21WAF-1 and induction of the
phosphorylation of Bcl-X(L)/Bcl-2 members (81). Compared
to wild-type p53 cells, prostate cancer cells expressing
mutant p53 demonstrated reduced sensitivity in response
to docetaxel, indicating that functional p53 is essential for
sensitivity to docetaxel in prostate cancer cells (82,83). Doce-
taxel is an effective therapy against prostate cancer, but in
some cases, it fails, requiring the use of alternative drugs,
including cabazitaxel. Drug resistance is a major barrier for
the use of docetaxel, and overcoming this impediment has
been a challenge (84). The mechanisms of resistance include
overexpression of P-gp (85) and altered beta-tubulin isotypes,
as well as deregulation of cell survival and transcription
factors (85,86).
Cabazitaxel is a taxane approved by FDA in June 2010 for

treatment of prostate cancer subsequent to the use of doce-
taxel. Like docetaxel, cabazitaxel suppresses the dynamics
of microtubules, resulting in inhibition of proliferation and
cellular arrest by inducing mitotic spindle deformity. How-
ever, cabazitaxel is more efficient (87,88) since it has lower
affinity for P-gp and remains inside the cell for more time (89).
Resistance to cabazitaxel has been noted, though little is
known about the mechanism (90). Even so, the ETS-related
gene is overexpressed in prostate cells and leads to resis-
tance to cabazitaxel treatment (91) by aborting p53 function,

deregulating apoptosis, overexpressing HER2 and inhibiting
tumor cell permeability (92).

Combined therapy
The combination of Ad-p53 with chemotherapy may

benefit both approaches. In a phase II clinical trial, NSCLC
patients were treated with Ad-p53, docetaxel or a combina-
tion of both, and the median survival time was 7.7 months
for patients who received both therapies and 5.9 months for
patients who received only docetaxel (93). Patients with
stage III or IV oral carcinoma were treated with Ad-p53 and
chemotherapy (carboplatin, bleomycin and methotrexate),
and the patients with stage III disease treated with the
combined therapy had increased survival (94). Clinical trials
combining Ad-p53 and chemotherapy provided a synergistic
effect (93-98) of reducing side effects and increasing the
quality of life and disease control compared to patients treated
with only chemotherapy (99). The combination of Ad-p53
with chemotherapy may provide a therapeutic advantage in
prostate carcinoma.

There is an intimate relationship between chemotherapy
and p53, where the cellular p53 status is important for the
prediction of drug efficacy. In ovarian cancer cells, the combi-
nation of Ad-p53 and docetaxel was positive only in cells
expressing mutant p53, while the treatment was ineffective
in cells with wild-type p53 status (100). In NSCLC, the
combination of radiotherapy, docetaxel and Ad-p53 reduced
tumor growth (101,102) regardless of the cell p53 status (103).
Interestingly, Ad-p53 may be especially advantageous in
chemoresistant cells since breast cancer cell lines resistant
to mitoxantrone were shown to be more sensitive to Ad-p53
compared to drug-sensitive cells (104).

The combination of Ad-p53 and docetaxel resulted in
enhanced antitumor effects in a murine model of HNSCC (105).
Docetaxel was shown to upregulate CAR in HNSCC cells
and cooperate with Ad-p53 to increase the expression of
bax and the cleavage of PARP and caspase-3 (106). At the
same time, Ad-p53 also favors chemotherapeutic activity by
suppressing hepatic enzymes and reducing docetaxel clear-
ance (107). In prostate cancer, the combination of Ad-p53
and cisplatin reduced tumor volume in a xenograft mouse
model (108). In vivo, the combination of antisense clusterin
oligodeoxynucleotides, mitoxantrone and Ad-p53 eradicated
subcutaneous and orthotopic PC3 tumors (109). Docetaxel
combined with CV787 (PSA+ conditionally replicating adeno-
virus) synergistically reduced prostate cancer in a xeno-
graft mouse model, where the combinatorial treatment
increased the expression of p53 (27). In prostate cancer cell
lines, docetaxel and paclitaxel were shown to increase
adenoviral transgene expression (110). The combination
of chemotherapeutic drugs (cisplatin, docetaxel, mitoxan-
trone, paclitaxel and etoposide) with an oncolytic adeno-
virus showed a synergistic response in prostate cancer cell
lines; in particular, docetaxel and mitoxantrone were shown to
increase viral uptake, exhibiting a trend of increased levels
of integrin avb3/b5 after treatment of DU145 and LNCaP
cells with either drug, as well as a trend of increased CAR
expression in PC3 cells. The combination of oncolytic adeno-
virus and docetaxel prolonged overall survival and reduced
tumor volume (111).

Prostate cancer is one of the most important tumors in men.
Development of new treatments has shown promising results,
including gene transfer approaches as an appealing alternative.
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Thus, gene therapy is slowly regaining lost territory in the
treatment of prostate cancer. The use of prostate cancer-
specific oncolytic viruses and suicide gene therapy has reached
clinical trials. Adenoviruses expressing the tumor suppressor
p53 are employed for HNSCC, but their use has been limited
in prostate cancer. We have shown that improvements in the
transgene expression system and alteration of viral tropism
may improve the suppressor activity of an Ad-p53. Even so,
gene therapymay work in cooperation with traditional chemo-
therapy, benefiting both approaches and bringing about syn-
ergistic activity as an effective prostate cancer treatment.
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